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between epigenetic clocks and
menopause age: insights from a
bidirectional Mendelian
randomization study
Ling Wang1†, Shuling Xu2†, Rumeng Chen2†, Yining Ding2,
Menghua Liu2, Chunyan Hou2, Zhu Wu3, Xiaoju Men1,
Meihua Bao1,3*, Binsheng He3* and Sen Li2*

1Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical
Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China,
2School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China, 3The Hunan Provincial
Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
Background: Evidence suggests a connection between DNA methylation

(DNAm) aging and reproductive aging. However, the causal relationship

between DNAm and age at menopause remains uncertain.

Methods: Employing established DNAm epigenetic clocks, such as DNAm

Hannum age acceleration (Hannum), Intrinsic epigenetic age acceleration

(IEAA), DNAm-estimated granulocyte proportions (Gran), DNAm GrimAge

acceleration (GrimAgeAccel), DNAm PhenoAge acceleration (PhenoAgeAccel),

and DNAm-est imated p lasminogen act iva tor inh ib i tor-1 leve ls

(DNAmPAIadjAge), a bidirectional Mendelian randomization (MR) study was

carried out to explore the potential causality between DNAm and menopausal

age. The primary analytical method used was the inverse variance weighted (IVW)

estimation model, supplemented by various other estimation techniques.

Results: DNAm aging acceleration or deceleration, as indicated by Hannum,

IEAA, Gran, GrimAgeAccel, PhenoAgeAccel, and DNAmPAIadjAge, did not exhibit

a statistically significant causal effect on menopausal age according to forward

MR analysis. However, there was a suggestive positive causal association
Abbreviations: DNAm, DNA methylation; Hannum, DNA methylation Hannum age acceleration; IEAA,

Intrinsic epigenetic age acceleration; Gran, DNA methylation-estimated granulocyte proportions;

GrimAgeAccel, DNA methylation GrimAge acceleration; PhenoAgeAccel, DNA methylation PhenoAge

acceleration; DNAmPAIadjAge, DNA methylation-estimated plasminogen activator inhibitor-1 levels; MR,

Mendelian randomization; IVW, inverse-variance weighted; CI, confidence interval; CpG, cytosine-guanine

dinucleotides; LINE-1, long interspersed nuclear element 1; GWAS, genome-wide association study; IVs,

instrumental variables; LD, linkage disequilibrium; MAF, minor allele frequency; SNP, single nucleotide

polymorphism; WM, weighted median; DNMTs, DNA methyltransferases; E2, gonadal hormone 17b-

estradiol; MAP4K1, mitogen-activated protein kinase kinase kinase kinase 1; HOXA3, homeobox A3.
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between age at menopause and Gran (Beta = 0.0010; 95% confidence interval

(CI): 0.0004, 0.0020) in reverse MR analysis.

Conclusion: The observed increase in granulocyte DNAm levels in relation to

menopausal age could potentially serve as a valuable indicator for evaluating the

physiological status at the onset of menopause.
KEYWORDS

epigenetic clocks, DNA methylation, menopause, Mendelian randomization,
causal association
Introduction

With the advancement of technology, biological age can be

measured using various molecular or phenotypic biomarkers. For

instance, research has found that the epigenetic clock, based on

DNA methylation (DNAm) values and mathematical algorithms

(1), can accurately quantify human aging (2), including

reproductive senescence (3, 4) and immunosenescence (2).

DNAm, as a significant epigenetic modification, primarily entails

methylation at the fifth carbon position of cytosine, commonly

observed in cytosine-guanine dinucleotides (CpG) in mammals (5,

6). Epigenetics typically includes modifications that influence the

expression of genes (7, 8), and DNAm plays an important role in

the development of various diseases (9–14). The commonly used

epigenetic clocks include DNAm Hannum age acceleration

(Hannum), Intrinsic epigenetic age acceleration (IEAA), DNAm-

estimated granulocyte proportions (Gran), DNAm GrimAge

acceleration (GrimAgeAccel), DNAm PhenoAge acceleration

(PhenoAgeAccel), and DNAm-estimated plasminogen activator

inhibitor-1 levels (DNAmPAIadjAge) measures (15, 16).

