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Exposure to brominated flame
retardants in utero and through
lactation delays the development
of DMBA-induced mammary
cancer: potential effects
on subtypes?
Melany N. Juarez1, Alec McDermott1, Michael G. Wade2

and Isabelle Plante1*

1INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada, 2Environmental Health
Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada,
Ottawa, ON, Canada
Introduction: Brominated flame retardants (BFRs) are chemical compounds

used to reduce the flammability of various products; some BFRs exhibit

endocrine-disrupting properties and can leach into the environment leading to

human and wildlife exposure. The mammary gland has specific vulnerability

windows during which it is more sensitive to the effects of endocrine disrupting

compounds (EDCs), such as the in utero life, puberty and pregnancy. Our

previous studies revealed precocious mammary gland development,

disruptions in junctional proteins, and altered proliferation-apoptosis balance

during puberty in rats exposed to BFRs in utero and through lactation. Such

effects have been associated with increased mammary cancer risk.

Objective: The current study aimed to determine if in utero and lactational

exposure to BFRs renders the mammary gland more susceptible to 7,12-

dimethylbenz[a]anthracene (DMBA)-induced mammary cancer.

Methods: Dams were exposed to a BFRs mixture (0. 0.06 or 60 mg/kg/day), and

mammary cancer was induced in pups using DMBA at post-natal day 46. Tumors

onset and growth were monitored, and tumors were characterized using

histology and molecular biology.

Results: Although BFRs exposure did not significantly affect mammary tumor

number or burden, it showed significant delay in mammary tumor onset and

growth in BFR-exposed animal. These effects could potentially be due to BFRs’

impact on cellular responses, DMBA metabolism, or mammary gland shift of the

sensitivity window. Molecular analysis of mammary tumors showed a shift in the

ratio of luminal A, luminal B, and (HER2)-enriched tumors, and an increase in

triple-negative breast cancer (TNBC) subtypes in BFR-exposed animals.

Additionally, BFRs exposure showed lung lesions indicative of inflammation,

independent of mammary cancer development.
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Conclusion: Our study highlights the complex relationship between BFRs

exposure and mammary cancer risk, emphasizing the need for further

investigation into underlying mechanisms and long-term effects of BFRs on

mammary gland development and carcinogenesis.
KEYWORDS

mammary gland, brominated flame retardants, cancer, 7,12-dimethylbenz[a]anthracene
(DMBA), gestational-lactational exposure, endocrine disrupting compounds (EDCs)
1 Introduction

Brominated flame retardants (BFRs) are chemicals which

inhibit the ignition and spread of flames. They were routinely

added to several synthetic materials to meet fire safety standards

(1, 2). Most BFRs are not covalently linked with the polymer

matrices to which they are added and tend to leach into the

environment. They have been detected in house dust, sediments,

sludge, air, soil and water, as well as in human and wildlife tissues in

the United States, Canada, Europe and Asia (3–7). Polybrominated

diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD)

were some of the most extensively used BFRs, and they were added

to commercial goods in the form of commercial mixtures (8, 9). As

a result of the evidence of persistence and bioaccumulation, the

European Union restricted the sale of Penta- and Octa-BDEs in

2005 and added some congeners to this regulation in 2019 (1, 10).

In addition, the trade, import, production and use of PBDEs and

HBCDDs have been restricted under the Stockholm Convention,

but are not necessarily banned in all the signatories. BFRs can still

be found in waste and recycled materials, they are still added to

some electrical goods, and used in the aviation and automobile

industry (11, 12), thus resulting in chronic environmental and

human exposure.

Human exposure mainly results from BFRs ingestion and

inhalation of dust (7, 13). Several studies have found BFRs in

indoor dust, where the degree of degradation and dispersal are

considerably reduced compared with other matrices exposed to

sunlight and other environmental forces (7, 14–16). Indoor

concentrations of PBDEs in the USA range from 700 to 30,100

ng/g of dust, where BDE-209 was found at the highest

concentrations and represented in 88% of the samples (7). The

ingestion of contaminated fish, meat, eggs and dairy products is

another source of human exposure (17, 18). Toddlers are the

population with the greatest exposure due to constant contact

with indoor dust, toy-leaching BFRs, hand-to-mouth behavior,

diet and consumption of breast milk (19, 20).

The association between exposure to PBDEs and disruption in

reproductive development, neurobehavior, thyroid hormone

physiology, as well as male and female reproductive function has

been the subject of many reviews (21–27). The mechanism(s)

underlying BFR-induced health effects remain to be fully
02
elucidated but it is clear that PBDEs or their metabolites interfere

with several hormonal pathways including thyroid (21, 28, 29),

estrogen (30, 31) and androgen (32). PBDEs have a strong

structural similarity with thyroid hormone, and HBCDDs can

bind to thyroid hormone receptors and thyroid transport proteins

with varying affinities (33). They can cause hypertrophy of the

thyroid gland epithelium as well as induce hepatic cytochrome

activity (28). PBDEs can bind to estrogen receptors and cause the

expression or inhibition of genes which are regulated by estrogen

depending on the congener (34, 35). For example, PBDEs have been

shown to enhance the estradiol-mediated regrowth of the

mammary glands with TEBs-like structures in a menopausal mice

model, suggesting that PBDEs may increase the risk for mammary

cancer development due to the activation of growth of luminal cells

by estrogen-responsive mechanisms (31). Additionally, PBDEs in

the presence of estrogens may affect immune modulators and the

reorganization of the epithelium (31).

The development of the mammary gland occurs mainly after

birth in a multistage remodeling process (36). At birth, the

mammary gland is present as a rudimentary ductal structure. At

puberty, in response mainly to estrogens and progesterone, the

branching morphogenesis initiates, causing the ductal tree to

elongate into the fat pad. This process is led by highly

proliferative multilayered terminal end buds (TEBs) (37). Upon

pregnancy, alveoli are generated under the combined action of

progesterone and prolactin, which will secrete milk during lactation

in response to the presence of oxytocin (38). At weaning, in

response to the lack of demand of milk, the process of involution

takes place and the mammary gland is remodeled back into its pre-

pregnancy-like state (39).

