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Characterization of GABAergic
marker expression in prefrontal
cortex in dexamethasone
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anxiety model
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Shao-Hao Liu5, Xiao-Qi Liu5, Shi-Wei Liu5, Ze-Jin Shen5,
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and Na Fang5*

1Department of Pathogen Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China,
2State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of
Brain Science, Fudan University, Shanghai, China, 3Neurological Department of Tongji Hospital, School of
Medicine, Tongji University, Shanghai, China, 4Luohe Medical College, Henan Province Engineering
Research Center of Nutrition and Health, Luohe, China, 5Henan Provincial Engineering Center for Tumor
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Background: The pivotal responsibility of GABAergic interneurons is inhibitory

neurotransmission; in this way, their significance lies in regulating themaintenance

of excitation/inhibition (E/I) balance in cortical circuits. An abundance of

glucocorticoids (GCs) exposure results in a disorder of GABAergic interneurons

in the prefrontal cortex (PFC); the relationship between this status and an

enhanced vulnerability to neuropsychiatric ailments, like depression and anxiety,

has been identified, but this connection is still poorly understood because

systematic and comprehensive research is lacking. Here, we aim to investigate

the impact of dexamethasone (DEX, a GC receptor agonist) on GABAergic

interneurons in the PFC of eight-week-old adult male mice.

Methods: A double-blind study was conducted where thirty-twomice were treated

subcutaneously either saline or DEX (0.2 mg/10 ml per kg of body weight) dissolved

in saline daily for 21 days. Weight measurements were taken at five-day intervals to

assess the emotional changes in mice as well as the response to DEX treatment.

Following the 21-day regimen of DEX injections, mice underwent examinations for

depression/anxiety-like behaviours and GABAergic marker expression in PFC.

Results: In a depression/anxiety model generated by chronic DEX treatment, we

found that our DEX procedure did trigger depression/anxiety-like behaviors in

mice. Furthermore, DEX treatment reduced the expression levels of a GABA-

synthesizing enzyme (GAD67), Reelin, calcium-binding proteins (parvalbumin

and calretinin) and neuropeptides co-expressed in GABAergic neurons

(somatostatin, neuropeptide Y and vasoactive intestinal peptide) in the PFC

were reduced after 21 days of DEX treatment; these reductions were

accompanied by decreases in brain size and cerebral cortex thickness.
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Conclusion: Our results indicate that a reduction in the number of GABAergic

interneurons may result in deficiencies in cortical inhibitory neurotransmission,

potentially causing an E/I imbalance in the PFC; this insight suggests a potential

breakthrough strategy for the treatment of depression and anxiety.
KEYWORDS

chronic dexamethasone stress, prefrontal cortex, GAD67, reelin, GABAergic interneurons,
depression and anxiety, chronic restraint stress
1 Introduction

The etiology of numerous mental health conditions, particularly

depression and anxiety, is closely linked to stress, underscoring stress

as a key determinant in the progression of these disorders in humans

and animals (1). Depression, also known as depressive disorder,

constitutes a sophisticated mental health condition that exerts its

influence on about 350 million individuals worldwide (2). With the

accelerating pace of life, recent years have witnessed a notable

uptrend in prevalence, and it is predicted to have the highest

burden of disease in the future. Depression is divided into three

severity categories: mild, moderate, and severe. The key clinical

symptoms include low mood, anhedonia (the inability to

experience pleasure from natural rewards), irritability, difficulty

concentrating, abnormal appetite and sleep, lack of energy, inability

to enjoy life, and suicidal thoughts, especially in individuals suffering

from major depressive disorder (3). Furthermore, depression can

increase the risk of heart disease, cerebrovascular disease, type 2

diabetes and other causes of death (4). The psychiatric condition of

anxiety is typified by unwarranted and overwhelming concerns,

physical agitation, and tiredness (5). Various subtypes of anxiety

exist, such as general anxiety disorder, panic disorder, social anxiety,

agoraphobia, posttraumatic stress disorder, and obsessive-compulsive

disorder (6–9). At present, many types of antidepressants and

anxiolytics that are used in the clinic are able to effectively help

many patients; nonetheless, a high percentage of patients have

delayed responses or no response to treatment and develop certain

side effects, suggesting that the current pathophysiological

understanding of depression/anxiety is still very weak. In particular,

the methods and techniques for observing intracranial lesions are

limited; researchers do not yet have the means to explain a series of

complex symptoms, let alone resolve the weaknesses of current drug

treatments for depression/anxiety (10). Given this situation, rodent

models may be an important resource for exploring the fundamental

mechanism of depression/anxiety, potentially advancing the research

on core symptoms and aiding in the development of targeted

treatments (11, 12).