Moreover, in recent years, there has been a heightened emphasis

on understanding how DNAm impacts various physiological

processes, with a particular focus on reproductive aging in

women (17, 18). While previous studies have linked changes in

DNAm patterns to conditions like cancer and neurological diseases,

additional research is required to clarify the role of DNAm in the

menopausal transition (19–22). We aim to investigate the causal

connection between DNAm and menopausal age using established

DNAm-based epigenetic clocks.

Menopause occurs due to the depletion of the limited supply of

ovarian follicles, leading to a decrease in the production of the

ovarian hormones progesterone and estrogen (23). Confirmation of

the natural menopause typically occurs after 12 consecutive months

of amenorrhea, in the absence of pathological causes (24).

Nevertheless, research suggests that several factors, such as age at

menarche, parity, body mass index, oral contraceptive use, alcohol

consumption, smoking, and level of physical activity, often

influence the onset age of menopause (25, 26). Genetic variables
02
play a significant role in influencing menopause (27, 28), with

genetic factors accounting for only 47% of the onset age, indicating

that non-genetic factors also influence this hormonal aging process

(29). For example, Lu et al. found that women undergoing early

menopause exhibit higher levels of methylation in Alu and long

interspersed nuclear element 1 (LINE-1) repetitive sequences,

whereas those experiencing later menopause display lower levels

of methylation (3). Conversely, data supports a nonlinear “U-

shaped” relationship between the number of menstrual cycles in

females and LINE-1 methylation (30). There is currently insufficient

systematic study on the impact of DNAm on menopause age, and

the available data does not prove a causal relationship between

DNAm and menopause.

Studies employing Mendelian randomization (MR) aim to assess

whether the observed association between an exposure and an outcome

may suggest causation. This is achieved by investigating whether

genetic variations associated with the exposure are also linked to the

outcome (31–34). Our goal is to investigate the existence of a causal

link between DNAm biomarkers and menopausal age, as well as to

uncover potential underlying mechanisms. By using MR validation to

evaluate the impact of DNAm on women’s menopausal transition, we

may better comprehend the intricate relationship between reproductive

aging and epigenetic regulation, providing a scientific basis for better

understanding and treatment of women’s menopause.
Methods

Study design

In this study, bidirectional MR analyses were conducted.

Initially, forward MR analysis utilized data from genome-wide

association study (GWAS) datasets with six DNAm phenotypes as

the exposure variables and menopause (age at onset) as the

outcomes. Subsequently, reverse MR was performed to

investigate the causal associations between the exposure variable

(menopause (age at onset)) and the outcome variables (six

DNAm phenotypes).
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Data sources

In the bidirectional MR analysis, a range of summary datasets

were employed (refer to Supplementary Table 1). The GWAS data

for the six DNAm phenotypes were extracted from the study by

McCartney et al. (15). Additionally, the GWAS data for menopause

(age at onset) were obtained from the study by Loh et al. (35).
Statistical method

Instrumental variables (IVs) were chosen based on specific

criteria, including: (1) IVs and exposure were significantly

associated; (2) identification of independent IVs through

clumping within a 10 Mb window and linkage disequilibrium

(LD) of R2 < 0.001; and (3) the minor allele frequency (MAF) >

0.01, as previously reported (36–39). F-statistics were computed to

assess the strength of IVs, with a value exceeding 10 indicating a

reduced risk of weak IV bias (40).

In both forward and reverse MR analyses, we applied three

statistical methods, namely the inverse variance weighted (IVW)

(41), weighted median (WM) (42), and MR-Egger methods (43).

