
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Caixia Sun,
Nanyang Technological University, Singapore

REVIEWED BY

Mingming Wang,
Jiangsu University, China
Zhai Weijie,
First Affiliated Hospital of Jilin University,
China

*CORRESPONDENCE

Jianguo Shi

sjg_cool@163.com

Shaohua Zhang

22zsh@163.com

†These authors have contributed
equally to this work

RECEIVED 13 June 2024
ACCEPTED 23 December 2024

PUBLISHED 14 January 2025

CITATION

Zhang Y, Ou G, Peng L, Pan J, Zhang S and
Shi J (2025) Genetic association analysis
of lipid-lowering drug target genes
in chronic kidney disease.
Front. Endocrinol. 15:1434145.
doi: 10.3389/fendo.2024.1434145

COPYRIGHT

© 2025 Zhang, Ou, Peng, Pan, Zhang and Shi.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 14 January 2025

DOI 10.3389/fendo.2024.1434145
Genetic association analysis of
lipid-lowering drug target genes
in chronic kidney disease
Yi Zhang1,2†, Guangyang Ou3†, Lei Peng4†, Jian Pan4,
Shaohua Zhang4* and Jianguo Shi1*

1Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical
University, Jinzhou, Liaoning, China, 2Department of Urology, The Third Affiliated Hospital of Jinzhou
Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China, 3Department of Cardiology,
Hunan University of Chinese Medicine, Changsha, China, 4Motor Robotics Institute (MRI), South China
Hospital, Health Science Center, Shenzhen University, Shenzhen, China
Objective: The impact of lipid-lowering medications on chronic kidney disease

(CKD) remains a subject of debate. This Mendelian randomization (MR) study

aims to elucidate the potential effects of lipid-lowering drug targets on

CKD development.

Methods: We extracted 11 genetic variants encoding targets of lipid-lowering

drugs from published genome-wide association study (GWAS) summary

statistics, encompassing LDLR, HMGCR, PCSK9, NPC1L1, APOB, ABCG5/

ABCG8, LPL, APOC3, ANGPTL3, and PPARA. A Mendelian randomization

analysis was conducted targeting these drug-related genes. CKD risk was

designated as the primary outcome, while estimated glomerular filtration rate

(eGFR) and blood urea nitrogen (BUN) were assessed as secondary outcomes.

Additionally, mediation analysis was performed utilizing 731 immune cell

phenotypes to identify potential mediators.

Results: The meta-analysis revealed a significant association between ANGPTL3

inhibitors and a reduced risk of CKD (OR [95% CI] = 0.85 [0.75-0.96]). Conversely,

LDLR agonists were significantly linked to an increased risk of CKD (OR [95% CI] =

1.11 [1.02-1.22]). Regarding secondary outcomes, lipid-lowering drugs did not

significantly affect eGFR and BUN levels. Mediation analysis indicated that the

reduction in CKD risk by ANGPTL3 inhibitors was mediated through modulation

of the immune cell phenotype, specifically HLA-DR on CD14+ CD16+

monocytes (Mediated proportion: 4.69%; Mediated effect: -0.00899).

Conclusion: Through drug-targeted MR analysis, we identified a causal

relationship between lipid-lowering drug targets and CKD. ANGPTL3 and LDLR

may represent promising candidate drug targets for CKD treatment.
KEYWORDS

chronic kidney disease, lipid-lowering drug, lipids, Mendelian randomization analysis,
estimated glomerular filtration rate
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1 Introduction

Chronic kidney disease (CKD) is characterized by a glomerular

filtration rate (GFR) falling below 60mL/min per 1.73 m² without clear

cause, or the presence of markers of kidney damage, such as

proteinuria, for a duration of three months or more (1).

