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Beta cell dedifferentiation in
type 1 diabetes: sacrificing
function for survival?
Kierstin L. Webster and Raghavendra G. Mirmira*

Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago,
IL, United States
The pathogeneses of type 1 and type 2 diabetes involve the progressive loss of

functional beta cell mass, primarily attributed to cellular demise and/or

dedifferentiation. While the scientific community has devoted significant

attention to unraveling beta cell dedifferentiation in type 2 diabetes, its

significance in type 1 diabetes remains relatively unexplored. This perspective

article critically analyzes the existing evidence for beta cell dedifferentiation in

type 1 diabetes, emphasizing its potential to reduce beta cell autoimmunity.

Drawing from recent advancements in both human studies and animal models,

we present beta cell identity as a promising target for managing type 1 diabetes.

We posit that a better understanding of the mechanisms of beta cell

dedifferentiation in type 1 diabetes is key to pioneering interventions that

balance beta cell function and immunogenicity.
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Introduction

Type 1 and type 2 diabetes (T1D and T2D) are characterized by a loss of functional

pancreatic beta cell mass. In T1D, the loss of beta cell mass has largely been attributed to

autoimmune-mediated killing of beta cells, whereas in T2D, the loss of beta cells has been

attributed to dedifferentiation—a process by which cells lose some or all of their specialized

features. The emerging picture suggests, however, that beta cell death and dedifferentiation

each contribute to the pathogenesis of both type 1 and type 2 diabetes.

T1D is conventionally defined as a disorder of immune tolerance, yet it is increasingly

appreciated that beta cell dysfunction precedes T1D onset and that beta cells themselves

may play a central role in the pathogenesis of the disease. Although the term

‘dedifferentiation’ has been used less often in the context of T1D, studies in human

tissues and mouse models indicate that beta cell identity is indeed altered in T1D and that

this may have critical implications for how beta cells interact with the immune system. In

this perspective, we will consider the concept of beta cell identity, summarize the evidence

for beta cell dedifferentiation in T1D, and speculate how dedifferentiation might influence

beta cell susceptibility to autoimmunity.
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What is beta cell identity?

Pancreatic beta cells are endocrine cells in the islets of

Langerhans that synthesize and secrete insulin to control blood

glucose. Mature beta cell function requires the ability to sense blood

glucose levels quickly and accurately, the biosynthetic capacity to

mass produce and process insulin, the dexterity to fine-tune its

release, and coordination with other islet cells to avoid over- or

under-responding to glucose flux. A significant effort to date has

shed light on how ‘beta cell identity’—the unique repertoire of

cellular proteins that equip beta cells for these tasks—is developed

and maintained in vivo and how alterations in beta cell identity may

be a consequence or even cause of diabetes (1–4).

Beyond insulin production, beta cell identity is often assessed

through the production of beta cell-enriched transcription factors

such as Pdx1, MafA, Foxo1 and Nkx6.1. Together, these

transcription factors guide the differentiation and maturation of

beta cells and maintain mature beta cell function in adulthood by

regulating genes related to glucose sensing and transport (e.g.,

Slc2a2, Gck), mitochondrial function (e.g., Mfn1/2, Drp1), calcium

signaling (e.g., Ryr2, Serca2b), and insulin production (e.g., Mafa,

Pdx1, Ins1/2) (5–8). Absence of Pdx1 during murine and human

development, for example, leads to complete pancreatic agenesis (9,

10), while beta cell specific Pdx1 depletion in adult mice results in

loss of insulin expression, downregulation ofMafA, and rapid onset

hyperglycemia (11). Heterozygous mutations in Pdx1 in humans

lead to a form of monogenic diabetes termed maturity-onset

diabetes of the young 4 (MODY4) (12).

Beta cell identity also relies upon the repression of other cellular

programs, as shown through inducible knockouts of enriched

transcription factors in mice. Ablation of Pdx1 derepresses alpha

cell transcription factor MafB in adult beta cells, manifesting a

phenotype closely resembling alpha cells (11), and Nkx6-1 deletion

leads embryonic or adult beta cells to co-express insulin and

somatostatin (13). At least 60 ‘disallowed’ genes have been

identified in beta cells (14–16), many relating to the sensing of

glucose and coupling of its metabolism to insulin exocytosis. For

example, beta cells repress the expression of high-affinity

hexokinases in favor of low-affinity glucokinase to avoid insulin

release at low blood glucose levels (17, 18). Similarly, low

monocarboxylate transporter 1 (MCT-1) expression prevents beta

cells from taking up circulating lactate or pyruvate (i.e. during

exercise) (19, 20), and low lactate dehydrogenase A (LDHA)

prevents interconversion of these metabolites and their entry into

the TCA cycle (21, 22). Also among the beta cell repressed genes are

cell proliferation factors, such as Pdgfra, c-Maf, and Igfbp4 (16),

whose repression likely contributes to the largely quiescent state of

mature beta cells. Selective gene repression is controlled by

inhibitory actions of the beta cell transcription factors (11, 23),

epigenetic modifications (24, 25), and by microRNAs and long

noncoding RNAs (26–28).

