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hyperuricemia: high-through
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pharmacology and
dynamics simulations
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Andrew Hung2, Angela Wei Hong Yang3, Xiaomin Sun1,
Lin Zhou4, Xiaoshan Zhao1,5*, Hong Li1,2* and Yanyan Liu1,5*

1School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, 2School of
Science, STEM College, RMIT University, Melbourne, VIC, Australia, 3School of Health and Biomedical
Sciences, STEM College, RMIT University, Bundoora, VIC, Australia, 4Endocrinology Department,
Nanfang Hospital, Southern Medical University, Guangzhou, China, 5Traditional Chinese Medicine
Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
Introduction: Hyperuricemia (HUA) is a metabolic syndrome caused by purine

metabolism disorders. Zanthoxyli Pericarpium (ZP) is a medicinal and food

homologous plant, and its ripe peel is used to treat diseases and as a spice for

cooking. Some studies have shown that ZP can inhibit the formation of xanthine

oxidase and reduce the production of uric acid.

Methods: Through network pharmacology, ZP’s potential targets and

mechanisms for HUA treatment were identified. Databases like TCMSP,

UniProt, and Swiss Target Prediction were utilized for ZP’s active ingredients

and targets. HUA-related targets were filtered using GeneCards, Drugbank, and

Open Targets. Core targets for ZP’s HUA treatment were mapped in a PPI

network and analyzed with Cytoscape. GO and KEGG pathway enrichments

were conducted on intersected targets via DAVID. Molecular docking and virtual

screening were performed to find optimal binding pockets, and ADMET

screening assessed compound safety. Molecular dynamics simulations

confirmed compound stability in binding sites.

Results: We identified 81 ZP active ingredient targets, 140 HUA-related targets,

and 6 drug targets, with xanthine dehydrogenase (XDH) as the top core target.

Molecular docking revealed ZP’s active ingredients had strong binding to XDH.

Virtual screening via Protein plus identified 48 compounds near the optimal

binding pocket, with 2’-methylacetophenone, ledol, beta-sitosterol, and ethyl

geranate as the most promising. Molecular dynamics simulations confirmed
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binding stability, suggesting ZP’s potential in HUA prevention and the need for

further experimental validation.

Conclusion:Our study provides foundations for exploring the mechanism of the

lowering of uric acid by ZP and developing new products of ZP. The role of ZP in

the diet may provide a new dietary strategy for the prevention of HUA, and more

experimental studies are needed to confirm our results in the future.
KEYWORDS

hyperuricemia, Zanthoxylum bungeanum, complementary and alternative medicine,
molecular docking, molecular dynamics simulation, medicine and food
homologous plant
1 Introduction

Hyperuricemia (HUA) is a metabolic syndrome caused by

abnormal purine metabolism, and its diagnostic criteria are

internationally defined as blood uric acid level male > 420 mmol/L

(7 mg/dL), female > 357 mmol/L (6 mg/dL) (1). The prevalence of

hyperuricemia is increasing globally and is on the rise in younger

populations (2). Uricemia is a high-risk factor for a variety of diseases,

such as gout (3), insulin resistance (4), chronic kidney disease (5), and

cardiovascular disease (6), which it seriously damages public health.

In the USA, an epidemiological survey showed a significant increase

in the prevalence of HUA from 19.1% (1988–1994) to 21.4% (2007–

2008) (7). The prevalence of HUA increases with age and is 27.2%

among people aged 65 years and above, which is equivalent to 12.6

million elderly people suffering from HUA (8). Current treatments

for HUA are mainly non-pharmacological and pharmacological. The

non-drug treatments include improving the patient’s lifestyle and

diet, limiting the intake of high-purine foods, and drinking enough

water to eliminate excess uric acid from the body (9). As for the drug

treatments of HUA, it is necessary to choose the appropriate drug

treatment according to the cause of the patient’s increased blood uric

acid, mainly through increasing uric acid excretion, inhibiting uric

acid synthesis, promoting uric acid decomposition as well as assisting

in lowering uric acid to achieve the effect of lowering uric acid (10).

There is a high incidence of side effects associated with uric acid-

lowering drugs, usually gastrointestinal discomfort, liver and kidney

impairment, and increased risk of cardiovascular disease, and no new

drugs with fewer side effects have been reported to be safe (11). The

pathogenesis of HUA is a multifactorial and complex process, which

in severe cases can lead to gout, a disease caused by excessive

deposition of uric acid (12). Therefore, it is crucial to further

elucidate the pathogenesis of HUA and find new therapeutic agents

for HUA.

Zanthoxyli Pericarpium (ZP), also known as Sichuan pepper,

Zanthoxylum bungeanum, and mountain pepper, refers to the
02
shrubs or trees and their fruits of the Capsicum genus in the

Rutaceae family (13). ZP is a very common condiment and a

traditional Chinese herbal medicine with high medicinal and

culinary value, widely found in Asia (14). The ripe peel of ZP is

used as a condiment, to extract aromatic essential oils, and can also

be used as medicine (15). Modern pharmacological studies show

that ZP has anti-obesity properties (16), managing nonalcoholic

fatty liver disease (NAFLD) (15)and alleviating hyperlipidemia (17).