Epidemiological data reveal that CKD affects over 10% of the global

population, with approximately 9.6% of non-hospitalized adults in the

United States afflicted by this condition (2–4). Similar prevalence rates

have been observed in Europe, Australia, and Asia (5–7). This

widespread incidence of CKD imposes substantial economic

burdens, with treatment and care costs surpassing those of many

other prevalent diseases (8). CKD is intricately linked with

cardiovascular risk factors, including hyperlipidemia, diabetes, and

hypertension. Research has established a frequent co-occurrence of

CKD and cardiovascular diseases, often referred to as cardiorenal

syndrome. Both conditions are underpinned by shared pathogenic

mechanisms, such as endothelial dysfunction, oxidative stress, and

systemic inflammation of the capillary walls in CKD patients (9, 10).

Thus, CKD and cardiovascular diseases are interconnected through

common risk factors. Lipids play a crucial role in this association.

Treatments for hyperlipidemia commonly include nicotinic

acid, statins, fibrates, and newer lipid-lowering drugs (11–14).

Extensive research has been conducted on statins and their

relationship with CKD or kidney function, yet these studies

remain controversial. Some trials have confirmed renal protective

effects and reduced proteinuria (15, 16), while other RCTs show no

effect (17). However, the latest meta-analysis of statins and CKD

included 33 RCTs, finding no significant differences in estimated

glomerular filtration rate (eGFR) and serum creatinine levels

between the statin and control groups (18). Additionally, lipid-

lowering drugs are not limited to statins; non-statin lipid-lowering

drugs lack large-scale randomized controlled trials with CKD, and

there is still a need for systematic research on whether lipid-

lowering drugs directly affect the progression of CKD and levels

of eGFR and blood urea nitrogen (BUN).

With the advent of genome-wide association studies (GWAS),

Mendelian randomization (MR) has emerged as a potent alternative

to randomized controlled trials (RCTs) for elucidating causal

relationships. The random allocation of genetic variations (alleles)

during meiosis ensures that participants in MR studies are

effectively “randomized” based on their alleles. This process

mirrors the random assignment in RCTs, where individuals are

allocated to either the treatment or control group (19, 20). Such

inherent randomization in MR studies significantly reduces the

influence of confounding factors, offering a robust approach

compared to other research methodologies. Drug-targeted MR

analysis has gained traction as a method for inferring the effects

of drugs targeting protein-coding genes—such as antagonists,

agonists, or inhibitors—on disease risk (21). This approach

significantly enhances the evaluation of drug therapy potentials

and facilitates the development of novel pharmaceuticals.

We employed drug-targeted MR analysis to investigate the

impact of lipid-lowering drugs on CKD and to explore the
Frontiers in Endocrinology 02
potential effects of lipid-lowering drug targets on eGFR

and BUN.
2 Materials and methods

2.1 Study design

This investigation employs a two-sample Mendelian

randomization approach to elucidate the genetic interplay between

lipid-lowering drug target genes and CKD. MR relies on three key

assumptions: 1) the genetic instrument is strongly associated with the

exposure, 2) it is independent of confounders, and 3) it affects the

outcome only through the exposure, not via other pathways (22, 23).

A schematic overview of the study design is presented in Figure 1.
2.2 Genetic variant selection

Adhering to the latest dyslipidemia treatment guidelines, we

selected a range of widely used lipid-lowering drugs and the most

recent therapeutic methods. These included statins, ezetimibe,

PCSK9 inhibitors, bile acid sequestrants, mipomersen, fibrates,

ANGPTL3 inhibitors, and antisense oligonucleotides targeting

apolipoprotein C-III (APOC3) mRNA (24, 25). Utilizing the

DrugBank database, we identified the genes encoding the

pharmacological targets of these drugs. These target genes were

classified into two groups: those that reduce LDL cholesterol (i.e.,

LDLR, HMGCR, NPC1L1, PCSK9, APOB, ABCG5, and ABCG8)

and those that lower triglycerides (i.e., LPL, APOC3, ANGPTL3,

and PPARA), as detailed in Table 1.

