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Unveiling the role of ferroptosis
in the progression from NAFLD
to NASH: recent advances in
mechanistic understanding
Qian Yu* and Lixing Song

Laboratory Medical Department, Zigong Fourth People’s Hospital, Zigong, China
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and significant global

public health issue. Nonalcoholic steatohepatitis (NASH) represents an advanced

stage of NAFLD in terms of pathology. However, the intricate mechanisms

underlying the progression from NAFLD to NASH remain elusive. Ferroptosis,

characterized by iron-dependent cell death and distinguished from other forms

of cell death based on morphological, biochemical, and genetic criteria, has

emerged as a potential participant with a pivotal role in driving NAFLD

progression. Nevertheless, its precise mechanism remains poorly elucidated. In

this review article, we comprehensively summarize the pathogenesis of NAFLD/

NASH and ferroptosis while highlighting recent advances in understanding the

mechanistic involvement of ferroptosis in NAFLD/NASH.
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1 Introduction

Over the past few decades, NAFLD has emerged as the most prevalent chronic liver

disorder and a leading cause of death and morbidity worldwide, garnering significant

attention from hepatologists and metabolism experts. NAFLD can progress to a more

severe form called NASH, which is associated with advanced liver diseases like cirrhosis and

hepatocellular carcinoma, ultimately resulting in mortality (1). Therefore, preventing the

progression from NAFLD to NASH is crucial for reducing mortality rates. Although

systematic studies have established a close bidirectional association between NAFLD

and metabolic disorders such as obesity, insulin resistance, and abnormal iron

homeostasis (2–4), the precise mechanisms underlying this progression remain to

be explored.

Ferroptosis was proposed by Dixon in 2012 and has since been extensively studied in

various pathologies including neurodegenerative diseases, tumors, and endocrine disorders

(5–7). Compared to other forms of cell death such as apoptosis, autophagy, or necrosis;

ferroptosis exhibits distinct genetic, morphological, and biochemical features (5). For
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instance, it involves iron-dependent peroxidation of lipids rather

than being mediated by specific protein effectors like pore-forming

proteins (8). The etiology of ferroptosis has been elucidated through

various pathways including cysteine/glutathione (GSH)/glutathione

peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1)/

coenzyme Q (CoQ), lipid peroxidation and iron overload (9).

Recently, accumulating evidence strongly suggests that

ferroptosis plays a significant role in the pathogenesis of NAFLD.

For instance, the liver serves as a crucial iron reservoir and is

involved in various aspects of iron metabolism, including

absorption, utilization, storage, and secretion (10). Studies have

indicated that NAFLD patients exhibit elevated serum ferritin levels

and serum ferritin levels are associated with histologic severity and

advanced fibrosis in NAFLD patients (11, 12).Consistent with this,

excessive iron accumulation can contribute to hepatocyte fibrosis

(13, 14). Additionally, ferroptosis has been shown to induce

oxidative stress, establishing a link between ferroptosis and

NAFLD (15). Therefore, an updated review elucidating the role

and mechanism of ferroptosis in the progression from NAFLD to

NASH is imperative for enhancing our understanding of this

disease and controlling mortality rates. In this review article, we

provide a concise summary of the pathogenesis underlying

NAFLD/NASH and discuss recent advancements regarding the

interplay between ferroptosis and NAFLD/NASH.
2 Pathogenesis of NAFLD

As a prominent cause of chronic liver disease globally, NAFLD

is not solely a metabolic disorder but encompasses a spectrum of

conditions ranging from non-progressive patterns (nonalcoholic

fatty liver, NAFL) to progressive patterns (NASH), ultimately

leading to cirrhosis and liver carcinoma. Pathologically, it is

characterized by the presence of steatosis in more than 5%

hepatocytes without excessive alcohol consumption or other

chronic liver diseases (16). Although the precise mechanism

underlying the progression from NAFL to NASH remains elusive,

numerous studies have demonstrated initiating factors including an

imbalance of fat metabolism, insulin resistance, cellular stress,

immune infiltration and inflammatory reactions (2, 17–20).
2.1 Fat metabolism in NAFLD