There is evidence supporting that exposure to EDCs during

sensitive periods of life is linked to developmental defects in the

mammary glands and mammary cancer later in life as reviewed by

(40, 41). These sensitive periods correlate with cellular proliferation

and differentiation, and are highly regulated in response to

hormones in endocrine-sensitive tissue; in the case of the

mammary gland, this includes perinatal life, puberty, pregnancy

and lactation (42). The influence of PBDEs on mammary gland

tumors was suggested by a study showing that the majority of PBDE

congeners were significantly and markedly elevated in adipose

tissue of breast cancer cases compared to controls (43). Further,
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PBDE was shown to enhance estrogen-driven mammary gland

remodeling and molecular changes suggestive of a PBDE-induced

increase in duct luminal cell maturation (31). Recently, we showed

that dams exposed during pregnancy and lactational to an

environmentally relevant mixture of BFRs, have reduced serum

levels of T4 and altered adherens junctions in the mammary glands

at weaning (44, 45). Ovarian folliculogenesis and steroidogenesis

were also affected (46). In pups exposed during gestation and

through maternal milk, skeletal and digital abnormalities were

observed (47), as well as neurodevelopment and lipid metabolism

defects (48), and early onset of puberty and abnormal ovarian

follicles at post-natal day 46 (PND46) (49). In addition, we have

shown that pups exposed to a mixture of BFRs at 0.06mg/kg/day in

utero and through lactation showed down-regulation of adherens

junctional proteins (E-cadherin and b-catenin), gap junctional

protein (p-Cx43), THR-a1 and cleaved caspase-3, suggesting a

disruption in cell-cell interactions and of the balance between

proliferation and apoptosis in the mammary gland at PND46

(peripubertal stage) (50). A precocious mammary gland

development has also been observed in pups at PND21 (51).

Dysregulation of adherens junctions and precocious

development of the breast have been associated with abnormal

mammary gland development and mammary tumors for both

women and animal models (41, 52–56). Based on these results,

the current study thus aimed to determine whether exposure to

BFRs in utero and through lactation could enhance the progression

of DMBA-induced mammary gland carcinogenesis in exposed

female pups.
2 Materials and methods

2.1 Preparation of BFRs mixture

An environmentally relevant mixture of BFRs, formulated to

mimic concentrations found in Boston house dust was used (9, 57).

The formulation and composition of this mixture have been

described in detail elsewhere (28); briefly, three different technical

PBDE mixtures (DE-71, DE-79 and BDE-209; Supplementary

Table 1) and one HBCDD mixture were combined to give relative

levels of congeners similar to that observed in house dust. The BFRs

mixture was incorporated into the diet (Teklad Global 2019 diet;

Envigo Laboratories, Madison, WI, USA) as described previously

(44, 50, 51) at a concentration of 0, 0.75, or 750 mg of BFRs/kg to

deliver a nominal daily dose of 0, 0.06, or 60 mg/kg of body weight/

day, respectively. The control corresponded to the same pelleted

diet without the presence of BFRs. The lowest dose approximates

the maximal human exposure, calculated based on the dust

ingestion rate (100 mg/day) in children (16.5 kg body weight)

and then scaled human to rat body surface area ratio (1:6.9). In our

previous studies, the lowest dose was associated with molecular

changes observed in mammary glands of exposed pups at multiple

ages (44, 50, 51), while the highest dose induced liver enlargement

and enzyme induction (45). An intermediate dose was used

previously in our studies but not kept in this protocol as there
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were no significant effects on the mammary gland development (44,

50, 51). Pelleted diets were stored at 4°C for no more than 1 month

prior to feeding. Previous studies have confirmed the relative

exposure levels for this type of protocol (45, 47, 58).
2.2 Animal exposure

The studies involving animals were conducted under the

procedures provided by the Canadian Council on Animal Care.

The protocol (1909–02) was reviewed and approved by the

Institutional Committee for Animal Protection of the Laboratoire

National de Biologie Expérimentale (LNBE), the animal facilities

based at the Institut National de Recherche Scientifique (INRS).

Virgin Sprague-Dawley female rats aged 6-7 weeks were

obtained from Charles River Laboratories (Charles River, St-

Constant, QC, Canada) and acclimatized for 1 week on the

control diet (Supplementary Figure 1). The estrus cycle was

followed through vaginal impedance (59); an impedance higher

than 3 kilo ohms was considered as an indicator of the proestrus

phase, which was later confirmed with a vaginal smear before

mating. Animals properly cycling were randomly divided (n ≥ 25)

into the three treatments; 0, 0.75 or 750 mg of BFRs/kg and exposed

through the diet for a minimum of one week before mating. Female

rats in proestrus were housed overnight with a male Sprague-

Dawley rat with an ad libitum control diet and water. Sperm-

positive vaginal smears the following morning indicated mating and

were considered gestational day 0 (GD0). All mated females were

housed individually and allowed to deliver; the day of birth was

considered post-natal day 0 (PND0). The exposure to BFRs was

extended during lactation and ended at PND21 (weaning), resulting

in gestational-lactational exposure for the pups (Supplementary

Figure 1). After birth, dams’ and pups’ weights were recorded twice

a week. All animals were kept under controlled light conditions

(12L:12D). At PND0, litter size and stillborn pups were counted.

The sex ratio was recorded at PND4, and litter size was normalized

to 8 pups per litter. A ratio of 6 female/2 male was preferred

when possible.