Summary data for LDL-C and TG levels were derived from two

extensive GWAS meta-analyses (26). Instrumental variables

representing each lipid-lowering drug target were employed to

model the effects of these interventions on lipid levels. Single

nucleotide polymorphisms (SNPs) located within ±100 kb of the

drug target loci and significantly associated with LDL-C or TG

levels (P < 5×10−8) were selected as instrumental variables. To

mitigate potential bias, SNPs were filtered based on an effect allele

frequency (eaf) > 0.01. To minimize the impact of strong linkage

disequilibrium, a linkage disequilibrium(LD) threshold (r2 < 0.3)

was set. To avoid potential confounders, we examined each relevant

SNP in the LDtrait Tool database to assess confounding factors

associated with it (P <5e-8) (27, 28), such as age, hypertension,

diabetes, proteinuria, and environmental risk factors like dietary salt

intake and pollution (29), excluding SNPs highly correlated with

confounding factors.
2.3 Outcome

We utilized coronary heart disease (CHD) and CKD as outcomes

for our drug-targeted MR analysis. CHD served as a positive control

dataset to validate the feasibility and effectiveness of the lipid-lowering

drug targets. The CHD dataset was sourced from GWAS summary
frontiersin.org

https://doi.org/10.3389/fendo.2024.1434145
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1434145
statistics, comprising 184,305 participants, including 60,801 cases and

123,504 controls (30). For CKD, the primary outcome, instrumental

variables’ summary statistics were obtained from the latest Chronic

Kidney Disease Genetics Consortium (CKDGen Consortium)

database (31), incorporating relevant GWAS datasets from FinnGen

and the ebi database (32). Secondary outcomes included eGFR and

BUN, also from the CKDGen Consortium (31). Detailed information

can be found in Supplementary Table 1.

To investigate the mediating role of immune cells, we accessed

comprehensive GWAS data on immunity. Summary statistics for each

immune trait were sourced from the publicly available GWAS Catalog,

with accession numbers ranging fromGCST9001391 to GCST0002121

(33). We incorporated a total of 731 immunophenotypes, spanning
Frontiers in Endocrinology 03
various categories: absolute cell counts (n = 118), median fluorescence

intensities (MFI) representing surface antigen levels (n = 389),

morphological parameters (MP) (n = 32), and relative cell counts (n

= 192).

2.4 Estimation of causal effects

We estimated the causal effects between drug targets and CKD

using the inverse variance-weighted method (IVW). Additionally,

additional analyses were conducted using the weighted median and

weighted model averaging (34–37). In all three analyses, statistically

significant IVW results combined with consistent directions

provided sufficient evidence of causal effects.
FIGURE 1

Flowchart of the study. (CKDGen, Chronic Kidney Disease Genetics Consortium; FinnGen, FinnGen Study; EBI, European Bioinformatics Institute).
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2.5 Meta-analysis

The odds ratio (OR) served as the primary combined statistic (38).

Studies exhibiting significant heterogeneity, defined as I² > 50%, were

analyzed using a random effects model. Conversely, studies with I² <

50% were considered homogeneous and analyzed using a fixed effects

model. Data calculations were performed using the ‘meta’ package in R

Studio, and the plots were generated using GraphPad Prism 9.
2.6 Quality controls

Heterogeneity was evaluated using both the MR Egger and Inverse

Variance Weighted (IVW) methods. Cochran’s Q test assessed the

heterogeneity of genetic instruments, with a p-value > 0.05 indicating

no significant heterogeneity. The MR Egger regression was employed
Frontiers in Endocrinology 04
to evaluate horizontal pleiotropy, where a p-value > 0.05 suggested no

evidence of pleiotropy (39, 40). To ensure result robustness, a leave-

one-out analysis was conducted, sequentially removing each SNP to

assess the stability of the IVW results.
2.7 Mediation MR analysis

Given the intricate relationship between the immune system

and CKD progression, it is plausible that immune cells mediate the

effects of lipid-lowering drugs on CKD. We employed a “two-

sample” MR approach to evaluate the potential mediating effects of

731 immune cell phenotypes on CKD progression. This method,

compared to multivariable MR approaches, reduces bias due to high

linkage disequilibrium (LD) between genetic variants. All statistical

analyses were conducted using RStudio software.
TABLE 1 Characteristics of Lipid-lowering drug target genes.