Overnutrition, characterized by excessive consumption of any

food, can disrupt liver energy metabolism balance. In this context,

the intake of carbohydrates (mono-, di- and polysaccharides) and

fat exceeds the body’s expenditure, resulting in a net accumulation

of energy as triglycerides in the liver and white adipose tissues

(WAT), which can account for the NAFLD in obese individuals

(21). Additionally, apart from lipolysis of absorbed fat in the

intestine, augmented hepatic de novo lipogenesis (DNL) fueled by

excess glucose also leads to an increased flux of free fatty acids

(FFAs) into the liver (Figure 1). Moreover, expansion of adipose

tissue reservoirs in both the liver and WAT creates a susceptible

environment where macrophages infiltrate and become activated
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due to various stimuli such as endotoxins, adipokines, lipids, and

lipid metabolites (22). Subsequently, this proinflammatory state

promotes insulin resistance—a defect associated with metabolic

syndrome and type 2 diabetes—thus accelerating NAFLD

progression through sustained delivery of fatty acids to the liver

(23). Interestinglyenough, dyslipidemia resulting from irregular

dietary habits can contribute to insulin resistance; conversely,

insulin dysfunction caused by other factors can also lead to

abnormal adipose metabolism (24, 25). Although NAFLD

prevalence among obese individuals is reported up to 75.27%;

another study has demonstrated that within the NAFLD

population approximately 40.8% were non-obese individuals who

eventually accounted for 19.2% lean subjects (26, 27). The plausible

mechanism underlying this phenomenon involves impaired storage

capacity within subcutaneous adipose tissue forcing fat migration

towards visceral adipose tissues and ultimately leading to insulin

resistance and NAFLD (28).
2.2 Insulin resistance in NAFLD

Insulin resistance is a pivotal factor underlying the progression

from NAFL to NASH. As the master regulator of hepatic glucose

and adipose metabolism, insulin secreted to the portal vein exhibits

two-to threefold higher concentrations than peripheral plasma (29).

It exerts multiple crucial biological effects that maintain

homeostasis and prevent dysregulation (30). Following a meal,

increased insulin levels directly activate insulin receptor tyrosine

kinase, leading to reduced hepatic glucose concentration through

enhanced glucose uptake and consumption in tissue cells (31). This

process accelerates hepatic glycogen synthesis while inhibiting

gluconeogenesis, thereby decreasing DNL in the liver (31). In

addition to this direct mechanism of transcriptional regulation in

hepatic gluconeogenesis, there exists a faster indirect mechanism

involving the reduction of peripheral white adipose tissue (WAT)

lipolysis through IRTK/AKT2 pathway (29). This change acutely

influences hepatic acetyl-CoA content and pyruvate carboxylase

activity via substrate push and allosteric mechanisms (23).

Furthermore, decreased peripheral WAT lipolysis also impacts

the flux of fatty acids into the liver as substrates for triglyceride

synthesis (32).
2.3 Oxidative stress and cell death
in NAFLD

The imbalance of adipose metabolism also creates a lipotoxic

microenvironment, wherein the increased oxidation of free fatty

acids generates an excessive production of reactive oxygen species

(ROS), which serves as a key driver of cellular stress, including

oxidative stress and endoplasmic reticulum (ER) stress (18).

Subsequently, ROS-induced oxidative stress can activate a series

of inflammatory reactions through the nuclear factor-kB (NF-kB)
pathway and mitogen-activated protein kinases (MAPK) pathway

(33, 34). Moreover, the elevated ROS production not only leads to

ER stress but is reciprocally influenced by it, thereby establishing a
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detrimental cycle (35). Additionally, ROS can stimulate hepatic

stellate cells (HSCs) to produce collagen type I via NADPH oxidase

(NOX), which is considered a crucial biomarker for fibrogenesis

(36). These disruptions in internal environment homeostasis trigger

complex and interdependent inflammatory and immune signaling

pathways that ultimately result in hepatocyte injury characterized

by hepatocyte ballooning and cell death - key histological features of

NASH (37). Although hepatocyte ballooning represents specialized

cellular degeneration rather than cell death per se, it can still

enhance pericellular inflammation and fibrotic signaling (38).