Pups were weaned at PND21 and subsequently fed the control

diet. Mammary gland tumorigenesis was induced in juvenile female

pups (PND46), an age when the mammary gland is highly sensitive

to carcinogens, by treatment with the well-characterized mammary

gland carcinogen 7,12-dimethylbenz[a]anthracene (DMBA;

CASNo.:57-97-6, purity ≥95%, Sigma-Aldrich, St-Louis, MO,

USA) (60). Two female pups from each litter were separated into

oil- or DMBA-exposed groups. Female pups were administered

corn oil or DMBA (20 mg) diluted in corn oil by gavage

(administered as 20 mg/ml per animal) at PND46. Thus, one

offspring per litter was considered as an observation. At the end

of the protocol a total of 6 experimental groups were analyzed,

composed of pups exposed through gestation and lactation to BFRs

(low or high dose) or to the control diel, and later exposed to either

oil- or DMBA at PND46. Animals were monitored bi-weekly for

body weight and mammary gland tumor onset by palpation, and to

detect any changes in general health.
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2.3 Evaluation of tumorigenesis

Tumor onset and growth were evaluated by palpation and using

a caliper bi-weekly. To do so, pups were restrained using one hand,

and the presence of tumors was evaluated by palpating the region

around each nipple by gently rolling the skin between the index and

the thumb. Tumor onset was determined after a feeling of a mass in

the mammary gland that grew from one palpation to another. The

endpoint was determined when a tumor reached 1.5 cm2, or if a rat

showed signs of critical illness (animals euthanized because of

critical illness were removed from the study). Control animals,

without tumors, were sacrificed at a similar time point. Female pups

were euthanized by exsanguination under isoflurane anesthesia. At

the time of sacrifice, the mammary gland and lungs, the prime site

for mammary gland metastasis, were collected. Tumors that were

identifiable by palpation and that were bigger than 1 mm3 were

counted. The largest tumor was dissected and cut in half; one-half of

the tumor was snap-frozen for protein extraction while the other

half was fixed in formaldehyde 4% and later embedded in paraffin.

The remaining tumors and mammary gland tissue (including other

mammary glands) were fixed in formaldehyde 4% and later

embedded in paraffin.
2.4 Histology

The mammary gland sections (5 mm) were stained using

Masson’s trichrome. Briefly, paraffin sections were rehydrated and

washed in distilled water. Slides were sequentially stained with

Weigert’s iron hematoxylin (10 min), Biebrich scarlet-acid fuchsin

(15 min), phosphomolybdic-phosphotungstic acid (20 min) and

aniline blue (5 min). Between every coloration, they were washed

with water. Finally, tissue sections were treated with 1% acetic acid

(5 min), dehydrated and coverslipped using Permount (Fisher

Scientific, Nepean, ON, Canada). Mammary gland sections were

examined for the presence of hyperplasia, small tumors or other

abnormalities. Mammary gland tumors were imaged with the

confocal microscope (Nikon A1R+, Tokyo, Japan) and they were

characterized blindly with the help of a pathologist.
2.5 Evaluation of metastasis

Lung metastasis was evaluated as described (61). Briefly, lungs

were sampled at the time of sacrifice, inflated and fixed by injecting

10% buffered formalin through the trachea. Inflated lungs were kept

in buffered formalin for at least 48 h, and visible lesions present on

the lung surface were counted (macrotumors). Lungs were

embedded in paraffin and cut using a microtome (5 mm). Sections

were stained using hematoxylin and eosin for microscopic lesions

detection (microtumors) and examined by a pathologist. To

confirm the mammary gland origin of observed lesions, sections

were stained for mammaglobin as previously described (61). Briefly,

rehydrated sections were probed using anti-mammaglobin

(PA5104457, Thermo Scientific Pierce, Ottawa, ON, Canada), and
Frontiers in Endocrinology 04
visualized using Vectastain ABC-HRP kit (Vector laboratories,

Newark, CA, USA) and counterstained with hematoxylin (SL100

Vintage Hematoxylin, StatLab, McKinney, TX, USA). As previously

described, imaging was performed by the confocal microscope

(Nikon A1R+). At least 5 random pictures were taken per slide,

per lobe and analyzed blindly.
2.6 Protein analysis

Tissues were snap frozen, limiting the action of proteases, and

stored at -80°C. Protein extraction was performed by crushing the

tissues into powder on dry ice and homogenizing in cold Triple-

detergent buffer (50 mM Tris,150 mM NaCl, 0.02% sodium azide,

0.1% SDS, 1% Nonidet P40, 0.5% sodium deoxycholate, pH: 8)

supplemented with sodium fluoride 1.25 M, sodium orthovanadate

1M and a cocktail of inhibitors 1x (Halt Protease and phosphatase

cocktail inhibitor, Fisher Scientific Canada, Nepean, ON, Canada)

(50). Samples were homogenized to ensure cell lysis. After sonication,

samples were centrifuged (13000 x g for 10 min at 4°C) and the

supernatant was stored at -80°C.

Quantification of total protein was performed by using a

bicinchoninic acid (BCA) protein assay reagent kit (Thermo

Scientific). Protein samples were resolved on stain-free acrylamide

gels (TGX Stain-Free FastCast Acrylamide kit, 10%, Bio-Rad,

Mississauga, ON, Canada) and transferred onto polyvinylidene

fluoride (PVDF) membranes using the Trans-Blot Turbo Transfer

System (Bio-Rad). After transfer, total lane proteins were visualized

using the ChemiDoc MP imaging system (Bio-Rad) and used

for normalization. Membranes were then blocked with TBS-tween

0.1% + 5% dry milk or 3% BSA and probed to primary antibodies:

E-cadherin, b-catenin, keratin 14 (K14), keratin 18 (K18), connexin

43 (Cx43), estrogen receptors (ERb, ERa), progesterone receptors

(PRA, PRB), proliferating cell nuclear antigen (PCNA) and human

epithermal growth factor receptor 2 (HER2; also referred as ErbB2 or

HER2/neu) and horseradish peroxidase (HRP)-conjugated secondary

antibodies (Supplementary Table 2). The expression of proteins was

quantified in density, normalized to the total proteins in each lane

using the software Image Lab (Bio-Rad) and compared to a pool of

proteins of all the samples included in every gel (62).
2.7 Statistical analysis

The data was analyzed using GraphPad Prism 8 (https://www.