Primary pharma-
cological action

Drug class Related
Drugs

Drug targets Target
genes

Gene region
(GRCh3.p13
by NCBI Gene)

SNPs

Reduced LDL-C Key regulator RGX-501a LDL Receptorb LDLR chr19:
11200139–11244496

45

HMG-CoA
reductase inhibitors

Lovastatin
Simvastatin
Atorvastatin
Rosuvastatin
Pravastatin
Fluvastatin

HMG-CoA reductase HMGCR chr5:
74632993–74657941

19

Proprotein convertase
subtilisin/kexin type
9 inhibitors

Alirocumab
Evolocumab

Proprotein convertase subtilisin/kexin
type 9

PCSK9 chr1:
55505221–55530525

33

Cholesterol absorption
inhibitors

Ezetimibe Niemann-Pick C1-like protein 1 NPC1L1 chr7:
44552134–44580929

6

Antisense oligonucleotide
targeting ApoB-
100 mRNA

Mipomersen Apolipoprotein B-100 APOB chr2:
21224301–21266945

31

Bile acid sequestrants Colesevelam
Colestipol
Cholestyramine

ATP Binding Cassette Subfamily G
Member 5/ATP Binding Cassette
Subfamily G Member 8

ABCG5/
ABCG8c

chr2: 44039611–
44065978
/44066110–44110127

20/19

Reduced TG Key regulator Lipoprotein Lipaseab LPL chr8:
19796764–19824770

50

Antisense oligonucleotide
targeting ApoC-
III mRNA

Volanesorsen Apolipoprotein C-III APOC3 chr11:
116700623–
116703788

36

Angiopoietin-like 3
Inhibitor

Evinacumab Angiopoietin-related protein 3 ANGPTL3 chr1:
63063191–63071984

21

peroxisome proliferator
receptor alpha activators

Fenofibrate
Gemfibrozil
Bezafibrate
Clofibrate

Peroxisome proliferator-activated
receptor-a

PPARA chr22:46546429–
46639653

2

fronti
SNPs, single-nucleotide polymorphisms, chr chromosome, mRNA messenger ribonucleic acid, LDL-C low-density lipoprotein cholesterol, TG triglyceride;
a : RGX-501 is not yet approved for marketing and is being studied for the treatment of homozygous familial hypercholesterolemia; b : LDL receptor and lipoprotein lipase are central players in
LDL-C and TG metabolisms and are extensively involved in the lipid-lowering action; c : Drug targets of bile acid sequestrants were not specified in the Drug Bank. They were identified from a
previous study.
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3 Results

3.1 Positive control analysis

We identified genetic variants linked to various lipid-lowering

drug targets, including LDLR agonists, HMGCR inhibitors,

NPC1L1 inhibitors, PCSK9 inhibitors, APOB inhibitors, and

ABCG5 agonists targeting LDL-C, as well as APOC3 inhibitors,

LPL agonists, ANGPTL3 inhibitors, and PPARA agonists targeting

TG. In the MR analysis evaluating CHD as the outcome, 11 drug-

related target points significantly reduced the risk of CHD, as

anticipated (Figure 2).
3.2 The causal relationship between drug
targets and primary outcomes

According to the IVW results, ANGPTL3 inhibitors were

significantly associated with a reduced risk of CKD in the

CKDGen database (OR [95% CI] = 0.826 [0.714, 0.955], p =

0.010). Conversely, in the FinnGen database, LDLR agonists (OR

[95% CI] = 1.394 [1.036, 1.875], p = 0.028) and PCSK9 inhibitors

(OR [95% CI] = 1.404 [1.098, 1.795], p = 0.007) were significantly

associated with an increased risk of CKD. The results of the MR

analysis are summarized in Table 2.