Mechanisms underlying hepatocyte death primarily involve

apoptosis, necroptosis, and pyroptosis. Apoptosis is programmed

cell death mediated by various factors such as apoptosis signaling-

regulated kinase 1 (ASK-1), caspase, and FADD-like apoptosis

regulator (39–41). In contrast to apoptotic mechanisms that do

not influence pericellular inflammation or damage significantly,

both necroptosis and pyroptosis are pathological forms of cell death

associated with cell swelling and membrane rupture leading to the

release of inflammatory signals (20). Respectively, necroptosis is

regulated by a cascade phosphorylation of RIPK1/RIPK3, while

pyroptosis relies on gasdermin family proteins that create pores in

the plasma membrane (42–44). These intricate interactions between

cell injury, cell death, and proinflammation establish a fibrogenesis

milieu where paracrine inflammatory signals from various cells

(e.g., hepatocytes, hepatic stellate cells, liver sinusoidal endothelial

cells, macrophages, and neutrophils) drive fibrosis by CCR2, CCL5/

CCR5, CXCL10 and CCL20 (45–48).
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Furthermore, emerging evidence suggests that ferroptosis is

closely associated with NAFLD/NASH pathogenesis (15, 49, 50)
3 Pathogenesis of ferroptosis

Ferroptosis is a distinct mode of cell death, characterized by

unique morphological, biochemical, and genetic criteria, which sets

it apart from apoptosis, necrosis, and autophagy (6). Multiple

mechanisms have been implicated in the occurrence of ferroptosis

including Xc-/GSH/GPX4 axis, FSP1/CoQ axis, GCH1/BH4 axis,

lipid peroxidation and iron overload (51–53). Figure 2 shows the

mechanism of ferroptosis.
3.1 Xc_/GSH/GPX4 axis

GPX (glutathione peroxidase) is a protein superfamily that

consists of eight isoforms in mammals, with only five of them

(GPX 1–4 and 6) being seleno-proteins, while GPX 5,7,8 are non-

seleno proteins (54). Among all the GPXs, GPX4 is the sole enzyme

responsible for directly catalyzing the reduction of lipid peroxides

(54). Depletion of GPX4 in mice leads to embryonic lethality,

indicating its crucial role in physiology (55). Animal trials have

demonstrated that knockout mice lacking GPX4 die shortly after

birth due to extensive hepatocyte degeneration; however, lipophilic

antioxidant vitamin E can protect hepatocytes against lipid
FIGURE 1

Glucose and lipid metabolism in the liver. The liver plays a crucial role in numerous physiological processes, particularly in metabolism. Subsequent
to a meal, the heightened glucose levels trigger insulin secretion, thereby facilitating metabolic processes such as glycogenesis, glycolysis, and fatty
acid synthesis. Moreover, excessive glucose can stimulate de novo lipogenesis within the liver. Conversely, fatty acids can also be converted into
glucose through the gluconeogenesis pathway. Additionally, the liver is responsible for assembling very low-density lipoprotein (VLDL) and
transporting endogenous triglycerides to peripheral organs.
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peroxidation (56). Additionally, various diseases such as clear-cell

carcinomas, gastric cancer, and diabetic nephropathy have been

associated with GPX4 (57–59). Ferroptosis is associated with iron-

dependent ROS, but the GPX4 enzyme can mitigate lipid

peroxidation. Yang et al. have demonstrated that depletion of

glutathione (GSH) can inactivate the GPX4 enzyme, leading to

ferroptosis initiation (60). System Xc- is widely distributed in the

phospholipid bilayer and serves as a crucial component of the

cellular antioxidant system. It consists of a heterodimeric protein

comprising a light chain SLC7A11 and a heavy chain SLC3A2 (61).

