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machine learning
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1Department of Ultrasound, Longyan First Affiliated Hospital of Fujian Medical University,
Longyan, China, 2Department of Information, Longyan First Affiliated Hospital of Fujian Medical
University, Longyan, China, 3School of Information Engineering, Minxi Vocational & Technical College,
Longyan, China
Introduction: The detection rate of benign thyroid nodules is increasing every

year, with some affected patients experiencing symptoms. Ultrasound-guided

thermal ablation can reduce the volume of nodules to alleviate symptoms. As the

degree and speed of lesion absorption vary greatly between individuals, an

effective model to predict curative effect after ablation is lacking. This study

aims to predict the efficacy of ultrasound-guided thermal ablation for benign

thyroid nodules using machine learning and explain the characteristics affecting

the nodule volume reduction ratio (VRR).

Design: Prospective study

Patients: The clinical and ultrasonic characteristics of patients who underwent

ultrasound-guided thermal ablation of benign thyroid nodules at our hospital

between January 2020 and January 2023 were recorded.

Measurements: Six machine learning models (logistic regression, support vector

machine, decision tree, random forest, eXtreme Gradient Boosting [XGBoost], and

Light Gradient BoostingMachine [LGBM]) were constructed to predict efficacy; the

effectiveness of each model was evaluated, and the optimal model selected.

SHapley Additive exPlanations (SHAP) was used to visualize the decision process

of the optimal model and analyze the characteristics affecting the VRR.

Results: In total, 518 benign thyroid nodules were included: 356 in the

satisfactory group (VRR ≥70% 1 year after operation) and 162 in the

unsatisfactory group. The optimal XGBoost model predicted satisfactory

efficacy with 78.9% accuracy, 88.8% precision, 79.8% recall rate, an F1 value of

0.84 F1, and an area under the curve of 0.86. The top five characteristics that
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affected VRRs were the proportion of solid components < 20%, initial nodule

volume, blood flow score, peripheral blood flow pattern, and proportion of solid

components 50–80%.

Conclusions: The models, based on interpretable machine learning, predicted

the VRR after thermal ablation for benign thyroid nodules, which provided a

reference for preoperative treatment decisions.
KEYWORDS

artificial intelligence, benign thyroid nodule, machine learning, thyroid nodules, thermal
ablation, ultrasound-guided, volume reduction rate
1 Introduction

With advancements in imaging technology, the detection rate of

thyroid nodules has increased annually, with the detection of

benign thyroid nodules exceeding 90% (1). Benign thyroid

nodules can cause local eminences that affect appearance and

require intervention when patients experience compression or

anxiety. Ultrasound-guided thermal ablation has been shown to

shrink nodules and preserve thyroid function (2) and is

recommended in the relevant treatment guidelines (3–5). Volume

reduction ratio (VRR) is a direct index for evaluating the clinical

efficacy of ablation (6–8). The degree and speed of lesion absorption

after ablation varies greatly among individuals. Additionally,

effective predictive models that analyze the factors influencing the

efficacy of benign thyroid nodule ablation are limited.

Since the advent of the big data era, machine learning has

gradually become widely used in the medical field owing to its huge

advantages in analyzing and processing massive datasets, including

disease diagnoses, drug production, and medical data analyses (9).

A previous study showed that machine learning models based on

the ultrasonic characteristics of benign thyroid nodules can predict

radiofrequency ablation (RFA) efficacy (10) and assist clinicians in

formulating appropriate treatment plans.

Nevertheless, to our knowledge, no studies have been conducted

on the prediction of efficacy for patients with benign thyroid

nodules using models based on clinical and ultrasonic

characteristics. The traditional machine learning model often has

“black box” characteristics; therefore, it is difficult to explain the

internal mechanism of the model and the basis of the prediction

results. Therefore, this study aimed to build several machine

learning models based on multi-directional data, identify a

suitable prediction model, analyze the characteristics affecting

therapeutic outcomes through interpretable technology, and

provide a reference for clinical decision-making.
02
2 Materials and methods

2.1 Patient data and ethical approval

The clinical and ultrasonic image data of patients who

underwent RFA or microwave ablation (MWA) for benign

thyroid nodules under ultrasound guidance at the Longyan First

Hospital between January 2020 and January 2023 were analyzed.