The MR-Egger intercept test was employed to evaluate horizontal

pleiotropy, while MR-PRESSO’s pleiotropy correction data were

utilized to detect and address potential outliers. Heterogeneity was

assessed through Cochrane Q statistics. Furthermore, the influence

of each IV on causal relationships was examined through a ‘leave-

one-out’ approach. Given that all outcomes were continuous
Frontiers in Endocrinology 03
variables, causal estimates were derived using beta coefficients and

their corresponding 95% confidence intervals (CIs). These analyses

were conducted using the TwoSampleMR package within the R

software environment (44).
Results

Based on the rigorous inclusion and exclusion criteria applied,

all IVs included in our bidirectional MR analysis, both for the

forward and reverse MR approaches, demonstrated robust

instrument strength. This is evidenced by F-statistic values

ranging from 23.99 to 651.62 (all > 10), as outlined in

Supplementary Table 2. The forward MR analysis showed no

evidence of a causal relationship between any of the six DNAm

phenotypes and menopause (age at onset) (all P > 0.05), as depicted

in Figure 1; Supplementary Table 3. Conversely, the IVWmethod in

reverse MR indicated a significant association between genetically

predicted menopause (age at onset) and one of the six DNAm

phenotypes, specifically Gran (Beta = 0.0010; 95% CI: 0.0004,

0.0020) (Figure 2; Supplementary Table 4). Consistency in the

direction of the association between menopause (age of onset)

and Gran was observed when employing the MR-Egger and WM

methods in reverse MR (Figure 2; Supplementary Table 4). A scatter

plot in Figure 3 illustrates a positive causal relationship between

menopause (age of onset) and Gran. No evidence of heterogeneity

or horizontal pleiotropy between menopause (age at onset) and

Gran was detected in reverse MR (Figure 4; Supplementary
FIGURE 1

Associations between genetically predicted six DNAm phenotypes and menopause (age at onset) examined by three MR methods. DNAm, DNA
methylation; Hannum, DNA methylation Hannum age acceleration; IEAA, Intrinsic epigenetic age acceleration; Gran, DNA methylation-estimated
granulocyte proportions; GrimAgeAccel, DNA methylation GrimAge acceleration; PhenoAgeAccel, DNA methylation PhenoAge acceleration;
DNAmPAIadjAge, DNA methylation-estimated plasminogen activator inhibitor-1 levels; MR, Mendelian randomization; IVW, inverse-variance
weighted; WM, weighted median; CI, confidence interval.
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Table 4). Additionally, the results from MR-PRESSO indicated the

absence of outliers. The leave-one-out method outcomes, as

depicted in Figure 5, demonstrate that individual SNPs do not

unduly influence the results.
Discussion

Reproductive aging is a multifaceted process influenced by a

combination of aging-related changes, environmental factors, and

fluctuations in sex hormone levels (17). It is imperative to elucidate

the precise causal link between menopausal age and epigenetic

modifications. Conducting MR studies on DNAm and menopause

provides a unique opportunity to clarify the intricate relationship

between reproductive aging and epigenetic changes. The findings of

this study indicated no statistically significant causal effects of

epigenetic clocks on the timing of menopause. Intriguingly, our

reverse causal MR analysis suggested a potential association where a

later age at menopause could be linked to elevated Gran.

Women who undergo menopause at a later stage typically

exhibit higher levels of sex hormones compared to those

experiencing early menopause (45, 82). Fluctuations in sex

hormone levels can impact DNAm. In women aged 20-30, the

difference in DNAm levels between breast tissue and blood is most
Frontiers in Endocrinology 04
pronounced, and this disparity diminishes with age (46). In a

comprehensive epigenome-wide study, sex hormone-binding

globulin levels in teenage girls were found to be significantly

associated with DNAm at three specific CpG sites and two

differentially methylated regions, in contrast to men (47).

Moreover, analysis of genome-wide DNAm reveals that females

exhibit higher levels of DNAm than males at key loci in peripheral

blood leukocytes (81.2%) (48). Therefore, we infer that sex hormone

regulation could potentially account for the rise in Gran associated

with delayed menopause.