System Xc-primarily imports cystine and exports glutamate in a 1:1

ratio, with cysteine being an essential precursor for GSH synthesis

(61). GPX4 utilizes GSH as a cofactor to convert glutathione into

oxidized glutathione (GSSG) while reducing cytotoxic lipid

peroxides to non-toxic lipid alcohols (62). Gao et al. discovered

that both glutamine or cystine starvation could induce ROS

accumulation, resulting in lipid peroxidation and ferroptosis (63).

Consequently, depletion of GSH can deactivate GPX4, thereby

initiating ferroptosis through inhibition of system xc- or GPX4

compounds, leading to toxic lipid ROS accumulation (64, 65). In

addition, using the ferroptosis inducer erastin or the GPX4 inhibitor

(1S,3R)-RSL3 ultimately leads to lipid peroxidation as well (66, 67).

More recently identified transcript variants of GPX4 include
Frontiers in Endocrinology 04
cytosolic (cGPX4), mitochondrial (mGPX4), and nuclear

(nGPX4) (68). Among these isoforms, cGPX has been shown to

inhibit ferroptosis and protect against NAFLD in mice (69).

However, a newly discovered isoform named iGPX aggravates

liver damage and contributes to ferroptosis under NAFLD

conditions (69). Nevertheless, in some cell types or cell lines, the

inhibition of GPX4 cannot induce ferroptosis, suggesting the

presence of alternative mechanisms distinct from GSH-dependent

pathways (70).
3.2 FSP1/CoQ axis in ferroptosis

FSP1 (ferroptosis suppressor protein 1) can protect against

ferroptosis in the absence of GPX4 by utilizing ubiquinone

(CoQ10) (70, 71). Dai et al. discovered that FSP1 inhibits

ferroptotic cell death and reduces CoQ10 levels following

treatment with erastin, sorafenib, and RSL3 (72). Bersuker et al.

also demonstrated that myristoylated FSP1 functions as an NAD(P)

H-dependent oxidoreductase in the plasma membrane to decrease

CoQ10 and generate a lipophilic radical trapping antioxidant

(RTA), which effectively halts lipid peroxide propagation (70). As

it is well known, mitochondria produce ATP through oxidative
FIGURE 2

the mechanism of ferroptosis. Ferroptosis is regulated by Xc_/GSH/GPX4 axis, FSP1/CoQ10 axis, and PUFA-PLOOH. Membrane system xc- mediates
cystine uptake into cell that is followed by GSH synthesis. FSP1 functions as an NADH-dependent CoQ, and CoQ is sufficient to suppress lipid
peroxidation. ACSL4 and LPCAT3 are necessary for ferroptosis to produce PUFA-PLOOH.
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phosphorylation via the electron transport chain. Dihydrooriotic

dehydrogenase (DHODH), a CoQ10-reducing flavoprotein similar

to FSP1, localizes to the mitochondria and operates parallelly with

mitochondrial GPX4 to inhibit ferroptosis by reducing CoQ to

CoQH2, thereby preventing lipid peroxidation (73). Additionally,

the FSP1-ESCRT-III-dependent membrane repair pathway is

implicated in ferroptosis (74). Excessive lipid oxidation ultimately

leads to membrane rupture, and studies have shown that endosomal

sorting complexes required for transport (ESCRT) mediate cell

membrane remodeling and fission reactions (75). In mammalian

cells, the ESCRT-III complex comprises 12 subunits known as

charged multivesicular body proteins (CHMPs) (76). Among

these proteins, CHMP5 and CHMP6 are crucial subunits of

ESCRT-III associated with resistance against ferroptosis through

membrane budding and fission; knockdown of CHMP5 or CHMP6

increases susceptibility to erastin- and RSL3-induced ferroptosis

(77). Zeng et al. also observed that knockdown of FSP1 suppressed

RSL3-induced expression of charged CHMP5 and CHMP6 at the

plasma membrane while overexpression of CHMP5 rescued cell

death induced by RSL3, erastin, and sorafenib both in wild-type

cells as well as those silenced for FSP1 (76).
3.3 GCH1/BH4 axis in ferroptosis

Tetrahydrobiopterin (BH4) serves as a coenzyme for aromatic

amino acid hydroxylases, including 5-hydroxytryptamine,

dopamine, noradrenaline, adrenaline, and melatonin.