A meta-analysis of the MR results from the three databases

revealed a significant association between LDLR agonists and an
Frontiers in Endocrinology 05
increased risk of CKD (OR [95% CI] = 1.11 [1.02 - 1.22]), as well as

a significant association between ANGPTL3 inhibitors and a

reduced risk of CKD (OR [95% CI] = 0.85 [0.75-0.96]). However,

when aggregating data from the three databases, PCSK9 inhibitors

(OR [95% CI] = 1.16 [0.90-1.50]) and other drug targets were not

significantly associated with the risk of CKD(Figure 3).
3.3 The causal relationship between drug
targets and secondary outcomes

In the MR analysis with eGFR and BUN as outcomes, although

multiple drug targets showed associations with these outcomes,

their impact was negligible (Supplementary Figures 9, 10).
3.4 Sensitivity analysis

Cochrane’s Q and MR Egger regression equations were

employed to evaluate heterogeneity and horizontal pleiotropy

levels. Significant horizontal pleiotropy was found when

examining the causal relationship between LPL agonists and CKD

(FinnGen) and eGFR (CKDGen) (CKD: p = 0.0311; eGFR: p =

0.0140) (Supplementary Tables 13, 14). To ensure more reliable

results, we applied stricter criteria to select instrumental variables,

adjusting the linkage disequilibrium parameter from r2 < 0.3 to r2 <

0.2. Subsequent MR analysis did not reveal significant horizontal
FIGURE 2

MR analysis of association between drug targets and CHD.
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pleiotropy, and these updated results were included in the meta-

analysis (Supplementary Table 15). Sensitivity analysis results for

certain drug targets and outcomes exhibited heterogeneity (p <

0.05) (Supplementary Tables 13, 14), while leave-one-out analysis

indicated no significant differences in the results after the removal

of any SNP (Supplementary Figures 1-5).
Frontiers in Endocrinology 06
3.5 Mediation analysis

To investigate these intermediary pathways, we employed the

coefficient product method in our mediation analysis, focusing on

LDLR agonists and ANGPTL3 inhibitors. The findings suggest that

ANGPTL3 inhibitors mitigate the risk of CKD by modulating the
TABLE 2 The effect of drug targets on CKD.

Drug target Methods
CKD (CKDGen database) CKD (FinnGen database ) CKD (Ebi database)

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

LDLR Weighted median 1.129 (0.974 to 1.309) 0.107 1.616 (1.131 to 2.311) 0.008 1.206 (0.849 to 1.713) 0.296

Inverse variance weighted 1.077 (0.973 to 1.192) 0.151 1.394 (1.036 to 1.875) 0.028 1.200 (0.882 to 1.633) 0.246

Weighted mode 1.142 (0.988 to 1.319) 0.079 1.743 (1.173 to 2.589) 0.009 1.207 (0.838 to 1.740) 0.339

HMGCR Weighted median 1.192 (0.937 to 1.514) 0.152 0.765 (0.434 to 1.348) 0.355 0.896 (0.612 to 1.310) 0.570

Inverse variance weighted 1.151 (0.959 to 1.381) 0.132 0.816 (0.542 to 1.230) 0.332 0.844 (0.611 to 1.164) 0.301

Weighted mode 1.196 (0.960 to 1.490) 0.134 0.755 (0.424 to 1.343) 0.352 0.962 (0.630 to 1.468) 0.861

PCSK9 Weighted median 1.028 (0.837 to 1.263) 0.793 1.284 (0.923 to 1.784) 0.137 1.243 (0.622 to 2.484) 0.538

Inverse variance weighted 1.005 (0.870 to 1.160) 0.947 1.404 (1.098 to 1.795) 0.007 1.146 (0.596 to 2.206) 0.682

Weighted mode 1.061 (0.871 to 1.292) 0.564 1.352 (1.019 to 1.794) 0.046 1.263 (0.503 to 3.172) 0.638

NPC1L1 Weighted median 0.949 (0.562 to 1.604) 0.846 1.017 (0.310 to 3.343) 0.977 0.494 (0.196 to 1.242) 0.134

Inverse variance weighted 0.892 (0.524 to 1.518) 0.673 1.079 (0.415 to 2.803) 0.876 0.514 (0.243 to 1.090) 0.083

Weighted mode 0.953 (0.533 to 1.704) 0.877 0.972 (0.276 to 3.430) 0.967 0.494 (0.183 to 1.337) 0.237