We hypothesize that sex hormone levels linked to menopausal

age play a role in the epigenetic alterations of immune-related

granulocytes. Increased DNAm levels at CpG sites are considered a

significant marker of aging (49). Studies have shown a substantial

acceleration of the epigenetic age of the immune system in

individuals with Parkinson’s disease, primarily associated with

granulocytes (50). Therefore, we posit that the elevation in

DNAm observed in granulocytes is intricately linked to the aging

of the immune system. The impact of sex hormones on the immune

system differs across genders, with women being more sensitive to

specific infections and having a greater prevalence of autoimmune

illnesses (51, 52). Therefore, the impact of female hormones on the

immune system should not be overlooked. A systematic literature

review indicates that progesterone levels in healthy non-pregnant
FIGURE 2

Associations between genetically predicted menopause (age at onset) and six DNAm phenotypes examined by three MR methods. DNAm, DNA
methylation; Hannum, DNA methylation Hannum age acceleration; IEAA, Intrinsic epigenetic age acceleration; Gran, DNA methylation-estimated
granulocyte proportions; GrimAgeAccel, DNA methylation GrimAge acceleration; PhenoAgeAccel, DNA methylation PhenoAge acceleration;
DNAmPAIadjAge, DNA methylation-estimated plasminogen activator inhibitor-1 levels; MR, Mendelian randomization; IVW, inverse-variance
weighted; WM, weighted median; CI, confidence interval.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1429514
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2024.1429514
women with regular menstrual cycles typically induce

immunosuppression by stimulating T helper 2 cells (Th2)

cytokines (53). Similarly, estrogen and its receptor signaling play

a role in modulating inflammation and innate immune responses in

neutrophils, with effects that vary based on gender and menopausal

status (54, 55). Granulocytes, constituting approximately two-thirds

of all white blood cells, represent an ideal group of immune cells for

research purposes (56). Our current endeavor is to understand the

mechanisms by which estrogen and progesterone impact epigenetic

changes in circulating granulocytes.

DNA methyltransferases (DNMTs) may be involved in the

effect of female hormones on neutrophil DNAm. DNMTs are

crucial enzymes responsible for inducing DNAm, with key

players being DNMT1 and DNMT3A (57). Some studies have
Frontiers in Endocrinology 05
demonstrated that the gonadal hormone 17b-estradiol (E2) can

influence the methylation of CpG islands, by promoting the

expression of DNMT mRNA and protein (58). For instance,

microinjection of E2 into the dorsal hippocampus resulted in

increased mRNA expression and protein levels of DNMT3A and

DNMT3B in the hippocampus (59, 60). As individuals age, the

gender disparity in DNMT expression diminishes, yet females

consistently maintain methylation levels that are twice as high as

males (61). Additional evidence indicates that on the initial day

post-birth, females exhibit significantly higher DNMT3A mRNA

expression in the amygdala, although this gender discrepancy

diminishes over time (62). Nevertheless, the gender variations in

DNMT activity are still a subject of debate (63, 64), and our

hypothesis necessitates further validation through additional
FIGURE 3

Scatter plot of the MR analyses. (A): The influence of six DNAm phenotypes on the age of menopause; (B): The impact of age of menopause on six
DNAm phenotypes. SNP, single nucleotide polymorphism; MR, Mendelian randomization; DNAm, DNA methylation; Hannum, DNA methylation
Hannum age acceleration; IEAA, Intrinsic epigenetic age acceleration; Gran, DNA methylation-estimated granulocyte proportions; GrimAgeAccel,
DNA methylation GrimAge acceleration; PhenoAgeAccel, DNA methylation PhenoAge acceleration; DNAmPAIadjAge, DNA methylation-estimated
plasminogen activator inhibitor-1 levels.
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clinical investigations. Moreover, indicators of leukocyte DNAm

include mitogen-activated protein kinase kinase kinase kinase 1

(MAP4K1) and homeobox A3 (HOXA3) (65). Studies have shown

that progesterone promotes MAP4K1 expression in estrogen-driven

breast cancer (66). The results indicate that the function of

MAP4K1 is influenced by the levels of female sex hormones.

Additionally, elevated levels of HOX mRNA are also typically

linked to higher hormone (progesterone and estrogen) levels (67).

Exploring the potential yet unexplored connection between sex

hormones and HOXA3/MAP4K1 offers a novel avenue for studying

the effects of menopausal age on granulocyte epigenetic changes,

emphasizing the necessity for additional validation in future studies.