Additionally, BH4 acts as a crucial cofactor for nitric oxide

synthase. Exogenous administration of dopamine or melatonin

has been demonstrated to suppress erastin- or hemin-induced

ferroptosis in diverse cell types (78, 79). Moreover, BH4 plays a

pivotal role in antioxidant defense and the removal of nitrogen

oxides (80). Elevated levels of BH4 inhibit ferroptosis and confer

resistance against erastin-induced cell death (81, 82). Mariluz

observed that cells depleted of BH4 exhibited heightened lipid

peroxidation upon GPX4 inhibition, but this effect was reversed

by supplementation with BH2 (83). This finding further supports

the notion that BH4 can impede ferroptosis by preventing lipid

peroxidation. GTP cyclohydrolase-1 (GCH1), the rate-limiting

enzyme in BH4 synthesis, selectively protects certain PUFA-PLs

from degradation to alleviate oxidation and enhance resistance

against ferroptosis (82). In summary, the GCH1/BH4 axis

functions as a master regulator of ferroptotic resistance through

its ability to block lipid peroxidation.
3.4 Lipid peroxidation in ferroptosis

Polyunsaturated fatty acids (PUFAs) containing bis-allylic

hydrogen atoms are susceptible to lipid peroxidation, and

emerging evidence suggests that PUFAs play a crucial role in the

execution of ferroptosis (84). The dysregulation of lipid metabolism,

characterized by increased PUFAs and decreased monounsaturated

fatty acids (MUFAs), contributes to the generation of lipid
Frontiers in Endocrinology 05
peroxides, which drive ferroptosis through their incorporation

into membrane phospholipids (85, 86). Kagan et al. demonstrated

that hydroperoxy derivatives of polyunsaturated fatty acid-

phosphatidylethanolamines (PUFA-PLs) can induce ferroptosis

even in cells with GPX4 inactivation (87). Among PUFAs,

arachidonic acid and adrenic acid are particularly important

phospholipids involved in oxidation processes, while acyl-CoA

synthe ta s e long-cha in fami l y member (ACSL) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) serve as key

enzymes in lipid metabolism (88). PUFAs can undergo oxidation by

ROS or LOX to form LOOHs, which subsequently generate

uncontrolled lipid free radicals through Fenton-like reactions. In

the presence of iron, lipid peroxides are converted into toxic lipid

free radicals (LO-), leading to cellular death (8). ACSL enzymes

activate free fatty acids to produce fatty acyl-CoA, which can then

be incorporated into glycerophospholipids. It has been

demonstrated that ACSL4 exhibits a strong preference for

activating PUFAs and its deletion prevents the incorporation of

PUFAs into membrane phospholipids where they would undergo

oxidation following GPX4 inactivation (88). ACSL4 binds PUFAs to

membrane phospholipids, creating conditions conducive for

ferroptosis, while ROS directly generate PUFA-PLOOH triggering

ferroptosis. In the presence of Fe2+, PUFA-PLOOH can be reduced

to PUFA-PLO•, facilitating rapid chain reaction diffusion and

subsequent ferroptosis (89). Furthermore, ACSL3 has also been

found highly relevant to ferroptosis as it activates MUFAs that

reduce plasma membrane lipids’ susceptibility to oxidation (90).

Magtanong et al. further stated that ACSL3-dependent activation of

MUFAs promotes a cell state resistant to ferroptosis (91).
4 Ferroptosis drives NAFLD to NASH

Cell death is a pivotal histologic hallmark of NASH that

contributes to the amplification of inflammatory signaling and

fibrogenesis. Among various forms of cell death in NASH,

ferroptosis may serve as a potential trigger for initiating

inflammation in steatohepatitis (92). In the early stages of

NAFLD, the accumulation of lipid droplets creates a lipotoxic

environment, leading to redox imbalance (93). Bioinformatics

analysis revealed higher expression levels of genes involved in the

“ferroptosis” pathway and “glutathione metabolism” pathway, such

as ACSL6, ACSL4, GSS, GPX2, and GPX3 in individuals with

NASH compared to healthy controls; meanwhile, the expression

of iron exporter ferroportin (SLC40A1) was down-regulated (94).