Importantly, beta cell identity is neither uniform nor static.

Single-cell RNA sequencing (scRNA-Seq) and electrophysiological

studies reveal subpopulations of beta cells that exhibit different

abundances, transcriptional signatures, maturity levels, and glucose

response dynamics even within the same islet (29). Disentangling
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the roles of these subpopulations, how they interact, and how they

shift during diabetes pathogenesis may enable us to manipulate the

state of beta cell identity as a therapeutic avenue.
What is beta cell dedifferentiation?

Cellular dedifferentiation is the process by which a mature cell

loses some or all of its specialized features. Through

dedifferentiation, a terminally differentiated cell may re-express

markers of lineage precursors, re-enter the cell cycle, and

proliferate. Controlled dedifferentiation plays a physiological role

in the remarkable tissue regeneration abilities of other species and

in the more limited regenerative capacity of mammalian cardiac

and nervous tissues after injury (30). In cancer, conversely,

dedifferentiation of tumor cells is associated with increased

metastatic potential, drug resistance, and evasion of immune

surveillance (31).

Dedifferentiation of the pancreatic beta cell has been observed

in models of metabolic stress. Rat studies demonstrated that beta

cells decrease their expression of beta cell transcription factors

Pdx1, Pax6, and Nkx6-1 and increase expression of ‘disallowed’

genes like Ldha and Hk1 in response to partial pancreatectomy and

resultant hyperglycemia (32). Later, lineage tracing experiments in

mice showed that Foxo1 depletion causes hyperglycemia, driven by

beta cell dedifferentiation and transdifferentiation to alpha cells

(33). Intriguingly, these same processes have been observed in db/db

and GIRKO mouse models of T2D (33) as well as in diet-induced

obesity models (34, 35), prompting interest in whether beta cell

dedifferentiation promotes diabetes in humans.
What has been seen in T2D?

Studies of pancreatic tissue from organ donors with T2D

suggest that beta cell identity is altered compared to nondiabetic

donors. The number of islet cells with endocrine features (i.e.,

expression of synaptophysin or chromogranin A) is maintained in

T2D donors, yet the number of insulin-positive cells is profoundly

decreased, and glucagon-positive cells increased (36, 37). Some

studies report an increase in insulin and glucagon double-positive

cells in T2D donors (37, 38), while others find no difference

compared to nondiabetic donors (36). Further, expression of

aldehyde dehydrogenase 1a3 (ALDH1A3), which marks failing

and dedifferentiated beta cells across several mouse models of

T2D (39, 40), is significantly increased in pancreata from human

donors with T2D (37). These data suggest that endocrine cell death

cannot adequately explain the loss of functional beta cell mass

in T2D.

Beyond just hormone markers, scRNAseq and complementary

approaches in mice and humans have begun to more

comprehensively define the transcriptional state of beta cell

identity at baseline and in T2D. For example, a Cd63high cluster

of beta cells with high levels of mitochondrial metabolism and

glucose-stimulated insulin secretion— characteristic of mature beta

cells — was found to be markedly reduced in mouse and human
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T2D (41). Conversely, Cd81high beta cells (expressing low levels of

Mafa, Ucn3, and Glut2) are a more immature cluster, whose

abundance is increased in mouse models of T2D and human

islets subjected to ER or glucolipotoxic stress in vitro (42). A

study cataloging human beta cell gene expression patterns across

ages from newborn to adult found that in adult donors with T2D, a

‘newborn’ pattern of expression reemerged (43). These studies

demonstrate a shift away from mature beta cell phenotypes in

T2D. This shift has been postulated as a ‘selfish’ survival strategy—

an attempt by stressed beta cells to ‘rest’ and avoid exhaustion and

apoptosis (33).
What has been seen in T1D?