APOB Weighted median 0.950 (0.829 to 1.088) 0.457 1.058 (0.762 to 1.470) 0.735 0.851 (0.660 to 1.098) 0.214

Inverse variance weighted 0.943 (0.855 to 1.041) 0.246 1.039 (0.823 to 1.311) 0.750 0.829 (0.638 to 1.077) 0.160

Weighted mode 0.930 (0.799 to 1.083) 0.358 1.083 (0.761 to 1.542) 0.661 0.887 (0.697 to 1.130) 0.350

ABCG5 Weighted median 0.899 (0.696 to 1.161) 0.413 0.538 (0.278 to 1.042) 0.066 0.944 (0.618 to 1.442) 0.791

Inverse variance weighted 0.950 (0.788 to 1.145) 0.591 0.679 (0.397 to 1.161) 0.157 0.991 (0.682 to 1.439) 0.961

Weighted mode 0.939 (0.722 to 1.223) 0.649 0.545 (0.288 to 1.031) 0.078 0.889 (0.580 to 1.362) 0.603

ABCG8 Weighted median 0.899 (0.709 to 1.141) 0.382 0.542 (0.288 to 1.018) 0.057 0.944 (0.614 to 1.453) 0.795

Inverse variance weighted 0.967 (0.800 to 1.167) 0.725 0.696 (0.405 to 1.198) 0.191 0.991 (0.682 to 1.439) 0.961

Weighted mode 0.937 (0.740 to 1.185) 0.593 0.538 (0.261 to 1.108) 0.111 0.889 (0.598 to 1.321) 0.576

LPL Weighted median 0.998 (0.909 to 1.097) 0.974 1.254 (0.964 to 1.632) 0.092 0.926 (0.780 to 1.098) 0.377

Inverse variance weighted 0.955 (0.894 to 1.020) 0.168 1.119(0.925 to 1.355) 0.248 0.939 (0.822 to 1.071) 0.348

Weighted mode 0.993 (0.897 to 1.101) 0.901 1.242 (0.955 to 1.614) 0.115 0.940 (0.794 to 1.112) 0.479

APOC3 Weighted median 0.971 (0.896 to 1.051) 0.467 0.960 (0.778 to 1.185) 0.705 0.882 (0.743 to 1.046) 0.149

Inverse variance weighted 0.993 (0.933 to 1.056) 0.818 0.947 (0.806 to 1.113) 0.511 0.897 (0.776 to 1.037) 0.142

Weighted mode 0.978 (0.904 to 1.057) 0.575 0.961 (0.800 to 1.154) 0.671 0.880 (0.735 to 1.054) 0.213

ANGPTL3 Weighted median 0.856 (0.719 to 1.020) 0.081 1.136 (0.705 to 1.831) 0.600 0.845 (0.635 to 1.126 0.251

Inverse variance weighted 0.826 (0.714 to 0.955) 0.010 0.977 (0.679 to 1.405) 0.899 0.850 (0.596 to 1.212) 0.369

Weighted mode 0.842 (0.716 to 0.991) 0.054 1.032 (0.674 to 1.580) 0.887 0.847 (0.610 to 1.177) 0.396

PPARA
Wald ratio or

Inverse variance weighted
2.061 (0.533 to 7.967) 0.294 0.221 (0.018 to 2.654) 0.234 0.818 (0.092 to 7.254) 0.857
fr
Bold values indicate p < 0.05; LDLR, Low-Density Lipoprotein Receptor; HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase; PCSK9, Proprotein Convertase Subtilisin/Kexin Type 9;
NPC1L1, Niemann-Pick C1-Like 1; APOB, Apolipoprotein B; ABCG5/ABCG8, ATP Binding Cassette Subfamily G Member 5 / ATP Binding Cassette Subfamily G Member 8; LPL, Lipoprotein
Lipase; APOC3, Apolipoprotein C3; ANGPTL3, Angiopoietin-Like 3; PPARA, Peroxisome Proliferator-Activated Receptor Alpha.
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immune cell phenotype of HLA-DR on CD14+ CD16+ monocytes