graphpad.com) or RStudio (https://posit.co). First, the presence of

outliers was determined with the ROUT test. The normal

distribution of each data set was assessed with the D’Agostino

& Pearson omnibus normality test and Shapiro-Wilk normality

test. Data that satisfied assumptions of normality and

homoscedasticity were analyzed using one-way ANOVA

followed by Tukey’s multiple comparison tests. Otherwise, a

Kruskal-Wallis test followed by Dunn’s multiple comparison

test was used. For all experiments and statistical analyses, 1 pup

per litter was evaluated.
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3 Results

3.1 Gestational and lactational exposure to
BFRs does not affect the general health
of pups

We successfully mated n ≥ 10 dams per treatment. There was no

significant difference in the number of successful pregnancies per

mating, pups per successful pregnancy, the female vs. male ratio of

pups, the general health, or the body weight of both dams and pups

throughout the experiment (Supplementary Figure 2). Nevertheless,

we noticed a higher proportion of stillborn pups from dams on

either BFRs diets in comparison to the control, but this effect failed

to reach significance (p = 0.4806 for control vs low dose and p =

0.1024 control vs high dose) (Supplementary Figure 2). These

results confirm the lack of toxicity for pregnancy outcomes for

these treatments as previously observed (47). Male pups were

euthanized at PND21 and their mammary glands were harvested

to assess the density and area of the epithelium. No changes were

detected between the BFRs exposed animals and the control (data

not shown).
3.2 BFRs-exposure rats resulted in a
delayed onset of mammary tumor

Only animals who received DMBA developed mammary

tumors, meaning that BFRs by themselves do not induce the

development of mammary cancer after in utero and lactational

exposure at the time span given for this protocol. Surprisingly,

within the DMBA-treated pups, exposure to BFR resulted in a dose-

related delay in the time from DMBA treatment to the palpation of

the first tumor (Figure 1E) although this delay only reached

significance for the high dose. The median time after gavage until

the first palpated tumor was 50 days for the control group but 57

and 84 days after the gavage for the low and high doses, respectively.

The median survival from gavage and until endpoint (1.5 cm2) was

57 days for control, 71 for the low dose and 142 days for the high

dose (Figure 1F). Additionally, the average speed of growth was

decreased for the BFR-exposed animals (Figure 1D), showing a

statistically decreased cm2 per day for the high dose when compared

to the control. Measurable tumors appeared to be more numerous

in BRFs-treated animals, as an average of 3.3 ± 0.6 measurable

tumors were counted at the time of sacrifice for the control group,

compared to 3.6 ± 0.6 and 4.5 ± 0.8 tumors for the low and the

highest doses (Figure 1A) but this difference failed to reach

statistical significance (p > 0.05). Similarly, the total tumor

burden was defined as the sum of the estimated volume of all

tumors per animal, which was slightly higher in the animals

exposed to BFRs, while the average tumor size for the three

groups does not show any difference (Figures 1B, C). These

results suggested that animals pre-exposed to BFRs tend to

develop more DMBA-induced tumors that develop later and

grow slower than control animals.
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3.3 The BFRs treatments induce changes in
markers of mammary cancer in DMBA-
induced tumors

We then characterize DMBA-induced tumors in all treatment

groups, as well as the effects of the BFRs treatments, on protein

expression. Although some variations could be observed, only the

expression of ERa was affected by the high dose of BFRs in the

mammary glands of rats not exposed to DMBA (Supplementary

Figures 3, 4). In addition, PCNA and HER2 were not visible by

western blot in the oil-treated group. Globally, we observed changes

in protein expression when comparing tumors from DMBA-

exposed rats to mammary gland extracts from rats not exposed to

DMBA. A decrease in the ERb was observed, while levels of ERa,
the PR A/B, HER2, PCNA, E-cadherin and b-catenin all increased

in tumors from DMBA-treated rats compared to mammary gland

from controls most of these changes being significant (Figures 2, 3;

Supplementary Figures 3, 4).

Breast cancer can be classified histologically but can also be

divided into molecular subtypes characterized by the expression of

markers, which are related to different prognosis and responses to

therapies (Supplementary Figure 6). We thus aimed to characterize

tumor subtypes that were induced by DMBA and exposure to BFRs.

First, tissue sections were analyzed blindly by a pathologist and no

differences were observed when comparing the tumors as most were

cribriform in situ carcinomas (Figure 4). Then, the expression of

markers of mammary cancer subtypes was assessed using tissue

homogenates. When comparing the expression of the protein

markers between rats treated with DMBA, no difference was

observed for ERs, PRs and PCNA. A significant decrease of

HER2, a marker associated with HER2-enriched tumors, was

observed in the group treated with the low dose of BFRs in

comparison to the control group, while the decrease was not

significant in high-dose BFRs treatment (Figure 2D).
3.4 BFRs treatments might affect the
distribution of the subtypes of mammary
cancer tumors

Although the average levels of expression were not

significantly changed between treatment groups for most of the

makers observed, trends could be observed when all the changed

in hormonal receptors were analyzed together. In addition,

variability could be observed between animals from the same

group. Since DMBA-induced mammary cancer is known for its

heterogenic type of tumors, we then analyze potential changes in

the subtype of mammary cancer based on individual protein

profiles, rather than an analysis per treatment group. To do so, we

created a heatmap with an increase and decrease in protein

expression in comparison to the control groups for each animal

within the groups. The level of expression of the group exposed to

nei ther BFRs nor DMBA was cons idered 0 for this

heatmap (Figure 5).
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We noticed a change in the distribution of the subtypes of

mammary cancer for the BFRs exposed group in comparison to the

control group. In the control group, the induction of mammary

cancer by DMBA resulted in about 30% luminal A, 10% luminal B,

60% HER2-enriched and no cases of triple-negative tumors

(TNBC), classified solely on the base of the levels of expression of

ER, PR, HER2 and PCNA (Figure 6). However, in the group

exposed to 0.06 mg/kg of body weight/day, the distribution

presented 50% luminal A, 10% luminal B, 30% HER2-enriched
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and 10% TNBC. Finally, when exposed to the highest dose of BFRs,