Investigations utilizing rodent models have revealed that chronic

stress or repeated intraperitoneal injection of glucocorticoids causes

similar mental symptoms to depression/anxiety (13, 14). One key

element of the stress response is the activation of the hypothalamic–
02
pituitary–adrenal (HPA) axis accompanied by elevated levels of

circulating glucocorticoids to offer optimal physiological assistance in

the acute phase of the fight-or-flight response (15). The primary

discoveries reported in research consistently demonstrate an upsurge

in HPA axis activity in depression, accompanied by hypercortisolemia

and reduced inhibitory feedback (16). It has been consistently proven

through evidence that dysfunction of the glucocorticoid receptor occurs

in cases of anxiety disorders (17). These results propose that the

dysregulation of the HPA axis stems from an imbalance between

glucocorticoids and glucocorticoid receptors (GRs) (18).

Stress hormone-related receptors such as GR are prominently

expressed in the prefrontal cortex (PFC), which is a crucial brain

region for the stress response and the core brain region through

which chronic stress damages the emotional functions of the brain

(19). The primate PFC, located in the cerebral cortex, is composed

of the medial prefrontal cortex (mPFC), which is further subdivided

into a ventral component (vmPFC) and a dorsal component

(dmPFC). In particular, areas 25 and 32 of the vmPFC and area

24 of the dmPFC are homologous to the rodent infralimbic cortex

(IL), prelimbic cortex (PL) and anterior cingulate cortex (ACC),

respectively (20, 21). Therefore, the alterations in both structure and

function of the prefrontal cortex (PFC) in rodents exposed to

prolonged stress may be a critical link at which the mechanism of

depression/anxiety could be interrupted by novel treatments.

Existing studies have suggested that the PFC contains rich

inhibitory neurons g-GABAergic neurons, mainly release the

neurotransmitter of g-aminobutyric acid (GABA) via two enzyme

isoforms (GAD65 and GAD67) (22). GABAergic cells can be

classified into three types: the somatostatin (SST) group, the

parvalbumin (PV) group and the ionotropic serotonin 3A

receptor (5HT3AR) group (23, 24). Each category comprises

various subgroups, with the potential for commonalities. The SST

group, constituting approximately 30% of GABAergic neurons,

contains neuronal nitric oxide synthase (nNOS) and calcium-

binding proteins (calbindin and calretinin) and colocalizes

entirely with neuropeptide Y (NPY). Around 40% of GABAergic

neurons are categorized under the PV group, which consists of fast-

spiking basket cells and chandelier cells. The group of 5HT3AR,

constituting approximately 30% of the total interneuronal

population, expresses Reelin; some also express the neuropeptide

vasoactive intestinal peptide (VIP), while others do not. Delving
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into the functions of these cell subtypes has proven beneficial in

pinpointing molecular susceptibilities encompassing depression/

anxiety and other stress-related disorders.

Chronic stress-triggered emotional disorders like anxiety and

depression arise from disruptions in the balance between the

excitatory glutamatergic system and the inhibitory GABAergic

system (25–29). It is worth noting that the changes in GABAergic

neurons after stress, especially excessive glucocorticoids, remain

controversial (27, 30, 31). Recent studies have identified significant

increases in calbindin, GAD65 and GAD67 but failed to

demonstrate differences in CR and PV levels without behavioral

changes in response to chronic glucocorticoid exposure (31).

Increasing evidence has suggested that a reduced number of PV-

immunopositive neurons is accompanied by working memory

deficits and anxiety- and depression-like behavior in DEX-treated

rats (32). In addition, there remain other subgroups (e.g.,

neuropeptide Y and Reelin) for which data are missing (33, 34).

Therefore, a primary objective of this study was to explore the

impact of elevated glucocorticoid levels on specific subtypes of

GABAergic inhibitory neurons.

The current investigation utilized a chronic DEX model, which

has been authenticated in our lab, to duplicate various behavioral

and cellular aspects of depression (35). Anxiety-like behaviors were

also observed in DEX-treated mice, along with reduced brain size

and pronounced thinning of the cerebral cortex. Strikingly, we

found evidence that excessive glucocorticoids impaired the

GABAergic system in the PFC, which changed the excitation/

inhibition ratio. This abnormality of GABAergic neurons may be

caused by dysfunction of the HPA axis. This could provide fresh

perspectives for a more thorough understanding of the biology of

these refractory disorders and, most importantly, for application in

prompt identification and treatment.
2 Materials and methods

2.1 Experimental animals

All experimental procedures underwent thorough review and

were granted approval by the Animal Committee of the Department

of Laboratory Science, Henan University, China. Male C57BL/6J

adult mice were group-housed in sets of 5 within an enclosure with

a 12-hour light/dark regime (lights switched on at 7:00 a.m.),

maintaining a controlled environment of 22 ± 2°C temperature

and 50 ± 10% humidity, and were supplied with standard

nourishment and water ad libitum.
2.2 Chronic DEX treatment

A double-blind study was conducted where thirty-two mice

were treated subcutaneously either saline or DEX (0.2 mg/10 ml per

kg of body weight; HY-14648, MedChemExpress, NJ) dissolved in

saline daily for 21 days. Weight measurements were taken at five-

day intervals to assess the emotional changes in mice as well as the

response to DEX treatment. Following the 21-day regimen of DEX
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injections, mice underwent examinations for depression and