T2D and T1D are both associated with loss of functional beta

cell mass, though traditionally, T2D is associated with beta cell

dysfunction and T1D with beta cell death. The features of T2D

thought to drive beta cell dedifferentiation, such as hyperglycemia

and proinflammatory signaling (32, 44), are also features of T1D.

Whether or not beta cells dedifferentiate in T1D has not been

extensively explored.

Studies of pancreas from T1D donors indicate altered endocrine

cell identity. In T1D, there is a profound loss of insulin-positive cells

in the islets (45). Even in longstanding T1D, however, some insulin-

positive residual beta cells remain (46, 47), and proinsulin is

detectable in both pancreata and sera of individuals with T1D for

years after disease onset (48, 49). What allows some beta cells to

persist is unclear. While it is thought that the loss of beta cell mass

in T1D is primarily due to cell death, there is limited direct evidence

of this killing in human tissues (45). Although beta cells typically

comprise about 50–65% of human islet volume in healthy

individuals (50), there is no apparent decrease in islet size in T1D

donors (51). Notably, there is a relative increase in non-beta

endocrine cell types (52). Insulin-deficient T1D islets consist

largely of cells co-producing glucagon and Pdx1 (51), a sign of

possible transit between beta and alpha cell identities. Like in T2D,

endocrine cells expressing none of the 4 major pancreatic hormones

(ChrgA+/hormone-, or CPHN) are also more abundant in T1D

islets than in nondiabetic or autoantibody-positive (Aab+) islets

(52). The source of these CPHN cells is undetermined. Collectively,

these data raise the possibility that while some beta cells are lost to

immune-mediated killing in T1D, some dedifferentiate to

phenotypes expressing little to no insulin, such as CPHN or other

endocrine cell types.
What is driving beta cell
dedifferentiation in T1D?

Human T1D pancreas tissues are a scarce resource, and one that

only captures a limited cross-section of disease pathology.

Therefore, other in vivo and in vitro models have been primarily

used to study the mechanisms and functional consequences of beta

cell dedifferentiation in T1D. Nonobese diabetic (NOD) mice

develop immune infiltration of the islet (insulitis), as well as beta
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cell endoplasmic reticulum stress, by about 4–8 weeks of age;

however, most mice will not develop overt autoimmune diabetes

until 12–20 weeks of age (53). By 8 weeks of age, there is a

significant decrease in islet expression of Pdx1 and of Ins1/2 (53)

without a decrease in beta cell mass (54). This finding could

represent a program of beta cell dedifferentiation either intrinsic

to beta cells on the NOD background or spurred by increasing islet

inflammation. In vitro studies support the association of

inflammation and beta cell dedifferentiation; human, rat, and

mouse islets treated with proinflammatory cytokines show

decreases in beta cell genes like Pdx1, MafA, and Nkx6–1 (44, 55).

Notably, NOD-SCID mice are B and T cell-deficient and do not

develop spontaneous autoimmune diabetes, yet they also exhibit a

decrease in islet Pdx1 and Ins1/2 expression with age (53). IL-1b

appears to be particularly potent in downregulating beta cell

markers (44), and this cytokine is primarily secreted by innate

immune cells, which remain intact in NOD-SCID mice.

Examining NOD islets at the single-cell level has elaborated on

the dedifferentiation phenomenon. Starting around 4 weeks, a

population of beta cells with decreased insulin content and

maturity markers yet increased PD-L1 and markers of stemness

(‘Btm’ beta cells) appears, their proportion rising as they

preferentially survive immune infi ltration (56). While

hyperglycemia is strongly associated with dedifferentiation in

other disease models (32, 57), Btm beta cells appear before

hyperglycemia in the NOD model. PD-L1+ beta cell abundance

correlates with increasing abundance of CD45+ cells in the islet

(56). Blocking T cell killing of beta cells via administration of an

anti-CD3 monoclonal antibody decreased but did not eliminate the

formation of Btm beta cells, suggesting that islet infiltrating T cells

contribute to but cannot entirely account for the formation of these

immature beta cells.