60mg/kg body weight/day, Luminal A corresponded to 20%, HER2-

enriched 50% and TNBC increased to 30% while no luminal B

tumors were present. These results suggest that exposure to BFRs

might result in a shift in the distribution of mammary cancer

subtypes, showing, in this case, an increased proportion of TNBC

tumors, and a decrease mainly in the HER2-enriched tumors. It has

to be noted that statistical analysis could not be performed due to

the size of the sample used.
FIGURE 1

Effects on tumor onset and measurements after an exposure in utero and through lactation to a brominated flame retardant (BFR) mixture and a
gavage with DMB at PND46. No significant differences were observed for number of tumors (A), average tumor size (B) and tumor burden sum
(considered as the sum of the estimated volume of all tumors per animal) (C) between treatments (0, 0.06 and 60 mg/kg of body weight/day). There
was significant delay in tumor onset for the pups exposed to the high dose of BFRs, as measured by the number of days between DMBA exposure
and the first tumor palpation (p=0.0039) (D). A delay was observed in survival in BFR-treated group, as defined by the time between DMBA-
exposure (PND46) and the endpoint for the animal (tumor reaching 1.5 cm²) (E). The median survival was identified at 57 days for 0 mg/kg of body
weight/day, 71 for 0.06 mg/kg of body weight/day and 142 for 60 mg/kg of body weight/day (p=0.0133 control vs low dose and p < 0.0001 control
vs high dose) (E). Additionally, there was a significant decrease in the speed of tumor growth (from tumor onset until the endpoint, cm² per day) for
the high dose (60 mg/kg/day) when compared to the control diet (p = 0.0014) (F). p-values were calculated using Mantel-cox test, Kruskal-Wallis
statistical test or ANOVA. (n ≥ 10 pups, 1 per litter).
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3.5 BFRs exposure does not seem to affect
the presence of metastasis in the lungs but
alters their histology

Lungs are one of the main sites for breast cancer metastasis (63);

in clinic, 60 -70% of patients who eventually die from breast cancer
Frontiers in Endocrinology 07
have metastasis in their lungs (64). Therefore, at the time of the

necropsy, we harvested the lungs and visible lesions were counted.

We noticed a significant increase of macroscopic lesions in the lungs

of animals exposed to BFRs in both DMBA and oil treated groups

suggesting that the lesions were the result of BFRs exposure rather

than DMBA treatment (Figure 7A). We then stained lung sections
FIGURE 2

Effects of exposure in utero and through lactation to a brominated flame retardant (BFR) mixture on protein levels of cancer-related markers in DMBA-
induced cancer in female pups. Semi-quantitative Western Blot analysis of total proteins extracted from the mammary tumors after indirect exposure to
0, 0.06 or 60 mg/kg of body weight/day and gavage by DMBA at PND46. Graphs show average expression of Estrogen Receptor alpha (ERa) (A), beta
(ERb) (B), Progesterone Receptors isoforms A and B (PR- A, PR-B) (C), Human epidermal growth factor receptor 2 (HER2) (p = 0.0225) (D) and
Proliferating cell nuclear antigen (PCNA) (E). Histograms represent the means ± SEM (n = 10 pups, 1 per litter) for each band normalized to the total
protein level. p-values were calculated with a Kruskal-Wallis statistical test or ANOVA. Oil-treated animals are showed in Supplementary Figures.
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FIGURE 3

Effects of exposure in utero and through lactation to a brominated flame retardant (BFR) mixture and DMBA-treated on junctional and keratin
protein levels of female pups. Semi-quantitative Western Blot analysis of total proteins extracted from the mammary tumors after indirect exposure
to 0, 0.06 or 60 mg/kg of body weight/day and gavage by DMBA at PND46. Graphs show average expression of E-cadherin (A), b-catenin (B),
connexin-43 (Cx43) (C), keratin-14 (K14) (D) and keratin-18 (K18). (E). Histograms represent the means ± SEM (n = 6-10 pups, 1 per litter) for each
band normalized to the total protein level. p-values were calculated with a Kruskal-Wallis statistical test or ANOVA. Oil-treated animals are showed
in Supplementary Figures.
FIGURE 4

Histology of mammary tumors using Masson's trichome staining. Exposure to BFRs did not affect the histological class of breast cancer. Cribriform
carcinoma was the most represented breast cancer in the animals of the study independently to the exposure to BFRs. Images of representative
tumors from DMBA-treated female pups upon gestational-lactational exposure to a mixture of BFRs at 0 mg/kg/day (A, B), 0.06 mg/kg/day (C, D)
and 60 mg/kg/day (E, F). Tumors, excised at necropsy, were formalin fixed and paraffin embedded, and 5 μm sections were stained with Masson's
trichrome. Scale = 100 mm.
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using hematoxylin and eosin to assess tissue structure. Lesions tended

to consist of collections of small cells with basophilic nuclei and

without obvious thickening of the alveolar epithelium. The

microscopic lesions in lung samples were assessed for severity

using a semiquantitative scale in which a value was given after

analysis by a blinded observer (0 = normal tissue, 1 = abnormal

cell accumulation, 3 = lesions) (Figures 7C–E). Although no

significant differences were found among the groups, the same

trend was observed for microscopic lesions as for macroscopic

lesions for the BFRs exposed groups (Figure 7B). To determine
Frontiers in Endocrinology 09
whether some mammary cancer cells could be present within the