In recent years, with the development of Chinese medicine, the

extraction of chemical constituents from Chinese herbal medicine

has become a global research hotspot (18–20). A large number of

studies have proved that ZP has pharmacological effects such as

anti-inflammatory (13), antifungal and antibacterial (21), anti-

aging agent and anti-tumor (14), and some studies have shown

that ZP can inhibit the formation of xanthine oxidase and reduce

the production of uric acid (14, 22). However, the mechanisms of

action by which ZP reduces uric acid production and blood uric

acid level is not clear.

In this study, we used network pharmacology, molecular

docking and molecular dynamics (MD) simulation methods to

investigate whether ZP mature peel has a uric acid-lowering effect

and reveal its potential mechanisms of action.
2 Materials and methods

In our study, the calculations were executed on the Sunway

TaihuLight supercomputer, which is driven by a 12-core Chinese-

developed SW26010 multi-core 64-bit RISC processor, located at

the National Supercomputing Center in Wuxi, China. Additionally,

we employed the SiBioLead online MD simulation platform

(https://sibiolead.com), a high-performance GPU-based clustering

system running on the Ubuntu operating system and NVIDIA

GeForce RTX3050 Gpus. The process of our research is illustrated

in the flowchart shown in Figure 1.
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2.1 Identification of Zanthoxyli
Pericarpium compounds

The compounds of ZP were derived from the Chinese

Medicine Systems Pharmacology Database and Analysis

Plat form (TCMSP) , a plat form of Chinese Medicine

Pharmacology (https://tcmsp-e.com/) commonly used for web-

based pharmacological studies of Chinese medicine formulations

(23). The platform includes all 499 Chinese herbal medicines

registered in the Chinese Pharmacopoeia (2010), with a total of
Frontiers in Endocrinology 03
12,144 chemical substances, and enables exploring their active

ingredients and action targets through complex structural, omics

and network system studies (24). All the information from the

database developers and maintenance personnel were manually

managed and updated. We collected data on their compounds

using the Chinese pinyin names of Hua jiao as keywords,

including molecular names, PubChem CIDs, structure files and

pharmacokinetic properties (Supplementary Table S1). All of the

data were double-checked (M.L.C and X.M.C) and the collection of

any differences was discussed with a third party (H.L).
FIGURE 1

Detailed flow chart based on network pharmacology. ADMET, absorption, distribution, metabolism, excretion and toxicity; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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2.2 Collection of structures of
identified ligands

The structures of all components of ZP were obtained from the

TCMSP database as l igands for subsequent network

interconnection analysis, docking and MD simulations. We

retrieved the SMILES sequence corresponding to a PubChem CID

from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/),

and download the 3D structure of the compound in SDF format.

For compounds without 3D structures, the MOL2 structure

provided by the TCMSP was used as an alternative. All structures

were converted to the PDB file format using Discovery Studio

Visualizer 2019.
2.3 Acquisition of Zanthoxyli Pericarpium’s
potential targets for hyperuricemia

In this study, potential targets for the treatment of HUA with

ZP were obtained through the following three steps (25, 26). The

first step was to search and query the chemical composition of ZP

from the TCMSP database, input the active ingredient into

PubChem to find the SMILE structure, and the Canonical

SMILES in was entered into the Swiss Target Prediction (http://

swisstargetprediction.ch/) to obtain the target of the chemical

composition of ZP. Swiss Target Prediction predicts the most

likely small molecules of protein targets based on the similarity

principle (27). We deleted duplicate targets according whose

probability values were ≥ 0.05. Then, all related targets of ZP

were obtained in TCMSP, and the UniProt database (https://

www.uniprot.org/) was used to correct the target gene names

after deletion (28, 29), and the species was limited to “Homo

sapiens”. The targets corresponding to the active components of

ZP were selected as those present at the intersection of the obtained

targets from different databases.

The second step was to search three public disease databases,

including Gene Card (https://www.genecards.org/) (30), Comparative

Toxicogenomics Database (CTD) (https://ctdbase.org/) (31) and

Open Targets platform (https://platform.opentargets.org/) (32, 33)

to identify common disease targets associated with HUA.

In the third step, we entered the search term “hyperuricemia”

into DrugBank and found five drugs, namely Allopurinol,

Lesinurad, Probenecid, Rasburicase and Sulfinpyrazone. The

related targets were XDH (UniProt ID P47989), SLC22A12

(UniProt ID Q96S37), SLC22A11 (UniProt ID Q9NSA0),

SLC22A8 (UniProt ID Q8TCC7), SLC22A6 (UniProt ID

Q4U2R8), PANX1 (UniProt ID Q96RD7), TAS2R16 (UniProt ID

Q9NYV7), ABCC1 (UniProt ID P33527), ABCC2 (UniProt ID

Q92887) and NR1I2(UniProt ID O75469). Intersection of HUA

targets with drug targets yielded five results XDH, SLC22A12,

SLC22A11, SLC22A8 and SLC22A6. In addition, considering that

inhibition of purine nucleoside phosphorylase (PNP, UniProt ID

P00491) to reduce uric acid production is one of the main

therapeutic approaches to lower uric acid, PNP was also

introduced into our study for analysis (34). We used the Open

Targets database, GeneCards database and CTD database to search
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for potential targets of HUA by using the keyword “hyperuricemia”,

and selected compounds in common across all used databases after

removing duplicates.