anxiety-like behaviors. The study included 16 mice in each group

- control and DEX. Eight mice from each group were designated for

behavioral testing, while the remaining eight were used for

anatomical and tissue staining analyses.
2.3 Behavioral tests

Following a 21-day induction of DEX, on day 22, male mice

from the Control group (n=8) and the DEX group (n=8) were

subjected to various behavioral assessments, comprising the sucrose

preference test (SPT), tail suspension test (TST), forced swim test

(FST), light-dark box (LDB) test, and open-field test (OFT) as part

of a double-blind study design.

2.3.1 Sucrose preference test
Depressive-like behavior was assessed through the SPT on the

22nd day for male mice allocated to the Control group (n=8) and

the DEX group (n=8). Prior to the experiment, animals were

individually housed for 3-7 days to minimize the influence of

social factors on the experimental outcomes. Additionally, to

familiarize the animals with the sweet substance, sucrose

habituation training was conducted by providing them with a

certain concentration of sucrose solution (e.g., 1% sucrose) to

adapt to the taste. The sucrose solution used in the experiment

typically ranged from 1% to 2% sucrose solution. To ensure the

reliability of the experimental results, the consistency of the sucrose

solution concentration was maintained throughout the experiment.

The experiment commenced with the administration of sucrose

solution and plain water to the animals simultaneously. The

consumption of both liquids was periodically measured within a

specific time frame (e.g., 24 hours). The calculation method for the

Sucrose Preference Index (SPI) involved determining the post-

experiment sucrose preference index, which is the ratio of sucrose

intake to total intake (sucrose + plain water) (35).
2.3.2 Tail suspension test
The TST was carried out on the 23rd day for the mice assigned

to the Control group (n=8) and the DEX group (n=8). At the

initiation of the experiment, animals were gently removed from

their cages and their tails were promptly immobilized to prevent

unnecessary stress and arousal. Specifically, medical tape was

applied 1 cm away from the tail tip, following which the animals’

tails were suspended on the apparatus hanger. The height from the

tail tip to the ground was approximately 30 cm, positioning the

mice in a head-stand stance. The camera lens was adjusted in

advance and centered on the mice’s bodies to ensure a

comprehensive view of the recording. The experiment required a

6-minute video recording, capturing the immobility periods of the

animals in the initial 2 minutes and the subsequent 4 minutes. Post-

recording session, the mice were cautiously freed from the medical

tape by peeling them off and then returned to their original cages

with proper documentation. Following the completion of all animal

tests, the apparatus was promptly cleaned of feces and urine (36).
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2.3.3 Forced swim test
On the 24th day, mice in the Control group (n=8) and DEX

group (n=8) underwent the FST test (37). Prior to the experiment,

the water temperature inside the testing apparatus was adjusted to a

range of 23 to 25°C. The water depth was adjusted based on the

animals’ body weight, ensuring a certain distance between the

animals’ tails and the bottom of the testing apparatus. Each pair

of animals was separated by an opaque barrier. The swimming time

for the mice was set at 6 minutes, with immobility recorded during

the subsequent 4 minutes (37).

2.3.4 LDB test
On the 25th day, mice in the Control group (n=8) and DEX

group (n=8) underwent the LDBT test. The open white rectangular

chamber known as the dark-light box had dimensions of 40 × 40 ×

33 cm3. It was designed with an entry point of 8 × 10 cm that led to a

black compartment of the size 20 × 40 × 33 cm3. Our research

included exposing the light chamber to an intensity of 500 lux.

Every mouse was positioned inside the dark compartment, and the

latency period was measured along with the number of visits to the

light chamber within 5 minutes. Entry into the light chamber was

confirmed only after the subject had crossed the threshold with all

four limbs. Observation of their conduct was documented via digital

camera, followed by analysis through the SYGNIS Tracking

Program (38).

2.3.5 Open field test
The OFT was administered to the Control group (n=8) and the

DEX group (n=8) on the 26th day. The open-field apparatus

comprised a square arena where the white floor was partitioned

into nine 10 cm × 10 cm squares, enclosed by unbroken walls

standing at 21 cm in height constructed of see-through acrylic glass.