lungs, lung sections were then stained with mammaglobin, a marker

known to identify breast cancer metastasis (65); sections stained were

given a score based on the presence of mammaglobin (absent = 0,

present = 1). There was no significant difference in the presence of

mammaglobin in the lung tissue, positive cases were found in all the

DMBA groups, showing that BFRs do not increase the risk of

developing lung metastasis (Supplementary Figure 5). Additionally,

the images were blindly analyzed by a pathologist, and the non-

cancerous nature of these lesions were confirmed; lesions were

remiscent of inflammation within the lungs.
4 Discussion

Our previous studies on the effects of gestational-lactational

exposure to BFRs resulted in a dysregulation of proliferation-

apoptosis balance, cell-cell communication and a precocious

mammary gland development, all associated with increased risk

for mammary cancer (50, 51). In the present study, we thus

examined the effects of this same gestational-lactational exposure

to BFRs on the progression of mammary gland tumors induced by

DMBA at PND46. DMBA is a polycyclic aromatic hydrocarbon

(PAH) well known for its capacity to induce mammary cancer in

female Sprague-Dawley rats (66). It has been shown that a single

dose of DMBA at a peri-pubertal stage is 100% efficient to induce

mammary cancer in rats (67), likely due to the presence of

numerous TEBs in the proliferating epithelium at this age (68).

Furthermore, rodent DMBA-induced tumors are heterogenic in

their molecular subtypes (69) and they closely mimic the multistep

process of the development of human breast cancer (initiation,

promotion and progression; reviewed by (70). Even though mice

mutant models are known to be used for the research of breast

cancer, we decided to use Sprague Dawley rats and the same

protocol of exposure to reproduce our previous studies but this

time in a context of mammary cancer.

In this study, one dose of DMBA (20 mg) at PND46 showed

100% efficiency in the control group, and 50% of the rats had at least

one palpable tumor 50 days after exposure. These tumors were

heterogenic, and they represented 3 out of 4 subtypes of mammary

cancer based on their protein expression profile, as no TNBC

tumors were observed in DMBA-treated females not exposed to

the BFR mixture. Surprisingly, exposure to BFRs during gestation

and through lactation caused a delay in the onset and slower growth

of DMBA-induced tumors in rats. Three non-exclusive hypotheses

could explain these results. First, it is possible that exposure to the

mixture of BFRs induced changes in the programming of the cells,

modifying the response of the cells to DMBA favoring the TNBC

and HER2-enriched subtype, or inhibiting the luminal subtype.

Second, it has been shown that exposure to the BFR mixture during

pregnancy and lactation increases the activity of a variety of CYP

enzymes in the livers (28, 45) and this elevation was still apparent at

PND 46 (Tung et al., 2016). It is possible that the liver capacity to

metabolize DMBA was altered in BFR-exposed animals resulting in

an altered distribution of reactive metabolites compared to control

animals, thus modifying the response of the mammary gland at
FIGURE 5

Visualization of clustered protein expression profile per pup.
Clustered heatmap of markers for breast cancer subtype
classification among the animals from different treatments (0, 0.06
and 60 mg/kg of body weight/day). Each line represents relative
levels of the markers for each animal (identified by the numbers in
brackets). The interval of protein expression of animals from the
group exposed to 0 mg/kg of body weight/day and given oil by
gavage at PND46 was considered as a for this heatmap. The graph
was coded with the pheatmap Rstudio function (n = 10 pups, 1
per litter).
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FIGURE 7

Representation of lung lesions after BFRs exposure in utero and through lactation. The animals exposed to BFRs showed macroscopic and
microscopic lesions, resulting in a significant difference between BFRs-exposed and control groups for the macroscopic lesions (A, B). Quantitative
analysis of microscopic lesions was done by giving a grade to each slide [0 normal tissue (C), 1 abnormal cell accumulation (D) and 3 = lesions (E)].
Histograms represent the means ± SEM (n ≥ 6 pups, 1 per litter). p-values were calculated with a Kruskal-Wallis statistical test or ANOVA. Variables
are statistically indistinguishable if they share at least one letter. Scale = 100 μm.
FIGURE 6

Visualization of breast cancer subtypes based on their protein expression. The classification was performed based on Figure 5 profiles and
Supplementary Figure S6 description. DMBA-induced tumors from animals exposed to control diet were composed of 30% luminal A, 10% luminal B,
60% HER2-enriched and 0% Triple-Negative (TN) subtypes (A). For the low dose of BFRs (0.06 mg/kg of body weight/day), an increase in the
presence of TN (10%) and of luminal A, and a decrease of HER2-enriched subtypes were observed, while luminal B percentage remained unchanged
(B). In animals exposed to the high dose of the BFRs mixture (60mg/kg body weight/day), there was an increase of TN, and a slight decrease of
HER2-enriched and luminal A tumors percentages compared to control; no luminal B subtype tumors were identified (C).
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puberty. Third, it has been demonstrated that the sensitivity of the

rat mammary gland to DMBA is optimal at PND46 when several

TEBs are present (68). Given that our previous work suggests that

BFR-exposure may accelerate some aspects of mammary gland

development, it is possible that the shift in phenotype may alter

the sensitivity/response to DMBA-induced tumorigenesis.
4.1 BFRs-induced changes in signaling
could represent a shift in the distribution
of change tumor subtypes

A potential explanation for the delayed tumor onset and slower

growth of the tumors was a change in tumor subtypes.