The final cross-targets data enabled us to select a candidate for

the “ZP active ingredients-HUA targets-drug targets” protein-

protein interaction (PPI) map.
2.4 Establishment of protein-protein
interaction network

To investigate the functional and regulatory interactions

between proteins, we imported the active ingredient targets of ZP,

the targets of HUA and drugs into the STRING database (https://

string-db.org) (35)and performed PPI analysis (36). The PPI

network was visualized using Cytoscape v3.8.2 to construct a

network diagram of linking ZP active ingredients with HUA

targets as well as drug targets. When the list of candidate gene

names was entered into the database, the species was specified as

Homo sapiens, and the minimum required interaction score was set

to a maximum value of 0.400 (37), so that only relationships greater

than this score are included in the protein network. Finally, we

filtered out low-confidence interactions and hid isolated nodes to

form the final PPI network (38, 39).
2.5 Results of Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analysis

To better understand the function of the screened genes, we

performed functional enrichment analysis. Gene Ontology (GO)

enables the analysis of gene function based on biological process

(BP), cellular compound (CC), and molecular function (MF) (40,

41). The Kyoto Encyclopedia of Genes and Genomes (KEGG)

enables the understanding of biological pathways associated with

genes (40, 41). Both elucidated the core pathways and mechanisms

of uric acid lowering by ZP. Targets were entered into the DAVID

database (https://david.ncifcrf.gov/) (42, 43), identifiers were

filtered based on the official gene symbol, the species was selected

as homo sapiens, and then GO and KEGG pathway data were

downloaded. The results in the databases were sorted according to

p-value and visualized and designed using an online mapping tool

(http://www.bioinformatics.com.cn/). In the bubble plot, the value

of “-log10 (p-value)” is defined as the evaluation of the enrichment

score, and the value of “Count” indicates the number of genes

enriched in the corresponding pathway.
2.6 Protein structure acquisition
and modification

We obtained the target names of related targets for ZP from the

TCMSP database, and then searched and obtained the UniProt ID

and PDBID of candidate proteins in the UniProt database (https://

www.uniprot.org/), filtered by Homo sapiens species. We
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preferentially selected the protein with the highest resolution, and

the protein with the lowest R-value is the second choice. We then

downloaded the structures of the identified proteins as PDB files

from the RCSB PDB protein database (https://www.rcsb.org/) (44)

and examined them using the protein visualization and analysis

software Visualization Molecular Dynamics. For missing fragments

of proteins, we used the SWISS-MODEL server (https://swissmodel.

expasy.org/) employing homology modeling to repair these

structures (45). Finally, we pretreated all protein structures

obtained from the RCSB database using PyRx (v0.8) (46)or

modified them through homology modeling for molecular

docking (47).
2.7 Molecular docking between Zanthoxyli
Pericarpium compounds and
candidate targets

To find the optimal binding conformation of the protein and its

ligand, and to ensure the lowest binding free energy of the complex

as a whole, we use molecular docking, a good tool to verify the

binding affinity of the protein to the ligand (48, 49).

We investigated the interaction between ZP compounds and

candidate targets using PyRx (v0.8) and AutoDock Vina (v1.1.2)

(26, 50). Prior to docking, we collected the PDB files of ZP

compounds and retrieved the PDB files of candidate proteins

from the AlphaFold Protein Structure Database (https://

alphafold.com/) (51, 52), and then converted the PDB files of

ligands and targets to PDBQT format using PyRx (v0.8). Next, a

docking box was drawn around the identified targets using PyRx

(v0.8) with the ‘maximise’ protein outer box specification. An

exhaustiveness value of 8 was used for all dockings. Finally,

molecular docking was performed using AutoDock Vina (53).We

added the application of CB-Dock2, a database for blind docking of

proteins and ligands that integrates cavity detection, docking and

homologous template fitting (54)for predicting the binding sites

and affinity of ZP to candidate compounds.

In general, the lower the binding affinity, the more significant

the interaction (55, 56). Based on this, we defined the binding

energy value less than (greater than negative) -6 kcal/mol as

possessing strong binding affinity (57, 58). The results were sorted

by binding affinity score, and the lowest binding affinity score

corresponded to the best binding site. Visualization was

performed using Discovery Studio Visualizer 2019 (https://

www.3ds.com/).
2.8 Screening potential candidates for
treating hyperuricemia

According to the result of the docking, we calculated the average

of all compounds in combination with the highest affinity targets

XDH and a common drug which targets XDH as an inhibitor,

Febuxostat, for further analysis of ligand and protein binding sites.

The online database (https://go.drugbank.com/) includes drugs,

banked PDB databases, file searches and so on. enabling
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determining the key contacts at protein binding sites, and then

Discovery Studio Visualizer 2019 was applied to visualize the

ligand-residue interactions of the herbal compounds with the two

targets selected using 3D and 2D representations. For those

compounds that were predicted to bind to locations in the active

site pocket, we determined the total number of hydrogen bonds (H-

bonds) at key active site residues. Those compounds that formed H-

bonds with the key active binding site residues were uploaded to

ProTox-II (https://tox-new.charite.de/protox_II/) and ADMETlab

2.0 (https://admetmesh.scbdd.com/) for predictions of the

pharmacokinetic and toxicity parameters (59, 60). ADMETlab 2.0

is a powerful tool for predicting the pharmacokinetic and toxic

properties of chemicals (60).