It is crucial to emphasize that our study did not report a

significant causal link between six DNAm-based epigenetic aging

markers and menopausal age. These findings might be influenced

by potential confounding factors such as genetics (68), environment
Frontiers in Endocrinology 06
(69, 70), and hormones (71, 72), which also affect the age of

menopause. The differentiation between menopausal age,

menopause, and aging stems from the understanding that

menopausal age predominantly reflects the physiological

functions of the female reproductive system, whereas DNAm

captures age-related alterations influenced by lifelong

environmental factors and feedback mechanisms on methylation

status (73, 74). While there could be a potential association between

DNAm and menopausal age, assessing this influence at a

population level may yield inconsistent results. Moreover, while

DNAm is a crucial component of aging, it represents only a fraction

of the overall process. Additional biological factors influencing

menopausal age encompass gene expression, protein synthesis,

and cellular signaling pathways (75–77), which may engage in

intricate and not fully understood interactions with DNAm.

Conversely, fluctuations in related hormones and changes in
FIGURE 4

Funnel plot of the MR analyses, with each SNP acting as an IV. (A): The analyses of six DNAm phenotypes on the age of menopause; (B): The
analyses of age of menopause on six DNAm phenotypes. SNP, single nucleotide polymorphism; IV, instrumental variable; MR, Mendelian
randomization; DNAm, DNA methylation; Hannum, DNA methylation Hannum age acceleration; IEAA, Intrinsic epigenetic age acceleration; Gran,
DNA methylation-estimated granulocyte proportions; GrimAgeAccel, DNA methylation GrimAge acceleration; PhenoAgeAccel, DNA methylation
PhenoAge acceleration; DNAmPAIadjAge, DNA methylation-estimated plasminogen activator inhibitor-1 levels.
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other endocrine substances due to prolonged menopause could

affect the methylation of various body tissues. In future research,

animal experiments could be conducted to validate whether

elevated levels of hormones, DNMTs, and immune system

changes are associated with increased DNAm-estimated

granulocyte levels.

We are at the forefront of establishing the causal link between

DNAm biomarkers and menopausal age, offering essential scientific

insights to enhance our comprehension of menopause and its

related conditions. Furthermore, by utilizing readily available

extensive genomic and clinical epidemiological datasets, our study

not only reduces experimental costs but also leverages genotype

advantages to address common confounding and reverse causality

issues in observational studies, thereby increasing the robustness of

causal inference.

Our research design has several limitations. Firstly, our sample

primarily consists of individuals of European descent, which limits

the applicability of our observations in non-European women.

Further validation in other ethnic groups is necessary. Secondly,

the assessment of DNAm aging biomarkers may be influenced by

technical issues and biological differences such as diet (78),

education (79), environmental factors (80, 81), and genetic

variations. These factors could introduce biases, potentially
Frontiers in Endocrinology 07
causing DNAm-based epigenetic clocks to inaccurately capture

the physiological changes associated with age at menopause,

despite being considered among the most reliable predictors of

DNAm aging. Moreover, menopause-related diseases have not been

considered as potential confounders, which may contribute to the

altered metabolic and inflammatory levels in women. Lastly, our

MR assessments can only determine linear causal effects, which may

not fully reflect the complex relationship between DNAm and age

at menopause.
Conclusion

Our bidirectional MR analysis indicates the lack of a statistically

significant causal link between DNAm aging and menopause age.

Conversely, delayed menopause may be correlated with higher

estimated granulocyte levels in DNAm. However, the participants

in this study were all of European descent. Future research should

validate these findings in diverse populations and conduct

experimental studies to elucidate the underlying mechanisms.

Furthermore, additional exploration of additional biomarkers is

needed to better assist in the early clinical detection and

intervention of female aging processes.
FIGURE 5

Leave-one-out sensitivity analysis by the IVW method after exclude a specific SNP from the analysis. (A): The influence of six DNAm phenotypes on
the age of menopause; (B): The impact of age of menopause on six DNAm phenotypes. MR, Mendelian randomization; SNP, single nucleotide
polymorphism; IVW, inverse-variance weighted; DNAm, DNA methylation; Hannum, DNA methylation Hannum age acceleration; IEAA, Intrinsic
epigenetic age acceleration; Gran, DNA methylation-estimated granulocyte proportions; GrimAgeAccel, DNA methylation GrimAge acceleration;
PhenoAgeAccel, DNA methylation PhenoAge acceleration; DNAmPAIadjAge, DNA methylation-estimated plasminogen activator inhibitor-1 levels.
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