The above studies suggest that dedifferentiation is part of the

‘natural history’ of NOD diabetes. Other studies have identified beta

cell dedifferentiation in response to genetic and pharmacological

inhibition of essential beta cell functions, providing clues for how

inflammation or intrinsic beta cell defects may activate this process

in T1D. Exposing the human beta cell line EndoC-betaH1 to

double-stranded RNA to simulate viral infection, a possible

trigger for T1D initiation (58), causes reductions in genes like

MAFA and INS and increases in progenitor markers like SOX9,

HES1, and MYC driven by NF-kB within the beta cell, as well as by

interferon alpha released by neighboring cells (59, 60). Endogenous

double-stranded RNAs- allowed to persist in the setting of beta cell-

specific depletion of RNA editing enzyme ADAR- decrease

proprotein convertase expression and formation of mature

insulin, and also elicit massive interferon alpha responses and

insulitis (61). Importantly, high glucose also exacerbates the

interferon response, creating a positive feedback loop that may be

acting in early T1D- interferons decrease beta cell functionality, and

decreased functionality leads to poorer glucose handling (61).

Oxidative stress also decreases maturity genes and increases

progenitor markers in primary human beta cells (62). Directly

reactivating developmental pathways, such as Notch or Hedgehog

signaling, in mature mouse beta cells stimulates proliferation (63,

64). Beta cell-specific depletion of mTORC component Raptor in
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mice disrupts mitochondrial metabolism but also decreases beta

cell-enriched genes and increases progenitor markers in a

hyperglycemia-independent manner (65). Disruption of the

unfolded protein response (UPR), which is activated by ER stress

in prediabetic NOD mice (53), causes beta cell dedifferentiation in

models of both T1D and T2D (66, 67). Studies in the murine beta

cell line MIN6 suggest that loss of beta cell maturity induced by

even near-fatal levels of ER stress is reversible, yet plasticity

decreases with repeated episodes of ER stress (68). Thus,

developing strategies to intervene before the potential for beta cell

redifferentiation is lost may be important to recovering beta cell

function long-term.

Studies across different models of T2D (ob/ob), T1D (NOD),

and inflammatory beta cell death (metronidazole) each demonstrate

beta cell dedifferentiation phenotypes, none of which perfectly

recapitulate a simple reversion to beta cell progenitor states (69–

71). Importantly, heterogeneity between these transcriptomic and

functional phenotypes stresses that beta cell dedifferentiation is not

a single linear process, but rather varies to the particular

diabetogenic stressors at hand. Further study will be needed to

understand which of the above pathways (i.e. interferon signaling,

ER stress, reactivation of developmental pathways) are most

relevant to human T1D and at what stages of disease.
How does dedifferentiation impact
beta cell-directed autoimmunity?

Although evidence of beta cell dedifferentiation in T1D

continues to emerge, it is unclear what role this phenomenon

plays in disease pathophysiology. A loss of mature beta cell

identity often means a loss in effective glucose-stimulated insulin

secretion, yet these immature cells appear to preferentially survive

autoimmunity. As noted previously, dedifferentiation of tumor cells

is associated with increased metastatic potential, drug resistance,

and evasion of immune surveillance (31). While these are

dangerous features in cancer, could dedifferentiation also be a

strategy by which beta cells evade autoimmune killing?

The resilient (‘Btm’) beta cells described by Rui et al. in NOD

mice express lower levels of beta cell autoantigens IGRP, ZnT8,

Gad1, and IA-2 compared to their more susceptible counterparts

(‘Top’), while also expressing higher levels of immune tolerogenic

proteins PD-L1 and Qa-2 (56). These immunoprotective features of

the Btm beta cells offer a strong defense against immune killing in

spontaneous NOD diabetes, cyclophosphamide-induced diabetes,

and in vitro in a culture of sorted Top and Btm cells with islet

immune infiltrates. Several models in which beta cell identity is

altered on the NOD background also protect against T1D-like

disease. Inducing early beta cell-specific knockout of UPR protein

IRE1-a (IRE1-abeta-/-) causes a phenotype similar to the Btm beta

cells (i.e. decreased autoantigens, increased immunoinhibitory

markers), as well as decreased MHC class I and peptide loading

components (67). These mice become transiently hyperglycemic

but ultimately recover and are protected from diabetes. During the

hyperglycemic phase, IRE1-abeta-/- islets show decreased insulin
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expression; during the recovery period, these islets have less