The experimental procedure extended over a period of 30 minutes.

The activity monitoring software recorded the distance traveled in

center zone (39).

In all, the evaluation of depression-like behaviors involved the

utilization of the SPT, TST, and FST, while anxiety-like behaviors

were assessed through the LDB test and OFT.
2.4 Nissl staining

Brains were harvested after DEX exposure and sectioned in a

cryostat at 25 mm. Then, application of Nissl staining solution

(Beyotime, C0117, Shanghai, China) to coronal cryosections

occurred for a 5-minute duration at room temperature. Next, the

samples underwent washing with 95% ethyl alcohol for a duration

of 5 minutes followed by air drying. The sections were subsequently

rinsed two times in xylene lasting 5 minutes each. Following

application of neutral balsam sealing, the slides were examined

using an optical microscope (Eclipse 80i, Nikon) by a blinded

investigator. Cortical thickness was measured at the primary

somatosensory cortex of forelimb (S1FL) region of the neocortex

with the following coordinates: anteroposterior (AP) +0.74 mm,

mediolateral (ML) +2.0 mm, dorsoventral (DV) -1.6 mm (40).
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2.5 In situ hybridization

The procedure of ISH was carried out as detailed in earlier

literature (41). To prepare probes for GAD67, Reelin, SST, VIP and

NPY, total RNA was isolated from the cerebral cortex utilizing TRIzol

as per the guidelines provided by the manufacturer (Qiagen). Each

sample was reverse transcribed using PrimeScript™ RT reagent Kit

with gDNA Eraser (Takara, RR047A), and a 400-600 bp

complementary DNA (cDNA) fragment for each gene was

subcloned into the pGEM-T vector (Promega, A362A), linearized for

in vitro transcription and subjected to digoxigenin (DIG) RNA

labelling (SP6/T7; Roche Diagnostics Ltd. UK). Detection and

visualization of signals were conducted employing 5-bromo-4-

chloro-3-indolyl phosphate (Boehringer Mannheim) and 4-nitroblue

tetrazolium salt (BioRad) as substrates for alkaline phosphatase. The

process of ISH was visualized through images obtained with a

brightfield microscope (Eclipse 80i, Nikon).
2.6 Immunohistochemistry

Immunohistochemical staining was executed as per the

described procedures in earlier research (42). Briefly, brain slices

(25-mm thick) were harvested after behavioual testing. The primary

antibodies utilized included: Parvalbumin (1:1000, rabbit, Swant,

PV27) and Calretinin (1:1000, mouse, Swant, 6B3). After overnight

incubation at 4°C with primary antibodies, the sections were

subsequently incubated with biotin-conjugated secondary

antibodies (Vector Laboratories) for 3 hours, followed by labeling

with either Cy2-conjugated streptavidin or secondary antibodies

conjugated to Alexa fluorochromes (Molecular Probes, Invitrogen).

Slides were treated with 75% glycerol and images were captured

utilizing an epifluorescence microscope (Eclipse 80i, Nikon) with

the assistance of NIS-Elements F400 software.
2.7 Results analysis and quantification

Behavioral results were analyzed blinded to the experimental

conditions (n = 8 for each group). Microscope images of the PFC

were procured via microscopy, with a minimum of 8 individual

samples examined in every group. The quantification of images

from the PFC involved selecting sections spanning from

approximately 4.20 mm to 1.20 mm referenced to Bregma. The

number of total GABAergic-positive puncta (GAD67, Reelin, SST,

VIP, NPY, PV and CR) and cortical thickness measurements were

quantified through ImageJ software by one investigator blinded to

the experimental conditions.
2.8 Statistical analysis

At least eight animals of each group were used for statistical

analysis to determine significance in each experimental paradigm.

Normal distribution was conducted on the collected data, followed
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by the application of Student’s t-test to compare the two groups. The

statistical analysis was performed using GraphPad Prism software,

version 8.0. The data was displayed as the average ± standard error of

the mean. Significance was attributed to p values below 0.05.
3 Results

3.1 Effects of DEX treatment on
depression/anxiety-like behaviors

DEX functions as a synthetic agonist of glucocorticoids, and

chronic DEX administration is commonly employed to trigger
Frontiers in Endocrinology 05
depression/anxiety-like behaviors in rodents (43–45). To validate our