Initially in ADMETlab 2.0 screening, we filtered the molecules

using parameters describing Pan Assay Interference Compounds

(PAINS) (61), Lipinski’s rule of five (62, 63), human oral

bioavailability (F20%) (64, 65), Volume Distribution (VD),

clearance of a drug, metabolic screening (60), Hepatotoxicity(H-

HT) (66), Ames (67), Rat Oral Acute Toxicity (ROA) (68),

Carcinogenicity (69), and Predicted Toxicity Class (59) allowing

only those ligands with drug-like properties (such as lipophilicity

and solubility) to be passed through for further exploration. Then

the compounds were predicted for multi-organ toxicity, graded by

the ProTox-II program using SMILES of the compounds as input.

Finally, based on absorption, distribution, metabolism,

excretion and toxicity (ADMET) analysis, we selected four

molecules for MD simulations.
2.9 Molecular dynamics simulation and
visualization of protein-ligand interactions

MD simulation, a method for studying protein-molecule

interactions and structural changes, is increasingly being used in

the fields of food development and biomedical research (70, 71).

Therefore, we used MD simulation to screen compounds in ZP for

the control of HUA.

SiBioLead (https://sibiolead.com) was used to perform MD

simulations to predict binding stability (25). The ability of

SiBioLead to perform virtual screening of large databases using

high-throughput virtual screening (d-HTVS) technology allowed

for the successful identification of target-specific lead molecules by

screening drugs with high speed and accuracy (72). We uploaded

the PDB files of apo- and ligand-protein complexes to the SiBioLead

server and identified the ligand-protein complexes HJ010, HJ028,

HJ059, and HJ069 based on the criteria of ADMET, hydrogen-

bonding interactions, and binding postures, and used the OPLS all-

atom force field to perform the screening using GROMACS on apo-

and ligand-bound complexes for MD simulations (73).

To better find and visualize the crystal structure of protein

structures, we used the Protein Plus server (https://proteins.plus/), a

comprehensive collection of powerful web-based molecular

modeling tools (74). It can efficiently predict potential binding

sites, find similar binding sites for ensemble docking, and dock

small molecules of interest into a binding site. We input the XDH

structure into the DoGSiteScorer tool of Protein Plus and
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performed calculations. The results were ranked according to the

drug score and subsequently, the compounds with high scores were

selected for further calculations. We performed a preliminary

screening using 50 ns MD simulations for the four ZP

compounds and these were followed by three 200 ns MD

simulations for HJ010, which had the highest score in the Protein

Plus calculations, to predict the stability of the binding.

Finally, the results were derived by analyzing the trajectories

using root mean square deviation of backbone Ca atoms (RMSD),

root mean square fluctuation (RMSF), radium of Gyration (Rg),

solvent accessible surface area (SASA) and the number of H-bonds,

and the number of pairs within 0.35 nm (nPairs).
2.10 Cellular thermal shift assay

CETSA tests (75) the interaction of 2’ -methylacetophenone with

XDH. AML12 cells were cultured in a large plate and digested by

RIPA Lysis Buffer (CWBIO, CW2333S). The cell lysis solution was

treated with DMSO (biosharp, BS087) or 2’-methylacetophenone

(Macklin, M813230) treated in a shaker at 4°C for 2 hours with a 1:10

ratio of DMSO or 2’-methylacetophenone to protein content. The

mixture was then divided into different tubes and heated at different

temperatures for 3 min. After cooling, the supernatant was collected

and centrifuged at 12000 rpm at 4°C for 15 min for Western bolt

analysis. Cellulose membranes and primary antibodies were

incubated at 4°C, and primary antibodies included rabbit

monoclonal anti-XDH (1:1000, Affinity, DF8111) and Anti-rabbit

IgG, HRP-linked Antibody (1:5000, Cell Signaling Technology,

7074S). Subsequently, the cellulose membrane was treated with

SuperEnhanced ECL reagent (G3308 , GBCBIO) for

chemiluminescence detection. Luminescence signals were measured

with a Tanon camera (5200S) and recorded and quantified

with ImageJ.
3 Results

3.1 Active herbal compounds and potential
drug targets of Zanthoxyli Pericarpium
for hyperuricemia

A total of 101 chemical components of ZP were obtained

through retrieval from the TCMSP database. The obtained active

components were input into PubChem to find SMILES strings, and

Canonical Smiles were input into Swiss Target Prediction to obtain

the target of the chemical components of ZP. Targets with

probability scores ≥ 0.05 were selected (76, 77), resulting in 610

targets obtained after deleting duplicates. After deletion, the

UniProt database was used to correct the gene name of the target,

and the species was limited to “Homo sapiens”. A total of 274

targets corresponding to the effective active ingredients of ZP were

obtained. The intersection of the ZP component targets obtained

from SWISS Target Prediction platform and the corresponding

targets of the TCMSP ZP component was identified, and 81 set
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targets were obtained. A total of 140 hyperuricemia-related targets

were collected (Figure 2A). In the second step, we found the drug

targets for HUA in DrugBank, together with PNP, and combined

with the intersection of HUA targets we got five results, which were

XDH, SLC22A12, SLC22A11, SLC22A8 and SLC22A6 (Figure 2B).

Finally, the cross-targets together formed a candidate target for the

“ZP-disease-drug” PPI network.