(Mediated proportion: 4.69%; Mediated effect: -0.00899)

(Supplementary Figure 11, Supplementary Table 16), although the

mediating effect remains relatively modest.
4 Discussion

Chronic kidney disease (CKD) is a prevalent condition that can

lead to cardiovascular disease, renal failure, and other

complications, imposing a significant societal burden due to its

high prevalence and economic impact (5, 8). As a result, the

epidemiology and pathogenesis of CKD are increasingly attracting

global scholarly attention. Extensive experimental and clinical data

indicate that hyperlipidemia is a critical shared risk factor for both

CKD and cardiovascular diseases. Current research shows that

abnormalities in lipid levels, akin to those in cardiovascular

disease pathogenesis, are strongly associated with CKD through

mechanisms such as endothelial dysfunction, inflammation, and the

direct toxic effects of lipids on renal cells (9, 10, 41).

This investigation employed Mendelian randomization to

elucidate the causal linkages between genetic targets of lipid-
Frontiers in Endocrinology 07
lowering therapeutics and the susceptibility to chronic kidney

disease (CKD). Our findings reveal a notable correlation between

the activation of the low-density lipoprotein receptor (LDLR) gene

and an elevated risk of CKD, presenting an odds ratio (OR) of 1.11

(95% CI: 1.02 to 1.22). Conversely, inhibiting the ANGPTL3 gene

correlates with a reduced CKD risk, indicated by an OR of 0.85

(95% CI: 0.75 to 0.96). These findings underscore the diverse

impacts of lipid regulatory pathways on renal health, highlighting

the complexity of lipid metabolism in CKD progression.

Emerging research supports a significant link between

ANGPTL3 inhibition and reduced CKD risk, with several studies

underscoring the protective role of ANGPTL3 inhibition in renal

diseases (42–45). ANGPTL3 is a pivotal regulator of lipid

metabolism, modulating the activity of key enzymes like

lipoprotein lipase (LPL) and endothelial lipase, which influence

plasma levels of triglycerides and high-density lipoprotein

cholesterol. Recent studies have demonstrated that ANGPTL3

inhibitors not only improve lipid profiles but also offer renal

benefits by mitigating lipid-induced glomerular injury and

preserving endothelial function (46). Moreover, ANGPTL3’s role

in lipid metabolism extends to regulating the production and

clearance of VLDL, a vital carrier of triglycerides in the blood. By
FIGURE 3

Meta analysis of association between drug targets and CKD.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1434145
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1434145
enhancing VLDL metabolism, ANGPTL3 inhibitors may improve

the clearance of lipid particles, thereby reducing the risk of lipid

accumulation and consequent renal damage (47).

Research has established that LDLR is a crucial receptor for

removing LDL-C from plasma via endocytosis, and it is one of

the genes associated with autosomal dominant familial

hypercholesterolemia (48, 49). The activation of LDLR primarily

facilitates the clearance of low-density lipoprotein cholesterol from

the bloodstream, which is advantageous for reducing cardiovascular

risk. However, our data indicate that LDLR activation may also

exacerbate kidney disease. This adverse effect is likely due to the

pathological accumulation of cholesterol in renal cells, leading to lipid

toxicity—accumulated lipids disrupt cell function and induce cellular

stress and damage (50–52). Further studies have shown that lipid

accumulation in renal cells can promote cellular dysfunction and

damage through mechanisms such as oxidative stress and

inflammation, common pathways exacerbating kidney disease. For

instance, excessive lipid accumulation in renal cells is linked with

increased production of reactive oxygen species (ROS), which

intensifies oxidative stress and accelerates the progression of

diabetic nephropathy. This stress not only impacts cell vitality but

also triggers inflammatory responses, further deteriorating renal

function (52). Additionally, statin drugs often elevate circulating

levels of lipoprotein (a) despite reducing LDL cholesterol levels,

potentially heightening residual cardiovascular risks and advancing

CKD progression (53). Understanding LDLR’s dual role in

cardiovascular and renal health is crucial for developing targeted

therapies that mitigate the adverse effects of cholesterol accumulation

in the kidneys while leveraging its cardiovascular benefits.