DEX protocol, a battery of behavioral examinations, encompassing the

SPT, TST, FST, LDB test and OFT, were performed (Figure 1A). Our

data showed that DEX treatment led to a diminishment in sucrose

preference and a surge in the duration of immobility across both the

TST and FST assessments (Figures 1B-D). As expected, the habit of

exploring the light was weakened, including reduced immobility time

in the light chamber and the timesmice shuttled between the two boxes

(Figures 1E, F). Locomotor activity was decreased in DEX-treatedmice,

as shown by the travelled distance in center zone relative to controls

(Figure 1G). Taken together, our DEX procedure did trigger

depression/anxiety-like behaviors in mice, according to the

proof presented.
FIGURE 1

DEX treatment led to depression/anxiety-like behaviors. Diagram of the experimental design and timeline (A). b–d The Dex treatment resulted in
decreased sucrose preference (B) and increased immobility time in the TST (C), and FST (D). (E, F) The time spent in the light chamber (E) and the
times mice shuttled between the two boxes (F) were decreased in the LDB test. (G) DEX resulted in a decreased distance in center zone of the OFT.
n = 8 in each group and all the data are presented as mean ± SEM. Data were analyzed using Student’s t-tests (B-G). **p < 0.01 (control mice versus
DEX-treated mice). Dex, dexamethasone; FST, forced swim test; OFT, open-field test; SPT, sucrose preference test; TST, tail suspension test; LDBT,
light-dark box test.
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3.2 Effects of DEX treatment on the
thickness of the cerebral cortex and
brain size

Initial body weight measurements were taken at the onset of

stress exposure for each individual mouse, with subsequent weight

recordings conducted every five days until animals were sacrificed.

In contrast, 21 days of DEX treatment prevented the increase in

body weight (data not shown). We evaluated the gross cortical

morphology of DEX-treated mice on day 77. When juxtaposed with

control mice, the cortical thickness at the S1FL region of the

neocortex in DEX-treated mice was notably decreased by Nissl

staining (Figure 2A-C), consistent with the decreased brain size

(Figures 2D, E) often found in major depressive disorder (46). We

then surveyed the cortical thickness along the rostral-caudal axis

and detected a general decrease in cortical thickness with no region-

specific pattern after DEX exposure (Supplementary Figure S1).

Collectively, the evidence suggests that our DEX protocol impairs

cerebral cortex construction.
3.3 Effects of DEX treatment on GAD67
and Reelin in the PFC

To assay changes in the expression of a GABA-synthesizing

enzyme marker (GAD67) and an important neurodevelopmental

protein marker (Reelin, a glycoprotein preferentially secreted by

cortical GABAergic interneurons) (47)in our depression/anxiety-

like mouse model, the expression levels of GABAergic genes in the

cerebral cortex were assessed through ISH analysis at P77. Then,
Frontiers in Endocrinology 06
our attention was directed towards the PFC, known as a highly

susceptible area to stress and a crucial brain region associated with

depression (48). Following 21 days of DEX treatment, the PFC

exhibited a substantial reduction in GAD67 expression levels as

compared to the control group (Figures 3A, B, A’, B’, E; n = 8/group,

p<0.01). Similar to the change in GAD67, the number of Reelin+

neurons in the PFC was calculated, and the percentage revealed that

Reelin levels were lower in the PFC following DEX exposure

(Figures 3C, D, C’, D’, F; n = 8/group, p<0.01). Thus, our data

demonstrate that the levels of gene expression for GAD67 and

Reelin in the PFC are reduced by DEX exposure.
3.4 Effects of DEX treatment on calcium-
binding proteins specific to GABAergic
Interneurons in PFC

To explore whether calcium-binding proteins co-expressed in

GABAergic neurons are preferentially affected by DEX treatment,

immunohistochemistry for PV and calretinin (CR) was performed

in our depression/anxiety-like mouse model (Figure 4;

representative images). Our representative images revealed that

PV+ interneurons are drastically reduced in the PFC of stress-

vulnerable mice in contrast with controls (Figures 4A, B, A’, B’, E;

n = 8/group, p<0.01). Consistently, anti-CR staining indicated that

reduction in the density of PV interneurons within the PFC was

evident post DEX exposure (Figures 4C, D, C’, D’, F; n = 8/group,

p<0.01). Thus, these results showed that PV puncta and CR puncta

in the PFC are seriously reduced following DEX exposure.
FIGURE 2

DEX led to reduced thickness of the cerebral cortex and brain size. (A-C) Nissl staining revealed a significantly reduced cortical thickness at the S1FL
region of the neocortex in DEX-treated mice in comparison to control mice. n = 8 for each group. (D, E) The brain size of control and DEX-treated
mice at P77; three weeks of DEX treatment induced a mild reduction in brain size. n = 8 in each group. All the data are presented as mean ± SEM.
Data were analyzed using Student’s t-tests (C, E). **p < 0.01 (control mice versus DEX-treated mice). DEX, dexamethasone; PFC, prefrontal cortex;
S1FL, primary somatosensory cortex of forelimb.
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3.5 Effects of DEX treatment on
neuropeptides specific to GABAergic
interneurons in PFC

To delve deeper into the subtype-specific susceptibility of

interneurons towards DEX administration, the gene expression

levels of neuropeptides co-expressed in GABAergic interneurons

were assessed using ISH analysis. In the PFC, we first carried out

ISH of SST and found a dramatic decrease by quantitative analysis

in DEX-treated mice (Figures 5A, B, A’, B’, G; n = 8/group, p<0.01).