The inclusion criteria were as follows: 1) thyroid ultrasonography

showing thyroid nodules and pathological results of two fine needle

aspiration biopsies showing benign nodules; 2) maximum diameter

of thyroid nodule ≥2 cm, accompanied by compression symptoms

or cosmetic problems; 3) voluntary ablation treatment; and 4) 12-

month outpatient follow-ups.

The exclusion criteria were the following: 1) previous history of

radioactive iodine therapy or thermal ablation therapy; 2)

incomplete or missing clinical and follow-up data; 3) ablation

lesion with two or more fused nodules, and 4) poor image

quality, making evaluations impossible.

All patients provided informed consent for the use of their medical

record data. The study was approved by the Medical Ethics Committee

of the Longyan First Affiliated Hospital of Fujian Medical University

(approval number: [2020] Ethics Committee Approval for Scientific

Research No. 042) and the Chinese Clinical Registration Center

(registration number: ChiCTR2100041923). The research process

was undertaken in line with the Helsinki Declaration.
2.2 Ultrasound-guided thermal ablation of
thyroid nodules

An experienced interventional ultrasound physician performed

the ablation procedures using ultrasound guidance during the

operation. Routine disinfection, covering, and local infiltration
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anesthesia were performed. The isolation zone was formed by

injecting a 20–40 mL mixture of 0.5% lidocaine hydrochloride

and normal saline between the thyroid membrane and the

surrounding structures. The set power range was 30–35 W.

For solid thyroid nodules, the “moving shooting” technique for

layer-by-layer ablation of nodules and “leverage pry-off” method to

assist ablation for nodules in the dangerous triangle area were used.

After ablation, contrast-enhanced ultrasound was conducted to

perform supplementary ablation of the remaining lesions in the

perfusion area.

Cystic nodules were treated as solid nodules after the cyst fluid

was extracted from them; thermal ablation and postoperative

management were performed according to the steps for solid

nodules (Figure 1).
2.3 Data collection

Patient demographic information, including name, sex, and age;

previous and present history, including whether accompanied by
Frontiers in Endocrinology 03
Hashimoto’s thyroiditis (HT); test data including routine blood,

coagulation function, and thyroid function; and ultrasonic

characteristics were collected.

The features were independently extracted from ultrasound

images by two senior sonographers. For each patient, the

extracted information of the largest nodule was used for the

analysis. Any differences were resolved through negotiation; if

required, another senior physician was invited to discuss any

unresolved differences to reach a consensus. Eight signs were

analyzed: 1) the positions of the nodules, divided into left lobe,

isthmus, and right lobe; 2) the degree of risk of the nodule location,

according to the anatomical position and relationships to the

surrounding organs, was divided into high risk and not high risk.

High risk was defined as a distance of less than 2 mm between the

nodule edge and the trachea or esophagus (11).; 3) proportion of

solid components: < 20%, 20%–50%, 50%–80%, and ≥ 80%; 4) echo,

including hypoechoic, medium echoic, and hyperechoic; 5) initial

nodule volume (cm³) = 0.52 × upper and lower diameters (cm) ×

left and right diameters (cm) × anteroposterior diameter (cm); 6)