The 15 candidate targets were imported into the STRING

Database for PPI analysis (Figure 2C). The interaction network

diagram of “ZP-disease-drug” was constructed by using Cytoscape

v3.8.2 to produce a visual PPI network diagram (Figure 2D). The

top five were selected as the core genes by CytoNCA (78), and the

five targets with degree centrality, betweenness centrality, and

closeness centrality values greater than the average were selected

as core gene targets. The top five nodes with the largest degree

centrality values were XDH, PTGS2, TNF, ESR1 and MAOA, and

the details are shown in Table 1.

The PPI network graph (Figure 2C) for ZP-HUA-drug

contained 33 edges and 15 nodes, with an average node degree of

4.4 and a local clustering enrichment coefficient of 0.834. The p-

value for PPI enrichment was small and statistically significant at <

1.0×10-12. This implied that there was a high degree of gene-gene

interactions, and such enrichment suggested that the genes, as a

group, were at least partially connected biologically.
3.2 Zanthoxyli Pericarpium’s involvement in
multiple signaling pathways

To clarify the interaction between the drug and target, GO and

KEGG enrichment analyses were performed. A total of 48 BP, 8 CC

and 11 MF items were obtained from the DAVID database, and 11

KEGG pathways were enriched, indicating the multi-pathway

characteristics of ZP control of uric acid (Figure 2E).

According to the GO enrichment analysis results in the DAVID

database, the genes were enriched into different GO terms, and the

top eight GO terms in the three categories were selected to construct

connections within the signal network according to the order from

smallest to largest p-value (Figure 2F). The x-axis in the bar

represented log10 (p-value) and the number of targets, while the

y-axis represented the GO term. The top eight BP included response

to inorganic anion transport, prostaglandin transport, response to

xenobiotic stimulus, organic anion transport, positive regulation of

nitric oxide biosynthetic process, transmembrane transport, inosine

catabolic process and deoxyinosine catabolic process. Through CC

analysis, caveola, extracellular exosome, plasma membrane region,

macromolecular complex, plasma membrane, apical plasma

membrane, basal plasma membrane and integral component of

plasma membrane were listed as the top eight categories. In

addition, top-ranking signaling pathways mainly included

arginine and proline metabolism, IL-17 signaling pathway, AGE-

RAGE signaling pathway in diabetic complications, TNF signaling

pathway, serotonergic synapse, histidine metabolism, lipid and

atherosclerosis, metabolic pathways, tryptophan metabolism,

VEGF signaling pathway and leishmaniasis.
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3.3 Overall evaluation of Zanthoxyli
Pericarpium compounds docking with
hyperuricemia proteins

Based on the PPI network results, 15 therapeutic targets for

HUA were identified and selected for molecular docking (Table 2).

Semi-flexible docking was first performed with the target protein

receptor structure and 101 ZP compounds, which yielded a total of

1515 molecular docking results. The results showed that 54

compounds (53.47%) had an average binding energy of lower

than -6 kcal/mol, and the binding energies were distributed
Frontiers in Endocrinology 07
between -2.087 kcal/mol and -11.246 kcal/mol. Among them, the

top ten target protein receptors with the highest average binding

scores were XDH, MMP3, MAOA, SLC22A8, SLC22A6, NOS3,

HTR2A, PTGS2, SLC22A12 and SLC22A11. For detailed

information on the interconnections, see Supplementary Table S2.

We further classified the average binding energies of the

docking results into three clusters (Figure 3). In the first cluster,

HH10, HH08, HH01, HH15 and HH14 were the groups with the

most negative total binding energies. Among them, the target

protein XDH had the highest number of combinations with

binding energies of less than -6 kcal/mol with ZP compounds,
FIGURE 2

Identification and enrichment analysis of candidate targets for Zanthoxyli Pericarpium treating hyperuricemia. (A) Venn diagram showing the
intersection of components of Zanthoxyli Pericarpium in the treatment of hyperuricemia. TCMSP, Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform; Swiss, the SwissTarget Prediction database. CTD, the CTD database; Open Targets, the Open Targets
database; Gene Cards, the GeneCards database. (B) Venn diagram of drug intersection of targets for the treatment of hyperuricemia. Drug, the drug
targets including XDH, SLC22A12, SLC22A11, SLC22A8, SLC22A6, PANX1, TAS2R16, ABCC1, ABCC2 and NR1I2. HUA, hyperuricemia. (C) Zanthoxyli
Pericarpium-Disease-Drug PPI network. The nodes represent proteins, and the connecting lines between the nodes indicate interactions between
two proteins, with different colors corresponding to different interaction types. Multiple connecting lines indicate multiple interactions between two
proteins. (D) Protein-protein interaction network according to CytoNCA classification. Nodes represent proteins and node-to-node links represent
associations. The color of the circular node depends on the degree of the node connected. The key genes with the highest values are marked by
red nodes in the network. Higher level nodes are considered to be important hubs of the network. (E) KEGG enrichment analysis of the candidate
targets of ZP treating hyperuricemia. The Y axis of the Sankey bubble map represents the pathway name, the X axis represents the gene ratio, the
color of the points is sorted according to the P-value, the gene name is located on the left side of the pathway, the line represents the membership
relationship, and the size of the points represents the number of genes. (F) The GO enrichment analysis of the candidate targets of ZP treating
hyperuricemia. BP, biological process. CC, cellular component. MF, molecular function.
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indicating that XDH has a good binding affinity for ZP and can play

a role in the control of uric acid. Secondly, the binding energies of

the second cluster, composed of HH02, HH09, HH05, HH12 and

HH13, were lower than that of the first class, and the combinations

of binding energies of this group of target proteins were mainly
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greater than -7 kcal/mol. Finally, the low binding energy target

proteins HH11, HH03, HH06, HH07, and HH04 had more

compounds with binding energy greater than -6 kcal/mol than

the rest of the classification group and were therefore classified as

one cluster.
TABLE 2 Details of the 15 candidate targets of Zanthoxyli Pericarpium treating hyperuricemia.