Following ISH procedures on VIP, it was evident that the quantity

of VIP+ interneurons in the PFC notably diminished in mice treated

with DEX (Figures 5C, D, C’, D’, H; n = 8/group, p<0.01).

Eventually, we executed NPY staining and affirmed a marked

decrease in the PFC of DEX-treated mice after careful

quantification (Figures 5E, F, E’, F’, I; n = 8/group, p<0.01). These

data strongly suggest that SST+, VIP+ and NPY+ interneurons are

dramatically decreased following DEX exposure. In Table 1, we

present the correlation between GABAergic neuron density and

behavioral indicators in DEX-treated mice. The results show a

remarkable association between the density of GABAergic

neurons and depressive/anxiety-like behaviors, suggesting that the
Frontiers in Endocrinology 07
reduction in GABAergic neurons may be instrumental in the

development of these behavioral abnormalities.
4 Discussion

The involvement of GABAergic signaling holds significance in

the etiology of glucocorticoid-induced psychiatric disorders,

including depression and anxiety disorders (49). We previously

reported that our DEX protocol indeed induced depression-like

behaviors (35). In this study, we demonstrated that DEX treatment

leads to reduced exploration of the light chamber of the LDB test,

along with deficient locomotor activity. In addition to alterations in

anxiety-like behavior, the DEX-treated mice displayed damaged

parts of the brain structure. Furthermore, DEX treatment reduced

GABAergic markers in the PFC to varying degrees, which may

underlie depression/anxiety-like behaviors.

Acting as critical stress response hormones, glucocorticoids

facilitate stress coping. Chronic glucocorticoid exposure evokes

neuronal cell damage and dendritic atrophy, reduces hippocampal

neurogenesis and impairs synaptic plasticity. Glucocorticoids also

alter expression and signaling of the neurotrophin, brain-derived
FIGURE 3

The DEX-treated mice had reduced GAD65 and Reelin expression. (A-F) Coronal sections from P77 brains stained with GAD65 and Reelin markers.
(A, B’) GAD65 in situ hybridization showed decreased puncta in DEX-treated mice (E, p<0.01, **) compared with control mice. (C, D’) Reelin puncta
were significantly reduced in DEX-treated mice, as shown by in situ hybridization of Reelin (f, p<0.01, **). The boxed area represents the PFC, and
the areas in (A-D) are enlarged in (A’-D’), respectively. Scale bar = 100 µm. n = 8 in each group. All the data are presented as mean ± SEM. Data
were analyzed using Student’s t-tests. **p<0.01 (control mice versus DEX-treated mice). DEX, dexamethasone; PFC, prefrontal cortex.
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neurotrophic factor (BDNF) (50). According to the research

conducted by Lv and colleagues, it was discovered that the

expression of BDNF was significantly upregulated in higher

concentration of DEX treatment (39). Griesbach et al. found that

restraint induced stress increases hippocampal Glucocorticoid

Receptor, but decreased BDNF in fluid percussion injured rats (40).

We used male mice of the same age in both the chronic restraint

stress (CRS) protocol and the DEX protocol. However, it should be

noted that there were differences in behavior between CRS-treated

mice and DEX-treated mice. No significant changes were noted in

locomotor activity in CRS-treated mice, as demonstrated by the

distance traveled in center zone contrasted with the control mice,

while the mice exhibited an anxiety-like behavioral phenotype after

chronic DEX treatment. This discrepancy might be explained by the

following factors. First, the concentration of glucocorticoids or

expression level of BDNF was inconsistent in two models (51, 52).

Maybe the concentration of DEX we used was higher. Second, DEX is

a glucocorticoid agonist that may work via different mechanisms than

glucocorticoids. Moreover, CRS may cause other hormonal changes,

including corticosterone, growth hormones, prolactin, insulin,
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secretin etc (53). And it has been reported that chronic

corticosterone administration induces negative valence and impairs

positive valence behaviors in mice (54), and the administration of

corticosterone was observed to influence depression-like behavior in

selected behavioral paradigms in a sex- and protocol-specific manner

(55). This suggests that further behavior tests are needed to examine

whether additional mental disorders, such as schizophrenia (SCZ),

are induced by the CRS protocol and DEX protocol.