Histologically, breast tumors can be classified by stage and grade,

as well as histologic features (as reviewed by (71). When tumors

were evaluated blindly by a pathologist, no differences were noted in

the types of tumors between groups, most of them being cribriform

carcinomas, often associated with Ductal carcinoma in situ (DCIS)

(71) (Figure 4). However, breast cancer is a heterogeneous disease

that encompasses many subtypes with various prognostic,

responses to therapies, aggressiveness and molecular signatures

(72–74). Luminal A tumors express ER and/or PR while being

HER2 negative (Supplementary Figure 6). Luminal B tumors have a

worse clinical prognosis compared to luminal A, also express ER

and can be PR negative. Luminal B tumors are also generally HER2

negative (reviewed by (72). HER2-enriched are ER and PR negative

but overexpress HER2. In this group, two subcategories can be

distinguished: luminal HER2 (ER+ and/or PR+ and HER2+) and

HER2-enriched (ER-, PR- and HER2+) (75). These subgroups have

a worse prognosis than the luminal classification. Finally, TNBC is

negative for ER, PR and HER2 (76). Being able to identify the type

of cancer allows for a better prognosis and treatment. Therefore,

luminal A, luminal B and HER2-enriched subtypes are treated with

targeted treatments, while TNBC tumors use chemotherapy as their

treatment option and are generally associated with a poorer

prognosis (77).

We thus speculate that BFRs, being recognized as EDCs, could

dysregulate hormonal pathways and favor the development of

tumors from different subtypes. The changes in mammary cancer

subtype after exposure to BFRs could also be driven and/or linked to

the downregulation in adherens, junctional proteins and apoptosis

markers noticed at PND46 (50), which are markers of more

aggressive types of breast cancer (41). We performed a rough and

simple classification of individual tumors based on the levels of ER,

PR, HER2 and PCNA levels, to divide them as luminal A (ER+, low

PR+, HER2-), Luminal B (ER+, high PR+, HER2-), HER2-enriched

(ER-, PR-, HER2+) or TNBC (ER-, PR-, HER2-). Although a switch

from more aggressive HER2-enriched tumors, which represented

the majority of tumors in the control group, to more luminal-type

tumors in the group treated with the lower dose of BFRs could be

observed, we also observed a higher number of TNBC, which are

considered the most aggressive tumors. This number was even more

important in the group treated with the highest dose of BFRs.
Frontiers in Endocrinology 11
Consequently, the decrease in the number of HER2-enriched

tumors (from 60% to 30 - 50%) could explain the change in the

average tumor onset time or speed of tumor growth. Nevertheless,

we would require further analysis to confirm this affirmation, since

progression and invasiveness of mammary cancer are not

necessarily homologous between Sprague-Dawley rats and

humans as reviewed by (78).
4.2 Exposure to a mixture of BFRs can
affect the metabolism of DMBA at puberty,
thus delaying the development of
mammary cancer

DMBA is a procarcinogen that requires metabolic activation and

results in short-lived unstable carcinogen metabolites (79). The first

process includes the activation of the aryl hydrocarbon receptor (AhR)

which induces the transcription of genes, including the cytochrome

P450 enzymes (CYP1B1 and CYP1A1) (80, 81). These enzymes act on

DMBA to form highly reactive metabolites which form DNA-adducts,

resulting in mutations and tumorigenesis (80). In addition to DNA-

adducts, DMBA-induced changes in intracellular signaling and gene

expression dysregulation are believed to contribute to tumor

promotion and progression (70, 81, 82).

Even though the liver and lung are considered the major sites for

polyaromatic hydrocarbon metabolism (including DMBA), the

mammary gland stroma can also accumulate hydrophobic

compounds such as the DMBA and can respond to AhR ligands to

express CYP1B1 (80). As such, DMBAmetabolism may occur within

the mammary gland leading to procarcinogen generation in close

proximity to the mutagenic target cells (83). After activation, the

metabolites interact with the proliferating cells in the TEBs to form

DNA-adducts which will later turn into malignant cells (84, 85).

DMBA excretion has been shown to be completed after 24 h (86).

A suspected competition between the metabolism of other

chemical components and DMBA has been proposed previously

(87), causing a reduction in the bioactivation of DMBA to its active

carcinogenic metabolite and therefore, a decrease in tumor

incidence (88, 89). The phenomena were observed only when

exposure to other molecules was done before gavage with DMBA

(88). It has been previously shown that other EDCs such as 2,3,7,8-

tetrachlorodibenzodioxin (TCDD) can increase the time required

for the development of DMBA-initiated mammary tumors in

Sprague-Dawley rats probably due to the induction of CYP

enzymes prior to DMBA exposure (90). Additionally, it has been

shown that BFRs mixtures can activate the AhR as observed with

TCDD exposure (91).

Interestingly, activities of 7-ethoxy-resorufin O-deethylase

(EROD) and 7-methoxy-resorufin O-deethylase (MROD) –

markers of CYP1A1/1A2 and CYP1A1 activity, respectively, were

elevated in livers of PND46 female pups exposed to the high dose,

but not at the low dose, after a similar exposure in utero and

lactation to the mixture of BFRs. Similarly, liver hypertrophy was

observed in these same high-dose animals at PND21 but not in low-
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dose treated females at PND21 or animals exposed to either dose at

PND46 (45). Furthermore, elevated levels of both HBCDD and

PBDEs were still detectable in the livers of pups at PND21 and

PND46 (45), meaning that BFRs were likely still present in our

study when DMBA was given by gavage. BFR exposure in utero and

during lactation might have caused either or both an increase in the

metabolism and excretion of DMBA, limiting the amount of parent

and metabolites reaching the mammary gland tissue. As CYP1

activity was most clearly induced in animals exposed to the high

dose in our previous study (45), one might expect altered

tumorigenesis due to pre-induction of CYP1 to be evident only in

the high-dose animals. The delay in tumor initiation and growth

seen in the low-dose animals, although of lesser extent than in the

high dose, suggests that additional mechanism(s) may contribute to

this delay.
4.3 The BFRs-associated precocious
mammary gland development may alter
the effects of DMBA in mammary
cancer induction

The effectiveness of DMBA to induce mammary cancer under

normal conditions has been reported to be tightly related to the

transition period of TEB evolution (68). It has been shown that

there is a sharp decrease in tumor yield when DMBA is given after

PND55 because the proliferative activity of the mammary epithelial

cells is decreased. Since a malignant transformation is required for

carcinogenesis, as the rate of cell division decreases, the risk of

malignant transformation follows as well (92). In our study, DMBA

was administered orally at PND46 since BFR-induced dysregulation

of mammary gland signaling was previously observed at that age

(50, 51). Additionally, the peripubertal period is known to be a

window of sensibility for chemically induced mammary

tumorigenesis (41, 67, 93).