Serial number UniProt ID Target name
Total binding

score (kcal/mol)
Average binding affinity(kcal/mol)

HH10 P47989 XDH -661.98 -6.554257426

HH08 P08254 MMP3 -646.036 -6.39639604

HH01 P21397 MAOA -644.601 -6.382188119

HH15 Q8TCC7 SLC22A8 -635.634 -6.293405941

HH14 Q4U2R8 SLC22A6 -623.511 -6.173376238

HH02 P29474 NOS3 -623.058 -6.168891089

HH09 P28223 HTR2A -621.62 -6.154653465

HH05 P35354 PTGS2 -620.493 -6.14349505

HH12 Q96S37 SLC22A12 -613.831 -6.077534653

HH13 Q9NSA0 SLC22A11 -597.844 -5.919247525

HH11 P00491 PNP -592.523 -5.866564356

HH03 P05091 ALDH2 -590.584 -5.847366337

HH06 P03372 ESR1 -570.203 -5.645574257

HH07 P05121 SERPINE1 -565.908 -5.603049505

HH04 P01375 TNF -512.298 -5.072257426
ALDH2, aldehyde dehydrogenase, mitochondrial; ESR1, estrogen receptor 1; HTR2A, 5-hydroxytryptamine receptor 2A; MAOA, monoamine oxidase type A; MMP3, matrix metalloproteinase-
3; NOS3, Nitric oxide synthase 3; PNP, purine nucleoside phosphorylase; PTGS2, prostaglandin G/H synthase 2; SERPINE1, plasminogen activator inhibitor 1; SLC22A11, solute carrier family
22 member 11; SLC22A12, solute carrier family 22 member 12; SLC22A6, solute carrier family 22 member 6; SLC22A8, solute carrier family 22 member 8; TNF, tumor necrosis factor; XDH,
xanthine dehydrogenase.
TABLE 1 Classification map of candidate targets by CytoNCA.

Number Name Degree Centrality Betweenness Centrality Closeness Centrality

1 XDH 11 103.14286 0.8235294

2 PTGS2 8 20.238094 0.7

3 TNF 7 11.238095 0.6666667

4 ESR1 7 11.238095 0.6666667

5 MAOA 6 30.857143 0.6363636

6 NOS3 5 2.7857144 0.5833333

7 SERPINE1 5 0.5 0.4827586

8 MMP3 4 0 0.46666667

9 SLC22A8 2 0 0.4827586

10 SLC22A6 2 0 0.4827586

11 SLC22A12 2 0 0.4827586

12 SLC22A11 2 0 0.4827586

13 PNP 2 0 0.5185185

14 ALDH2 2 0 0.5

15 HTR2A 1 0 0.4
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3.4 Visualization of binding modes adopted
by tight binding ligands predicted to
interact with Zanthoxyli Pericarpium
and XDH

The XDH inhibitor febuxostat reduces the uric acid formation

and lowers blood uric acid levels by tight binding to the active site of

the XO molybdenum pterin center, which keeps the molybdenum

cofactor in its oxidized or reduced state in isolation, and thus exerts

an inhibitory effect on the aggregation of both XO and substrate

(79). Febuxostat was predicted to dock with XDH and according to

our previous research (25) and related literature (80), the

conventional binding site included the residues Asn769, Glu803,

Arg881 and Thr1011. The compounds of ZP were docked with

XDH (Figure 4), and H-bonds were identified in a number of

binding sites, which may be involved in the biological action of uric

acid lowering (Table 3).
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We imported the structures of XDH and ZP into the Protein

Plus server in PDB format. Then we used DoGSiteScorer to predict

49 potential drug-forming pockets (Supplementary Table S3). The

closer the drug score is to 1, the more the drug-like properties are,

and the more the region can be a drug target (74). Cavities of

different shapes and structures in the protein structure are defined

as pockets and ligand binding occurs in adjacent cavities (81).

Pharmaceutical development distinguishes between drug and non-

drug pockets mainly by pocket size, shape complexity and

hydrophobicity, with drug development favoring larger, more

complex and hydrophilic pockets (82).

Based on this, first, we ranked the simple score, which is the

result of a linear combination of simple distinguishing pocket

features capable of distinguishing between drug and non-drug

pockets (82), showing that Pocket 0 has the highest simple score

of 0.63, a drug score of 0.81, volume of 3283.84 Å3, surface area of

2936.48 Å2, and depth of 23.21 Å. The DoGSiteScorer score is

greater than 0.5 and is considered a druggable pocket (Figure 5,

Supplementary Table S3).

The second step was to consider the volume and depth of the

pocket. The true active site often overlaps with the largest protein

pocket, and the algorithm predicts binding performance by

calculating pocket volume (82). It was shown that the average

volume of the druggable pockets is 900 Å3 and the druggable

pockets are deeper, with an average depth value of 21 Å (82),

while the volume of pocket 0 was 3283.84 Å3 and had a depth up to

23.21 Å, which were much greater than the average, suggestive of

the possibility that the ZP compound binds to XDH at pocket 0 and

exerts biological activity.