blood flow distribution pattern was divided into peripheral
FIGURE 1

Procedure of ultrasound-guided thermal ablation of thyroid gland. A1–A3: Ablation of solid nodules. The isolation zone (blue 5-pointed star) is
established, and the “moving shooting technique” is used for ablation from deep to shallow. B1–B3: Ablation of high-risk nodules. (B1) A spacer
(white arrow) is injected between the thyroid and the trachea to separate the thyroid from the tissue surrounding the danger triangle. (B2) When
ablating lesions near the danger triangle, the “leverage pry-off method” is used to lift the needle and pull the tissue upward (dashed arrow) to
prevent heat damage to the surrounding tissue. (B3) Ablation of the lesion layer-by-layer. C1–C3: Cystic nodular ablation. (C1) A 50 mL syringe
needle is inserted into the cystic area of the nodules for fluid extraction. (C2) The nodules are considered solid nodules after drainage. (C3) Ablation
is performed according to the procedure for solid nodules.
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dominant, internal dominant, and both peripheral and internal; 7)

blood flow score on a five-point scale: 0 points (no color signal

observed); 1 point (small amount of speckled color signal); 2 points

(color signal<25%); 3 points (color signals account for 25–50%); 4

points (color signal>50%); and 8) calcification and strong echo

spots larger than 2 mm, accompanied by sound shadows. Personal

information irrelevant to the predictions was excluded from the

study. A total of 55 clinical and ultrasonographic features

were analyzed.
2.4 Efficacy evaluation criteria

In this study, the average VRR after 12 months of ablation was

73.75 ± 23.3%, therefore we used 70% as the cut off for a satisfactory

result. One year after the operation a VRR ≥70% was defined as

satisfactory and <70% was defined as unsatisfactory. VRR was

calculated using the following formula: VRR = (initial nodular

volume − ablation volume)/initial nodular volume ×100%.
2.5 Data and preprocessing

There were 518 benign thyroid nodules: 356 with a satisfactory

curative effect and 162 with an unsatisfactory curative effect. First,

features were cleaned and classified variables (such as sex) were

converted into virtual variables. Missing data were filled with the

K-nearest neighbor. Then the data was normalized and

standardized. The standardized data were screened out by single

factor correlation to screen out the top 10 features that influenced

the prediction results. The sample was divided into training and test

datasets at a ratio of 7:3, and each feature was standardized. The

Synthetic Minority Oversampling Technique was used to

accommodate for the imbalance of training data.
2.6 Model construction

The tools used in the model-building process were Python 3.8

and scikit-learn1.2.2. (Python Software Foundation, Beaverton, OR,

USA). Logistic regression, support vector machine, decision tree,

random forest (RF), eXtreme Gradient Boosting (XGBoost), and

Light Gradient Boosting Machine (LGBM) algorithms were used to

construct a predictive model for satisfactory efficacy after ablation.

The tuning of the model evaluated all possible combinations of

hyperparameters using the grid search method and determined the

best hyperparameter to establish the area under the curve (AUC) of

the receiver operating characteristic (ROC) for each model. Test

data were used to evaluate the model performance, including

accuracy, precision, recall rate, F1 score, and AUC. The AUC was

used as the main evaluation indicator to select the best-performing

prediction model. The SHapley Additive exPlanations (SHAP)

method was used to quantify the contribution of each feature for

the optimal model output to achieve model interpretability and

analyze the predictors that affected the VRR. The flow chart of this

method is illustrated in Supplementary Figure S1.
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2.7 Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics 26

software (IBM Corp., Armonk, NY, USA). All measurement data

are described as mean ± standard deviation (x̄ ± SD). Comparisons

between groups were performed using the independent sample

t-test or the Mann–Whitney U test. Count data are expressed as

an example (%), and the chi-square test or Fisher’s exact probability

method was used for comparisons between groups. Statistical

significance was set at P < 0. 05.
3 Results

3.1 Baseline patient characteristics

The baseline patient characteristics are presented in Table 1. A total

of 518 nodules were included. The satisfactory and unsatisfactory

treatment groups comprised 356 and 162 patients, respectively. The

mean age of the patients was 47.42 ± 12.00 years. The average initial

nodule volume was 12.00 ± 12.64 mL. The average VRR at 12 months

was 73.75 ± 23.3%. There were no significant differences in age, body

mass index, ablation type, nodule location, calcification, combination
TABLE 1 Baseline data of patients and nodules.