Overall, ferroptosis is closely associated with NAFLD/NASH

through underlying mechanisms including iron overload,

oxidative stress, and overwhelming membrane lipid peroxidation.
4.1 The role of iron overload between
ferroptosis and NAFLD/NASH

Iron plays a diverse range of crucial roles in physiological

metabolism in vivo. In addition to its role as an element bound to
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proteins for essential cellular functions such as ATP generation,

DNA synthesis and repair, and oxygen transport, iron is also an

indispensable component of the redox system, switching between

Fe2+ and Fe3+ (95). Abnormal accumulation of iron within cells

and impaired binding capacity of iron-containing proteins can

result in increased levels of redox-active iron, which generates

oxygen radicals through Fenton chemistry, leading to detrimental

effects on DNA, proteins, and lipids (50). Nevertheless, clinical

analysis has shown that elevated serum ferritin levels are

independently associated with advanced NAFLD (11). This

observation implies an augmentation in iron reserves and

systemic inflammation within the context of NAFLD. Ferritin

heavy chain (FTH) and ferritin light chain (FTL) are crucial iron-

associated factors. Recently, Crawford et al. reported that reducing

iron intake attenuates NAFLD in a high-calorie-induced mouse

model while Deng et al. demonstrated that Caveolin-1 enhances

ferritin synthesis and increases iron storage capacity by activating

the FTL/FTH pathway, subsequently decreasing ROS levels and

alleviating NAFLD progression (96, 97). Furthermore, Yu et al. have

reported that Fe3+ chelation can reverse iron overload in vivo

thereby attenuating the production of lethal ROS while alleviating

ER stress and regulating the Nrf2/NF-kB signaling pathway (98).

These findings propose a potential therapeutic strategy for NAFLD/

NASH. Emerging evidence suggests that aberrant iron distribution

contributes to a novel mechanism underlying NAFLD

development; elevated secretion of iron-containing extracellular

vesicles leads to hepatocyte iron deficiency which enhances

lipogenesis and insulin resistance through HIF2a-ATF4 signaling

whereas HSC-mediated iron overload promotes fibrogenesis via

excessive ROS production (99).
4.2 The role of lipid peroxidation and ROS
between ferroptosis and NAFLD/NASH

The pathogenesis of ferroptosis in NAFLD/NASH is closely

associated with lipid peroxidation and abnormal accumulation of

reactive oxygen species (ROS). For instance, in a methionine-

choline deficient (MCD) diet-induced mice model, elevated

arachidonic acid metabolism promotes ferroptosis, while the use

of ferroptosis inhibitors alleviates inflammation, fibrogenesis, and

liver injury (100). This was confirmed by measuring levels of lipid

ROS and iron.

ACSL4 is a crucial enzyme that catalyzes CoA to PUFAs such as

arachidonic acid, which can promote ferroptosis. Clinical studies

have reported increased hepatic ASCL4 levels in NAFLD patients

compared to healthy controls (101). Further research has shown

that suppressing ACSL4 expression significantly improves NAFLD

symptoms in multiple mouse models (101). Consistent with this

finding, another study demonstrated that the ferroptosis inhibitor

liproxstatin-1 (LPT1) not only reduced the expression of ACSL4 but

also decreased hepatic lipids (e.g., triglycerides, cholesterol), lipid

metabolites (e.g., 4-hydroxynonenal, malondialdehyde), insulin

resistance, mitochondrial ROS content and liver fibrosis (102).

Moreover, recent investigations on lung injury revealed that
Frontiers in Endocrinology 06
deletion of the ACSL4 gene suppresses ferroptosis and attenuates

chemical-induced lung injury and pulmonary fibrosis by reducing

PUFA-containing membrane phospholipids and inhibiting lipid

peroxide formation (103).