Finally, the druggability of the pockets was considered in terms

of physicochemical properties. The quotient of gps_se_h, meaning

the relative number of hull grid points, is used to describe enclosure,

with the quotient being higher if drug-free pockets are more

solvent-exposed, indicating a higher solvent exposure (low

probability of drug binding) for pockets with hull grid point ratio

of 0.17, compared to 0.08 for drug-containing pockets (82). Pocket

0 had an enclosure of 0.07, a pocket with drug-forming potential.

Drug binding was dominated by hydrogen bonding and ionic

interactions. There were 73 hydrogen bond donors and 172

hydrogen bond acceptors, 139 hydrophobic structures, and 7

valine residues at this pocket. Docking indicated that there are 48

herbal compounds in the vicinity of pocket 0. Screening for

compounds that could produce hydrogen bonds in the active site,

and based on the results of ZP docking with XDH molecules, we

also filtered for compounds with binding energies less than or equal

to -6 kcal/mol, resulting in a list of 19 potential piperine compounds

(Supplementary Tables S3, S4).
3.5 Pharmacokinetic screening of active
ingredients in Zanthoxyli Pericarpium for
the amelioration of hyperuricemia

To obtain compounds of ZP that have the potential to become

drugs for development, we entered the SMILES structures of 101

components of ZP into the ADMETlab 2.0 website (https://
FIGURE 3

Histogram and data table of molecular docking results in the
treatment of hyperuricemia with Zanthoxyli Pericarpium. The color
of the histogram represents ZP compounds, and the data table
shows the number of molecular docking score intervals.
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admetmesh.scbdd.com/) for prediction. We defined the sequential

principles of pharmacokinetic screening, firstly screening out

monomers with a PAINS score of one, and secondly removing

compounds which show a violation of any of the Lipinski Rule of

Five. Thirdly, compounds with a probability of oral bioavailability

of 20%, volume of drug distribution, hepatotoxicity, mutagenicity,

acute oral toxicity in rats, and carcinogenicity were screened out.

Based on the simulation of drug metabolism in the human body,

ingredients with an oral bioavailability greater than 0.7 in humans

and a drug clearance of less than 5 are difficult to metabolize in the

body (83) and are therefore excluded.

ZP, in addition to being used as an herbal medicine, is also an

everyday spice found in many dishes. It is therefore important to

make sure that the compounds of the drug derived from ZP do not

exceed the oral toxicity dose. The web server ProTox-II uses

computer simulation methods to predict the toxicity of various

toxicity endpoints (59). A predicted toxicity rating IV or higher was

defined as the safe range. These compounds may exhibit similar
Frontiers in Endocrinology 10
function to XDH inhibitors and may produce better uric acid-

lowering effects (Table 4).

Based on the above conditions, we identified the following four

herbal compounds as possessing likely drug-forming potential,

namely HJ010, HJ028, HJ059, and HJ069, for the next step of

experiments as well as MD simulations.
3.6 Molecular dynamics simulations to
verify the stability of XDH binding to
Zanthoxyli Pericarpium’s ingredients

To verify the stability of the docked structures, we selected four

ZP compounds: HJ010, HJ028, HJ059, and HJ069 for MD simulation

with XDH and analyzed the docking results by interpreting six

parameters (Figure 6, Table 5, Supplementary Table S5).

RMSD calculations for the ligand-free and ligand-bound

proteins are depicted in Figures 6A, B. All systems were observed
FIGURE 4

Structural diagram of molecular docking of candidate compounds. (A) HJ010-XDH, (B) HJ028-XDH, (C) HJ059-XDH and (D) HJ069-XDH.
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to be relatively stable for the entire 50 ns, with no major

displacement beyond 0.26 nm. After about 15 ns, all systems

showed relatively small fluctuations indicating that all systems

achieved equilibration. Interestingly, the RMSD of the proteins

bound by HJ010 and HJ059 was lower than that of the remaining

two proteins. The binding proteins of HJ028 and HJ069 had a

higher average RMSD value, whereas the binding energy of the

HJ059 ligand was higher. Although the trend and magnitude of the

RMSD of the protein bound to HJ059 were very similar to those of

apo-protein, the RMSD of the ligand itself (HJ059) was relatively

high. This indicated that HJ010 and HJ028 have greater stability in

their initial structure at the XDH active site than other ligands.

Protein conformation changes measured by Rg over time are

shown in Figure 6C, while SASA changes are displayed in

Figure 6D. Except for HJ028-bound systems, all the rest had no

major changes in protein conformation, and the standard deviation

was relatively narrow, less than 0.01 nm, indicating that the

conformation of proteins showed high stability and compactness.

HJ010-bound had the lowest average value of Rg, 3.202 nm, and

stabilized to this value after 15 ns of simulation. In agreement with

the Rg findings, the SASA values of the HJ010-binding protein were

also significantly decreased. This decrease began at an earlier time

frame, around 10-20 ns, and possibly indicating that the protein

conformation was destabilized upon binding to HJ010.