Characteristic Satisfactory
group (n=162)

Unsatisfactory
group (n=356)

P-value

Age (years) 46.66 ± 12.33 47.77 ± 11.86 0.334

Sex/n (%) 0.006

Male 14(8.6%) 64(18.0%)

Female 148(91.4%) 292(82.0%)

BMI (kg/m2) 22.98 ± 2.89 23.18 ± 3.10 0.530

Ablation type/n (%) 0.384

MWA 111(68.5%) 230(64.6%)

RFA 51(31.5%) 126(35.4%)

Initial nodule
volume (ml)

14.86 ± 12.20 10.70 ± 12.65 0.001

Nodule location/n (%) 0.855

Left lobe 77(47.5%) 170(47.8%)

Right lobe 80(49.4%) 178(50.0%)

Isthmus 5(3.1%) 8(2.2%)

Proportion of
solid components

<0.001

<20% 1(0.6%) 58(16.3%) <0.05

20%–50% 11(6.8%) 65(18.3%) <0.05

50%–80% 46(28.4%) 80(22.5%) <0.05

≥80% 104(64.2%) 153(43.0%) >0.05

Echo/n (%) 0.045

(Continued)
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with Hashimoto’s thyroiditis, or thyroid stimulating hormone

(thyrotropin), free triiodothyronine, or free thyroxine levels between

the groups (P>0.05). There were significant differences between the two

groups regarding sex, initial nodule volume, nodule echo, proportion of

solid components, risk degree for nodule location, blood flow

distribution pattern, and blood flow score (P<0.05).
3.2 Efficiency evaluation of the model

The confusion matrix and ROC curve of the six machine

learning models in the test set are shown in Figure 2, and the

prediction efficiencies are listed in Table 2. The XGBoost model

exhibited the highest prediction accuracy (78.9%), F1 score (0.84),

and AUC value (0.86).
3.3 Feature importance analysis

Figure 3 shows the feature importance analysis of the SHAP

algorithm for the optimal XGBoost model. The importance of the

Shapley feature is measured by the average Shapley absolute value –

the larger the value, the greater the contribution to the model

prediction results. Among them, the proportion of solid

components < 20% was the most important feature affecting VRR

≥70%, followed by volume, blood flow score, peripheral blood flow,

and the proportion of solid components 50%–80%; the influence of

features on the model output decreases in turn.

The SHAP summary diagram reflects the contribution of each

example to the optimal model output. The model prediction for

small nodules was more inclined to a satisfactory curative effect,

while that for the large nodules was more inclined to an

unsatisfactory curative effect, as shown in Figure 4; however,

some small nodules showed an unsatisfactory curative effect. A

high thyroid stimulating hormone level, proportion of solid

components < 20%, male sex, peripheral blood flow distribution,
TABLE 1 Continued

Characteristic Satisfactory
group (n=162)

Unsatisfactory
group (n=356)

P-value

Hypoechoic 55(34.0%) 137(38.5%) <0.05

Medium echoic 88(54.3%) 199(55.9%) >0.05

Hyperechoic 19(11.7%) 20(5.6%) >0.05

Risk degree of nodule
location/n (%)

0.021

High risk 60(37.0%) 96(27.0%)

Not high risk 102(63.0%) 260(73.0%)

Blood flow
distribution pattern

<0.001

Peripheral
dominant

15(9.3%) 99(27.8%) <0.05

Internal dominant 9(5.6%) 9(2.5%) >0.05

Both peripheral
and internal

138(85.2%) 248(69.7%) <0.05

Blood flow score 2.24 ± 0.81 1.79 ± 0.83 <0.001

Calcification/n (%) 0.105

No 13(8.0%) 16(4.5%)

Yes 149(92.0%) 340(95.5%)