In the FinnGen database, PCSK9 inhibitors (OR [95%] = 1.404

[1.098, 1.795], p=0.007) were significantly associated with an

increased risk of CKD occurrence. However, after meta-analyzing

data from three databases (CKDGen, FinnGen, Ebi), PCSK9

inhibitors and other drug targets were found to have no

significant correlation with the risk of CKD occurrence (OR[95%]

=0.1.16 [0.90-1.50]), reflecting the advantages of meta-analysis and

the credibility of our results. The association between PCSK9 levels

and the occurrence and progression of CKD remains contentious,

and there is still no direct data on PCSK9 inhibitor administration

in CKD patients. Observational studies on PCSK9 levels in CKD

patients have shown conflicting results. Rogavec et al. and Elewa

et al. found that PCSK9 levels were higher in subjects receiving

statin therapy within the same CKD group (p < 0.05) (54, 55).

However, Elewa et al. also observed a positive correlation between

PCSK9 levels and total cholesterol, although it was not statistically

significant (p = 0.078) (55). Abujrad et al. and Konarzweski et al.

found no significant correlation between lipid parameters in CKD

patients undergoing hemodialysis and PCSK9 levels (56, 57).

Current studies on PCSK9 levels in CKD patients are

observational, lacking direct data on the impact of PCSK9

inhibitors on CKD outcomes. Our study fills this gap and

validates the conclusions of current reviews, finding no significant

correlation between PCSK9 levels and estimated GFR and CKD.

Further research is still needed to confirm and elucidate the clinical

significance of these observational findings (58).
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In MR analysis with eGFR and BUN as outcomes, it was

surprising to find that the impact of lipid-lowering drug targets on

eGFR was negligible, suggesting that lipid-lowering drugs do not

directly affect CKD progression by influencing eGFR levels. The latest

meta-analysis of statins and CKD included 33 RCT studies, which

similarly found no significant difference in eGFR and serum

creatinine levels between the statin group and the control group

(18). CKD patients undergoing statin therapy may improve kidney

function by reducing urinary albumin and protein excretion or

increasing creatinine clearance. The mechanistic insights provided

by our mediation analysis further highlight the role of immune

regulation in the context of CKD. CD14+ CD16+ monocytes are

typically in an activated functional state in CKD patients,

contributing to renal inflammation and immune-mediated damage

(59). HLA DR, as an important antigen-presenting molecule, reflects

the activation level of immune cells (60). In CKD, elevated expression

of HLA DR is commonly associated with an overactive immune

response and tissue damage. We observed that the protective effect of

ANGPTL3 inhibitors may partially mediate through alterations in

immune cell phenotypes, particularly the expression of HLA DR on

CD14+ CD16+ monocytes. The mediated proportion of this effect

was 4.69%, with a mediated effect size of -0.00899, underscoring a

potential new pathway by which ANGPTL3 inhibition may confer

kidney protection. However, the mediation effect was modest, and the

results did not demonstrate significant correlation, warranting

cautious interpretation of these findings.

Our study is subject to certain inevitable limitations. Firstly, MR

analysis primarily evaluates causal relationships between exposures

and outcomes. While it is adept at discerning the direction of these

associations, it falls short in quantifying their magnitude and cannot

substitute for clinical trials in practical settings. Secondly, drug-

targetedMR analysis may not accurately capture the effects of short-

term administration or different routes of administration. Lastly,

due to limited GWAS data resources, our MR analysis was

conducted exclusively on a European population, which may limit

the generalizability of our findings to other ethnicities.
5 Conclusion

In conclusion, our drug-targeted MR analysis demonstrated

that ANGPTL3 inhibitors significantly reduce the risk of CKD,

while LDLR activators are significantly associated with an increased

risk of CKD. Furthermore, the study found that lipid-lowering

drugs do not significantly impact eGFR and BUN levels. These

findings suggest that ANGPTL3 and LDLR are promising candidate

drug targets for CKD treatment. However, further validation

through basic and clinical research is necessary.
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