The Xc-/GSH/GPX4 axis represents a central antioxidant

pathway in ferroptosis. Studies have demonstrated that treatment

with the ferroptosis inducer RSL-3 can decrease hepatic expression

of GPX4, leading to more severe symptoms in an MCD-induced

NASH mice model (66). Consistent with this, administration of the

GPX4 activator sodium selenite and the ferroptosis inhibitor

liproxstatin-1 can attenuate NASH severity (66). SLC7A11, a

subunit of System Xc-, also plays critical roles in both ferroptosis

and NAFLD/NASH pathogenesis. In high-fat diet-induced NASH

mice models, hepatocyte ATF4 ablation increases susceptibility to

ferroptosis and hepatocarcinogenesis; however, ectopic expression

of SLC7A11 reverses these effects (104). Similarly, another study

revealed that Arbutin, a natural antioxidant compound, reduces

ferroptosis and ameliorates high-fat diet (HFD) induced NAFLD

both in vivo and in vitro by regulating methylation of the SLC7A11

gene through inhibition of fat mass and obesity-related protein

(FTO) (105).
4.3 Other regulatory factors between
ferroptosis and NAFLD/NASH

In addition, several studies have also reported additional

potential regulatory pathways linking ferroptosis and NAFLD/

NASH. The key regulatory factors include PRDX3, Lgfbp7, and

Mfn2. For instance, the accumulation of phospholipid peroxides

can lead to hyperoxidation of peroxiredoxin 3 (PRDX3), promoting

its translocation from mitochondria to the plasma membrane. This

subsequently inhibits cystine uptake and induces ferroptosis (106).

Recently, a study in a zebrafish model has elucidated that Lgfbp7

may regulate ferroptosis through Ncoa4-mediated ferritinophagy,

with depletion of Lgfbp7 reducing hepatic iron deposition and lipid

peroxidation products (107). Furthermore, Mitofusin 2 (Mfn2)

could interact with inositol-requiring enzyme 1 alpha (IRE1a) to
promote ferroptosis in an arsenic-induced NASH model (108).

Moreover, the pathogenic pathways are also influenced by genetic

and microbiome-related factors (109). For example, Zhuge et al.

proposed a possible mechanism for impaired function of antifibrotic

drugs whereby gut microbiota induces lipid peroxidation and ROS

accumulation to promote hepatocyte ferroptosis and activate HSCs

by generating excessive chenodeoxycholic acid (110).
4.4 The heterogeneity of animal models on
NAFLD/NASH

In this review, we have discussed four mouse models simulating

the pathological process of human NAFLD/NASH, including the

MCD-induced model, HFD-induced NASH model, CDE-induced

model, and arsenic-induced NASH model. The first three models

represent dietary intervention approaches, while the last one
frontiersin.org

https://doi.org/10.3389/fendo.2024.1431652
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yu and Song 10.3389/fendo.2024.1431652
represents toxin exposure. However, not all models successfully

replicate the etiology and metabolic features of human NASH. For

example, the HFD model induces hepatic steatosis, insulin

resistance, inflammation and ER stress but lacks fibrosis and

NASH development; both the MCD and CDE models can

induce NASH-like pathology in mice but do not exhibit insulin

resistance (111). Therefore, a combination of multiple strategies

such as HFD+fructose and CD+HFD is widely employed to induce

insulin resistance, dyslipidemia, ER stress, fibrosis and NASH (111).

Additionally, the arsenic exposure model has been reported to cause

lipid accumulation, increase TNF levels, and result in liver injury

(112). Furthermore, toxins or genetics plus diet-based models are

also extensively used in NASH research (111).
4.5 The relevance between ferroptosis and
NAFLD/NASH in human patients