Combined with HT/
n (%)

0.384

No 145(89.5%) 327(91.9%)

Yes 17(10.5%) 29(8.1%)

TSH/(mIU/L) 1.23 ± 1.10 1.37 ± 1.15 0.170

FT3/(pmol/L) 5.58 ± 1.24 5.65 ± 1.23 0.936

FT4/(pmol/L) 15.60 ± 5.14 15.73 ± 5.13 0.450
BMI, body mass index; MWA, microwave ablation; RFA, radiofrequency ablation; HT,
Hashimoto’s thyroiditis; TSH, thyroid stimulating hormone (thyrotropin); FT3, free
triiodothyronine; FT4, free thyroxine. This table only lists some of the features used in the
test; 55 features were used in the actual test.
FIGURE 2

Confusion matrix and ROC curve of six machine learning prediction models. (A-F) indicate the confusion matrix of the logistic regression (LR),
support vector machine (SVM), decision tree (DT), random forest (RF), extreme Gradient Boosting (XGBoost), and eXtreme Gradient Boosting (LGBM);
respectively. (G) ROC curves and AUC values of six machine learning models. AUC, area under the curve of the receiver operating
characteristic (ROC).
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not high-risk, and peripheral and internal blood flow distribution

were more likely to predict a satisfactory curative effect. A

proportion of solid components ≥80%, proportion of solid

components 50%–80%, and a higher blood flow score tended

towards unsatisfactory.
Frontiers in Endocrinology 06
4 Discussion

In this study, six machine-learning methods were used to

construct models to predict the curative effect of benign thyroid

nodule ablation. The accuracy and AUC values ranged from 69.2%

to 78.9% and 0.77 to 0.86, respectively. Among them, the XGBoost

algorithm had the highest AUC value, confirming that machine

learning predicted the curative effect.

In previous studies, traditional statistical methods, such as logistic

regression, were usually employed to predict the curative effect of

thyroid nodule ablation (12, 13). The advantage of traditional

statistical methods is that they provide an interpretable and

verifiable way to analyze data, but they require high data, meeting

certain assumptions and conditions, and may not perform well on

nonlinear and high-dimensional data. The advantage of machine

learning is that it can handle large-scale and high-dimensional data,

automatically adjust the model according to changes in data, and

improve the accuracy of prediction and analysis (14).
TABLE 2 Predictive effectiveness for the six types of machine learning.

Index LR SVM DT RF XG
Boost

LGBM

Accuracy 72.4% 69.2% 74.4% 75.0% 78.9% 72.4%

Precision 88.4% 87.7% 93.7% 88.0% 88.8% 90.2%

Recall rate 69.7% 65.1% 67.9% 74.3% 79.8% 67.9%

F1 score 0.78 0.75 0.79 0.81 0.84 0.77

AUC 0.77 0.81 0.81 0.84 0.86 0.82
LR, logistic regression; SVM, support vector machine; DT, decision tree; RF, random forest;
XGBoost: extreme Gradient Boosting; LGBM, Light Gradient Boosting Machine; AUC, area
under curve of the receiver operating.
FIGURE 3

Feature importance diagram of the optimal model. TSH, thyroid stimulating hormone (thyrotropin).
FIGURE 4

Feature SHAP diagram of the optimal model. The horizontal axis marks the SHAP value. A positive value indicates positive prediction whereas a
negative value indicates negative prediction. The vertical axis shows the features included in the model, ranked in descending order of importance
according to their impact on the predicted results. Each point in the figure represents a sample, and the color of the point represents the original
value of the feature. The closer the point is to red, the larger the value; the closer the point is to blue, the smaller the value. SHAP, SHapley Additive
exPlanations; TSH, thyroid stimulating hormone (thyrotropin).
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Negro et al. (8) first used machine learning to build a model based

on ultrasonic characteristics to identify benign thyroid nodules with

12-month efficacy ≥50% after ablation. The prediction accuracy of

the model reached 85%. In this study, clinical features were also

included, and various algorithms were used to build models. XGBoost

had the best performance and the highest AUC. XGBoost is an

algorithm based on the decision tree developed by Chen Tianqi et al.