Although literature on the relationship between dihydroorotate

dehydrogenase (DHODH) and glucocorticoids (GCs) is limited,

several studies suggest potential interactions. For example, a

molecular docking study found that berberine (BBR) could stably

bind to both DHODH and GC receptors (GR), indicating possible

cross-talk between these proteins (56). Additionally, anti-

inflammatory compounds from L. guatemalensis were shown to

bind in silico to both DHODH and GRs, highlighting their shared

pathway in inflammation modulation (57). High-throughput

metabolic profiling has also identified DHODH inhibitors and GR

agonists as key targets for regulating cancer cell metabolism, further

emphasizing their relevance in cellular stress responses (58, 59).
frontiersin.o
FIGURE 4

The DEX-treated mice had reduced PV and CR expression. (A-F) Representative images of PV and CR immunohistochemistry in the cortex of control
and DEX-treated mice. (A, B’) Immunostaining of PV showed decreased puncta in the DEX-treated mice (E, p<0.01, **) compared with the control
mice. (C, D’) Similar to the phenotypes observed in PV immunohistochemistry, a decreased number of CR+ cells was found in the PFC after stress (f,
p<0.01, **). The boxed area represents the PFC, and the areas in (A-D) are enlarged in (A’-D’), respectively. Scale bar = 200 µm. n = 8 in each group.
All the data are presented as mean ± SEM. Data were analyzed using Student’s t-tests. **p<0.01 (control mice versus DEX-treated mice). DEX,
dexamethasone; PFC, prefrontal cortex.
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In addition to metabolic regulation, glucocorticoids (GCs) can cause

neuronal atrophy and synaptic dysfunction by promoting Tau

hyperphosphorylation, which disrupts cytoskeletal integrity and

leads to the degradation of synaptic proteins. GCs and stress also

modulate microglial activation and neuroinflammatory processes,

worsening neuronal damage. Furthermore, evidence suggests that

stress and GCs impact neuronal structure and function through

epigenetic mechanisms (60). Thus, although the specific mechanisms

connecting DHODH and GR signaling remain underexplored,

existing evidence indicates that DHODH plays a role in GC-

induced cellular processes, particularly in neurodegenerative

pathologies. DHODH may be involved in mechanisms such as Tau
Frontiers in Endocrinology 09
hyperphosphorylation and microglial activation, offering new

avenues for understanding stress-related neurodegeneration.

Investigations in rodent models have expanded upon these

human trials and validated that similar to major depressive

disorder (MDD) in humans, recurrent stress exposure and

prolonged elevation of glucocorticoids in mice cause reduced

body weight, reduced PFC and hippocampal volumes, and

atrophy of cortical pyramidal neurons in the PFC and

hippocampus (61–63), which is in accordance with our previous

study. In our current research, a decrease in cortical thickness and

an overall smaller brain size were noted in the DEX-treated mice.

This brain atrophy might be caused by increased apoptosis of
FIGURE 5

The DEX-treated mice had reduced neuropeptides specific to GABAergic interneurons. (A-F) Coronal sections from P77 brains stained with
various neuropeptides specific to GABAergic interneuron markers. In situ hybridization of SST (A, B’), VIP (C, D’) and NPY (E, F’) is illustrated.
(G-I) Quantitative analysis showed that there was an approximately 10% decrease in the number of SST+ PFC regions after DEX exposure
(G, p<0.01, **). Moreover, VIP and NPY expression detected in the PFC was significantly reduced in DEX-treated mice (H-I, p<0.01, **). The boxed
area represents the PFC, and the areas in (A-F) are enlarged in (A’-F’), respectively. Scale bar = 100 µm. n = 8 in each group. All the data are
presented as mean ± SEM. Data were analyzed using Student’s t-tests. **p < 0.01 (control mice versus DEX-treated mice). Dex, dexamethasone.
PFC, prefrontal cortex.
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neurons and glia. Our previous data also showed that CRS and DEX

treatments upregulate PTEN levels in the PFC, and the associations

between PTEN genetic polymorphisms and the susceptibility to

depression and symptoms of depression have been reported as well

(35, 64–66). There is substantial proof supporting the significance of

PTEN in tumorigenesis, where the mutation and inactivation of

PTEN function can affect cellular proliferation, apoptosis, and

progression through the cell cycle (67). In the developing nervous

system, Pten conditional knockout (CKO) neurons show increased

proliferation, cell volume and apoptosis (68). Similarly, Pten

conditional deletion in astrocyte precursors leads to increased

proliferation (69). In contrast, overexpression of PTEN markedly

inhibits cell proliferation, promotes cell apoptosis, causes cell cycle

arrest at G1 and downregulates p-AKT (67). Thus, we tentatively

conclude that the cell cycle or apoptosis closely orchestrates brain

development and that the control of PTEN by glucocorticoids is the

bridge between them (Figure 6). Moreover, the next step of TUNEL

staining and flow cytometry exploration in DEX-treated mice may

validate our conjectures.