Ferroptosis is associated with the Xc-/GSH/GPX4 axis, the

FSP1/CoQ axis, the GCH1/BH4 axis, lipid peroxidation, and iron

overload. Abundant clinical research has demonstrated that these

mechanisms are involved in NAFLD/NASH. For example, serum

ferritin levels are increased in NAFLD and hyperferritinemia is

associated with advanced NASH and fibrosis (11). Consistent with

this finding, another study has shown that patients with

hyperferritinemia have higher iron stores and more severe liver

fibrosis (113). A clinical cohort analysis reported that oral

supplementation of whey protein in patients with NASH can

increase plasma GSH levels, thereby reducing hepatic

macrovesicular steatosis (114). Recently, novel evidence has

revealed that hepatic expression of SLC7A11 is upregulated

in NASH patients and positively correlates with disease

severity (115). Moreover, a pathological analysis conducted on

metabolic-associated fatty liver disease (MAFLD) patients

demonstrated elevated levels of malondialdehyde (a marker

for lipid peroxidation), while total superoxide dismutase (SOD)

activity and total antioxidant capacity (TAC) were decreased in

liver tissues from MAFLD patients (69). Additionally, mRNA

levels of NOX1, NOX4, FTH,and FTL were also found to be

higher in livers from MAFLD patients compared to controls

(69). These clinical results provide incontrovertible evidence

indicating the significant role of ferroptosis in the progression of

NAFLD/NASH.
4.6 Targeting ferroptosis in NAFLD/NASH

Currently, Rezdiffra has gained approval from the Food and

Drug Administration (FDA) for the treatment of NAFLD/NASH

(116), marking a significant milestone in the advancement of

therapeutics for this condition. In this review, we have presented

various mechanisms targeting ferroptosis that can potentially

mitigate or prevent the progression of NAFLD to NASH. These

targeted approaches are summarized in Table 1. However, it is

important to note that these strategies have primarily been
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investigated in preclinical models, and there is currently no

commercially available drug specifically designed to target

ferroptosis for the treatment of NAFLD/NASH.
5 Conclusion

NAFLD/NASH has emerged as a critical public health concern,

necessitating further investigation into its underlying mechanisms

and treatment strategies. Conversely, the development of an

accurate predictive tool for identifying individuals at risk of

transitioning from NAFLD to NASH could significantly impact

mortality rates. Notably, in a choline-deficient, ethionine-

supplemented (CDE) diet model, inhibition of ferroptosis

effectively prevents initiation of necrotic cell death and suppresses

inflammatory reactions and immune cell infiltration (92). This

underscore the importance of targeting ferroptosis as a potent

therapeutic strategy to impede disease progression from NAFLD

to NASH in the future. Although numerous animal models have

provided substantial evidence demonstrating that inhibiting

ferroptosis exerts significant effects on NAFLD/NASH, their

precise mechanisms remain elusive. Furthermore, clinical research

investigating pharmacological therapies aimed at inhibiting

ferroptosis for treating NAFLD/NASH is currently lacking.

Herein, we summarize recent advances in understanding the

mechanistic involvement of ferroptosis in NAFLD/NASH

pathogenesis. This review article provides a novel perspective on

the progression from NAFLD to NASH and these underlying

mechanisms may have broader implications in other diseases such

as idiopathic pulmonary fibrosis (IPF). In conclusion, ferroptosis
TABLE 1 Targeting ferroptosis in NAFLD/NASH.

target drug mechanism references

System Xc- erastin Inhabit System Xc-,
leading to
GSH depletion

(67)

GPX4 RSL-3 Inactivates GPX4,
leading to
lipid peroxidation

(66)

PUFAs Vitamin E
Liproxstatin-1
Ferrostatin-1

Inhabit
lipid peroxidation

(56, 67, 102)

ACSL4 Rosiglitazone
Trosiglitazone

Inhabit
lipid peroxidation

(5, 101, 102)

Iron chelator DFO
DFP
EWCDs
(fluorescent egg
white-based
carbon dots)

Chelate iron, reducing
lipid peroxidation

(98, 102, 117)

Caveolin-1 Alleviates ROS
induced by irons

(97)

FTO/
SLC7A11

Arbutin regulating methylation
of the SLC7A11 gene
by inhabiting FTO

(105)
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plays a crucial role in the pathogenesis of NAFLD/NASH and offers

novel therapeutic and predictive avenues for patients.
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