immune infiltration compared to controls and recovered insulin

content. These findings are consistent with a hypothesis that

stressed beta cells use dedifferentiation to ‘rest’ and dampen pro-

apoptotic interactions with the immune system (Figure 1) and

suggest that these cells may be capable of redifferentiation

following acute stress. Other mouse models are also consistent

with this hypothesis, including NOD Liver Insulin Receptor

knockout (LIRKO) mice and early beta cell knockout of the UPR

protein ATF6 in NOD mice —each induces transient beta cell

dysfunction followed by protection from T1D. The NOD-LIRKO

model, characterized by proliferating beta cells bearing fewer

autoantigens, exhibits only transient hyperglycemia and is

protected by an increase in regulatory T cells. Transplanted into

NOD mice, NOD-LIRKO islet grafts showed improved survival

compared to control islets, indicating islet-intrinsic protection that

is likely afforded by the presence of immature, proliferative beta

cells (72). In the case of ATF6 KO induced shortly after birth

(postnatal days 1–3), beta cell induction of the senescence

associated secretory phenotype (SASP)- increased secretion of

select cytokines, chemokines, and growth factors- protected NOD

mice from diabetes by recruiting inflammation-resolving M2

macrophages to the islet (73). Like dedifferentiation, senescence

represents an altered state of beta cell identity which has been

observed in human T1D islets and is associated with decreased

expression of maturity markers like Ucn3 (74). In contrast to

dedifferentiated cells, which often show increased markers of

proliferation and stemness (56), senescent cells exit the cell cycle.

Interestingly, while induction of senescence prior to insulitis

protects NOD mice from developing diabetes (73), selective

clearance of senescent beta cells in adult NOD mice after insulitis

also reduces diabetes development (74). This seeming contradiction

underscores that alteration of beta cell identity may be protective or

detrimental depending on timing and disease context, with

immature features showing particular potential to protect beta

cells from the damages of insulitis.

Whereas the relationship between beta cell identity and

autoimmunity is more difficult to study directly in human disease,

T1D tissues offer some parallels to observations in mice. Like Btm

cells in NOD mice, remaining insulin-positive cells in T1D islets

express PD-L1, which is absent in nondiabetic, AAb+, and even

insulin-negative T1D islets (75). Single-cell initiatives (e.g., the

Human Pancreas Analysis Program and spatial transcriptomics

and proteomics) will help determine if these PD-L1+ residual

beta cells, or the CPHN or Pdx1+-Glucagon+ cells observed in

human T1D islets, behave like the resilient beta cells observed in

NOD mice, and perhaps how they relate to proximity or

composition of insulitis.
Discussion

An accumulating body of evidence links both T1D and T2D

pathogenesis to the emergence of dedifferentiated beta cells with

loss of hormone expression, expression of markers from multiple
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endocrine cell types, and re-expression of progenitor genes.

Inflammatory signaling and hyperglycemia, hallmarks of both

T1D and T2D, are known to downregulate beta cell maturity

markers. Beta cell dedifferentiation has conventionally been

viewed as a purely detrimental process through which beta cells

lose the ability to produce and secrete insulin in response to glucose,

culminating in functional failure. Nonetheless, the universal

detrimental implications of beta cell dedifferentiation remain

speculative, especially within the context of autoimmune T1D.

Sophisticated single-cell analyses conducted in both human and

murine models have shown the transcriptional and functional

heterogeneity of beta cells, revealing subpopulations capable of

withstanding immune onslaught. Notably, in the NOD mouse

model of T1D, beta cells expressing fewer autoantigens and

augmented immune checkpoint proteins, either spontaneously or

through genetic interventions, tend to persist. We propose that beta
Frontiers in Endocrinology 05
cells may dedifferentiate into immature phenotypes to evade

immune surveillance, albeit at the expense of their functionality

(Figure 1). Thus, dedifferentiation may also serve to alleviate the

biosynthetic burdens on beta cells and promote ‘beta cell rest’ – a

clinical concept that explains why suppressing endogenous insulin

secretion with exogenous insulin in newly-diagnosed T1D patients

ultimately reduces their long-term exogenous insulin

requirements (76).

In individuals at risk of developing T1D, establishing a

homeostatic equilibrium between diminished functionality and

attenuated immune recognition of beta cells may be an avenue

for therapeutic intervention. Future investigations are warranted to

determine the feasibility of pharmacologically inducing beta cell

dedifferentiation or redifferentiation. Functional targets (i.e. ER

stress, RNA editing), tissue specificity, and timing of therapy

relative to disease pathogenesis will be key areas for exploration.
FIGURE 1

Dedifferentiated beta cells preferentially survive autoimmune attack. During the progression to T1D, an increasing proportion of beta cells exhibit an
immature or 'dedifferentiated' phenotype. We propose that dedifferentiation decreases beta cell functional characteristics (i.e. expression of insulin,
Glut2), but that this decrease, along with augmentation of immune checkpoint proteins like PD-L1, also serves to decrease beta cell immunogenicity
in the autoimmune setting of T1D. Created with BioRender.com.
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