However, it has been shown previously that the window of

susceptibility for DMBA might be shifted after exposure to EDCs in

utero (94). In that study, cancer was induced by a single dose of

DMBA after an in utero exposure to bisphenol A (BPA), either at

PND50 or PND100. The authors showed a higher tumor incidence

and decreased tumor latency in rats exposed to BPA compared to

the control group when DMBA was administrated at PND100, but

not when administrated at PND50 (94). Interestingly, in a previous

study, the authors did not observe any difference in the number of

TEBs at PND50 in rats treated with BPA using the same protocols

but found a higher number of terminal ducts (TDs) at PND100

(95). These results suggest that a change in TEBs or TDs alone could

influence the sensitivity of the mammary gland to the inductions of

mammary cancer through DMBA. Both structures are considered

the most susceptible because of their high mitotic index and

undifferentiated cells (96).

In our case, we noticed that after exposure to the low dose of

BFRs in utero and through lactation, there is a precocious

mammary gland development at PND21 as suggested by an

increased epithelial surface area, a tendency to increase the ductal

area and thickness, and of lumen area, and a significant increase of
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the Ki67 cell proliferation index and of the early apoptotic marker

cleaved caspase-9 (50). These results suggest that, after exposure to

a relevant mixture of BFRs in utero and through lactation, the

mammary gland’s susceptibility window to DMBA may be shifted

and possibly happen earlier, at least in the low-dose group. It is thus

possible that the increased latency for tumor onset and/or decreased

growth of tumors is linked with the timing of tumor induction

rather than a change in susceptibility induced by BFRs for the low-

dose group. Notably, no difference in any of these markers was

observed at the high dose in this study. This result further suggests

that delayed tumorigenesis in low dose BFR exposed females may be

due to distinct mechanism(s) than that observed at the high dose.
4.4 Evidence of the effects of BFRs on
mammary cancer

Interest in PBDEs as potential human carcinogens has raised

concerns based on their structural similarities and toxicological

properties to polychlorinated biphenyls (PCBs), which are now

known as human chemical carcinogens (97). However, only a few

studies have evaluated the carcinogenicity of BFRs. Deca-BDE

caused a significant increase in hepatocellular carcinomas in mice

and dose-related increases in liver and pancreatic adenomas in

rats (98). Some epidemiology studies have reported increased risks

for testicular cancer (99), as well as childhood acute lymphoblastic

leukemia (100) due to BFR exposure. A Chinese case-control study

observed that significantly elevated adipose tissue levels of multiple

PBDE congeners were associated with breast cancer diagnoses (43).

Further, PBDE exposure in ovariectomized estrogen-treated mice

led to mammary gland remodeling and enhanced response to

estrogen signaling (31).

Further interest in the effect of BFRs in the development of

breast cancer is being driven by previous evidence showing the

endocrine-disrupting effects of PBDEs. These effects include the

ability of BFR to alter the in vivo circulating sex hormone

concentrations (98), to interact with estrogen signaling pathways

and to enhance estrogenic-related cellular proliferation in breast

cancerous cell line MDA-MB-231 (101) and MCF-7 (102). It has

been demonstrated that PBDEs can behave as an agonist for ERa
and ERb in the T47D breast cancerous cell line (35). One PBDE

congener (BDE-209) was evaluated by the United States

Environmental Protection Agency (US EPA) in 2008 and they

concluded that there was “suggestive evidence of human

carcinogenic potential” (103).
4.5 BFRs exposure in utero and through
lactation creates lung lesions independent
of the development of mammary cancer

Macroscopic and microscopic lesions were identified in both

healthy and tumor-bearing animals. These lesions do not appear to

be related to metastatic mammary gland tumors but appear to be

aggregations of non-epithelial cells. In collaboration with Dr

Gaboury, we hypothesize that these structures are collections of
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various immune cell types in the lung related directly to the

exposure to BFRs and not related to the metastasis from

mammary cancer. It has been previously reported that exposure

to some BFRs, such as PBDEs, can cause oxidative stress,

inflammatory response and changes in junctional proteins in lung

epithelial cells in vitro (104). Additionally, exposure to HBCDDs

can disrupt the expression of proinflammatory proteins in

bronchial epithelial cells (105). Pups were mainly exposed in

utero and through lactation to the mixture of BFRs, but they

could have been exposed to BFRs by inhalation from the food

dust from birth to weaning at PND21. Inflammatory effects of BFRs

in the lungs would, therefore, last until adulthood without direct

exposure to BFRs. Further studies are needed to characterize the

nature of these observed lung lesions.
5 Conclusion

Overall, our results show that exposure to a representative

mixture of BFRs in utero and through lactation results in a

reduced pace of DMBA-induced tumorigenesis and a possible

change in the profile of the molecular subtype of mammary

tumors developed. The profile presented in the low and high

doses of BFRs appears to correspond to a more aggressive type of

mammary cancer (TNBC and HER2-enriched). Nevertheless,

tumor onset and latency were significantly delayed compared

with the control group. These phenomena might be explained by

molecular dysregulations during early mammary gland

development and a shift in the susceptibility window after

exposure to BFRs. Further research is required to confirm the

shift of susceptibility window to DMBA and the mechanisms

involved in the variation of mammary cancer subtypes.

Additionally, mechanisms bringing these results might be

different at low and high dose, as results in tumor delay and

subtypes of mammary cancer does not follow a monotonic dose-

response situation. Further analysis into the effect of gestational-

lactational exposure to BFRs in the development of mammary

cancer could be confirmed using a different model, as DMBA-

induced cancer showed to present a complexity by itself and its

interaction with EDCs.
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