In the exploration of the possible mechanism underlying the

behavioral alterations, we found that the DEX-treated mice

presented decreased GABAergic signaling, which may be
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attributed to the upregulation of PTEN levels induced by DEX.

Critically, the results of our evaluation show that the PV and CR

types, which decreased by approximately 50%, were more

susceptible than other GABAergic markers (decreased by 10%-

15%) to the influence of glucocorticoids. PV interneurons represent

the largest population of GABAergic neurons, constituting around

32-38% of the total GABAergic interneuron population (70), while

CR interneurons constitute a heterogeneous subpopulation of

approximately 10-30% of GABAergic interneurons (71). Notably,

a majority of PV interneurons in the IL of the PFC express GRs,

whereas GR-positive staining is not detected in other interneuron

populations localized in the region (72). In adult individuals,

chronic stress leads to decreased GR levels and enhanced

functioning of infralimbic PV neurons (73), suggesting the

possible involvement of PV neurons in disrupting the negative

feedback loop of the HPA axis under chronic stress. Research

demonstrated a conversion of CR-positive young neurons to GR-

positive ones in the elderly population, suggesting an increase in

sensitivity to corticosteroids (74). This may explain why PV and CR

neurons are most susceptible to DEX.

In contemporary psychiatric studies, the disturbance of

the balance of E/I has garnered significant attention (27, 75).
FIGURE 6

The possible mechanisms of the depression/anxiety model induced by DEX in mice, with the red arrows indicating upregulation or downregulation.
TABLE 1 Correlation between GABAergic neuron densityand behavioral performance in DEX-treated mice.

Behavior

Cell counts

Sucrose Pref-
erence (%)

Tail Suspen-
sion (s)

Forced
Swim (s)

Light-Dark box
Time(s)

Light-Dark
box Number

Open field Dis-
tance (cm)

Gad67+ Cells (per mm2) 0.947* 0.9627* 0.9348* -0.7438* -0.7606* -0.7916*

Reelin+ Cells (per mm2) 0.8072* 0.8504* 0.8912* -0.3439 -0.4552 -0.3647

PV+ Cells (per mm2) 0.836* 0.882* 0.8707* -0.4738 -0.5141 -0.4967

CR+ Cells (per mm2) 0.725* 0.824* 0.8942* -0.7426* -0.7699* -0.8446*

SST+ Cells (per mm2) 0.885* 0.8723* 0.921* -0.6204 -0.6211 -0.7615*

VIP+ Cells (per mm2) 0.9377* 0.8433* 0.7863* -0.3994 -0.4154 -0.4164

NPY+ Cells (per mm2) 0.9325* 0.9554* 0.8939* -0.6284 -0.7678* -0.5699
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Thisinvestigation highlights a decrease in GABAergic interneurons,

signifying a potential increase in the E/I balance, resulting in

amplified neuronal excitability driven by synaptic inputs. Multiple

studies have documented decreased GABA concentrations in the

brains of individuals with MDD over the past three decades (76),

while antidepressant treatments may boost the transmission of

GABAergic synapses (77). Clinical studies have demonstrated that

ketamine and agmatine initially function by selectively blocking a

subset of NMDA receptors on GABAergic interneurons, which

leads to disinhibition of glutamatergic target neurons, a surge in

extracellular glutamate accompanied by elevated glutamatergic

synaptic transmission (78, 79).Our previous results suggest that

the utilization of VO-OHpic, known as a PTEN inhibitor, may offer

therapeutic advantages in the treatment of depression-like

behaviors and PFC neuron atrophy. Thus, it was used to explore:

(i) how the E/I balance is changed by VO-Ohpic, and (ii) whether

VO-Ohpic is able to attenuate GABAergic disfunction and anxiety-

like behaviors in Dex-treated mice. Consequently, further explicit

verification will be sought in forthcoming follow-up research.
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The DEX-treated mice universally presented a reduction in cortical thickness
spanning from rostral to caudal at P77. (A-D) Nissl staining showed that the

mice retained a six-layer cortical structure, intact hippocampal tissue, and an
intact septum after DEX exposure, while the mice treated with DEX presented

a reduced cortex compared with control mice at P77. Scale bars = 200mm.
CC, corpus callosum; Ctx, cerebral cortex; LV, lateral ventricles; Se, septum;

St, striatum; Hi, hippocampus; S1FL, primary somatosensory cortex

of forelimb.
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