(15), which can upgrade multiple weak predictors into a stronger

predictor. Because of its high accuracy, strong flexibility, and over-

fitting, XGBoost was considered a competitive alternative to

regression analysis and has been successfully used to predict

various clinical results (16, 17). The disadvantage was that it was

time-consuming and space-complex. In addition, LGBM and RF also

showed superior accuracy and discrimination. Therefore, for those

who need rapid modeling and prediction, and the dataset is not very

large, RF or LGBM can be considered.

However, machine learning models often have the “black box”

characteristic, and it was difficult to explain the internal mechanism

of the model and the basis of prediction results. SHAP is a method

based on game theory, which can quantify the contribution of each

feature to the prediction results and provide an intuitive visual

display (18). In this study, the XGBoost model was explained by

SHAP. The important characteristics that affected VRR ≥70% were

the proportion of solid components < 20%, initial nodule volume,

blood flow score, peripheral blood flow, and the proportion of solid

components 50%–80%.

The Shapley diagram demonstrated that the proportion of solid

components < 20% had the greatest influence on the model output.

Some studies have confirmed that the VRR of cystic nodules is

significantly higher than that of solid nodules (19, 20). This is

related to a reduction in nodule volume immediately after fluid

aspiration. In addition, the initial nodule volume also had a

significant influence on the output. Some studies have reported

that the initial nodule volume is directly related to the VRR and that

nodules with large initial volumes have a small VRR (21–23). There

are two main reasons for the poor VRR of the greater tubercle: 1)

The ablation reduction process involves the removal of degenerative

and necrotic tissue (24); there are more degenerative and necrotic

tissues in the greater tubercle, a long removal time, and slow

tubercle shrinkage. 2) The larger the nodules, the closer the

relationship with the surrounding vital organs and tissues, the

wider the safe area preserved around the nodules during ablation,

and the higher the probability of regeneration (25). Therefore, large

nodules usually require supplementary ablation (26) or even

secondary operation (27). However, some small nodules have an

unsatisfactory curative effect, which may be related to the fact that

the ablation range of small nodules was too large, exceeding the

initial nodule volume, resulting in an insignificant reduction in

postoperative VRR.

In this study, the higher the blood flow score, the more likely it

was to predict an unsatisfactory curative effect; this was considered

to be related to the “heat sink effect” caused by abundant blood flow

around the lesion during ablation (28). In addition, a peripheral

blood flow distribution pattern tended to predict a satisfactory

curative effect, which may be because the blood flow around the

nodule is beneficial to clear the necrotic tissue of the ablation focus.
Frontiers in Endocrinology 07
Generally, during the ablation of high-risk nodules, the operator

narrows the ablation range to avoid damaging the surrounding

important structures, resulting in incomplete ablation and in situ

recurrence (29). In this study, the nodules in high-risk locations had

little negative influence on the VRR, likely related to the “lever

separation technique” and “fluid isolation” methods adopted in the

ablation strategies to improve efficacy and reduce the occurrence of

complications (30).

This study had several limitations. First, 518 samples may not

optimally train a machine learning model, and there was no

external verification. Second, the main features that had a

significant impact on the output came from ultrasonic images,

which were extracted manually, and ultrasound omics was not

applied to extract and analyze additional image features. In future

studies, we will standardize image storage and use ultrasound omics

to extract and analyze ultrasonic image features.
5 Conclusion

An interpretable machine learning model was developed to

predict the efficacy of benign thyroid nodule ablation. This was a

preliminary exploration of machine learning with a gap in actual

clinical applications. Therefore, more in-depth research should be

conducted to implement machine-learning models that can serve

clinics more accurately.
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