The RMSF and change in RMSF curves reflected fluctuations in

the amino acid residues of the proteins, as shown in Figures 6E, F. A

general examination of the site-specific residues of the ligand-

bound and ligand-free structures indicated that they showed

similar flexibility. Most of the peaks are located around the loop

region and are highly overlapping with each other. The results for

apo XDH compared to the ligand-bound XDH indicated that amino

acids Val808 and Asn1074 of XDH had greater residue flexibility

than the other regions. The significant suppression of residue
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fluctuations observed in these regions due to binding with HJ010

(Thr837, Lys1041), HJ028 (Lys1108, Gln1285), HJ059 (Ile649,

Lys1292), and HJ069 (Asn1138, Val1319) in all ligand-bound

structures suggested that this region may be important for ligand-

binding and the subsequent stability of XDH protein structures.

The number of H-bonds and pairs within 0.35 nm are presented

in Figures 6G, H, respectively. The number of H-bonds generated

stabilized after 50ns, indicating that HJ010 produced the most

persistent H-bonds, followed by HJ069. For the HJ069 ligand, as

the system approached equilibrium, it gained polar contacts with

XDH residues and maintained a high number of contacts until

approximately 35 ns, before losing some contacts in the second half

of the simulation. This observation could be attributed to a

conformational change in the ligand and is consistent with the

ligand RMSD. HJ059 stably formed a hydrogen bond most of the

time. Although no polar contact was detected between the HJ028

and XDH structures, other major hydrophobic interactions may be

responsible for the binding stability of HJ028, despite significantly

weaker binding compared to l igands with hydrogen

bonding capability.
3.7 Molecular dynamics simulation of 2’-
methylacetophenone complex to XDH for
200 ns

After an initial screening of 50 ns MD simulations, we

concluded that the HJ010 structure, 2’-methylacetophenone, was

more tightly and stably bound to XDH. Therefore, we performed

200 ns MD simulations in triplicate and integrated this data

together with the shorter trajectories initially obtained by the

SiBioLead platform to better simulate the trajectory of the

structure’s action in binding to XDH in vivo (Figure 7, Table 6,
FIGURE 5

Diagram of the structure of a druggable pocket and DoGSiteScorer Score content. The score contents are sorted by the highest simple score and
the yellow area in the box shows the structure of the druggable pocket 0, which has the highest simple score.
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Supplementary Table S6), and to confirm the stability of the ligand

under a longer simulation timescale.

The RMSD curve reflected the fluctuation of protein

conformation, as shown in Figures 7A, B, indicating that the

RMSD had some fluctuation in the early stage of the trajectory.

However, after about 30 ns the fluctuation was less than that of apo

XDH and stabilized. This suggested that there was no major change

in the conformation of 2’-methylacetophenone after binding to

XDH, and the combination of the two resulted in a relatively

stable complex.

Rg and SASA were often used as a measure of protein structural

compactness and changes in protein exposure to solvents (84)

(Figures 7C, D). An increase in the Rg value implied a decrease

in the structural compactness of the protein, which indicated

greater flexibility and less stability (85). The Rg of 2’-

methylacetophenone with XDH was more stable after 6.32 ns.

The SASA values of apo-protein (black) and HJ010-bound

protein (pink) ranged from 475.89 to 515.714 nm2, suggesting

that the folding pattern of the proteins did not change

significantly due to binding to the ligand and therefore were

likely to remain stable throughout the simulation.
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The average RMSF values between the apo- and HJ010-bound

structures exhibited small differences around two regions

surrounded by peaks at residues Phe201 and Pro498, as shown by

the red dashed boxes in Figure 7E. Intermolecular hydrogen

bonding was one of the most important interactions between

proteins and ligands and played a key role in the stability of the

complexes (86). The distribution and number of hydrogen bonds

between ligands and proteins during MD simulations are shown in

Figure 7F. HJ010 maintained a large number of hydrogen bonds

during the 200 ns simulation. MD simulation studies showed that

the ligand-receptor complex of HJ010 with XDH was stable.
3.8 2'-methylacetophenone and XDH form
a stable complex

To verify the binding stability of 2'-methylacetophenone and

XDH, we have verified the stability of the combination of HJ010 and

XDH through CETSA (Figures 8A, B). CETSA (75) is an

experiment that measures how efficiently a drug binds to a target

protein inside a cell, based on the principle that the target protein
TABLE 3 Screening of candidate compounds for treating hyperuricemia of Zanthoxyli Pericarpium.

Component
Hydrogen bonding at

inactive sites
Pockets

of druggability
Average binding energy<-6

Kcal/mol
Candidate
compound

HH010 Ser347、Gly350 Top1 -6.301 HJ010

HH016 Gly260、Asn261、Thr262、Glu263 Top1 -7.062 HJ016

HH022 Leu404 Top1 -8 HJ022

HH026 Leu257 Top1 -7.049 HJ026

HH027 Ser69、Ser344 Top1 -6.991 HJ027

HH028 Ser69、Ser344 Top1 -7.434 HJ028

HH030 Lys249、Leu404 Top1 -7.71 HJ030

HH037 Ser347 Top1 -6.521 HJ037

HH047 Ala301 Top1 -6.455 HJ047

HH051 Gly260 Top1 -7.398 HJ051

HH053 Asn261、Thr262 Top1 -8.985 HJ053

HH059 Ala301、Ser347 Top1 -9.52 HJ059

HH064 Gln62、Ser69、Ser344 Top1 -9.103 HJ064

HH069 Val259、Asn261 Top1 -6.763 HJ069

HH074
Pro253、Lys256、Asn261、Ile264、
Arg394、Pro400

Top1 -11.246 HJ074

HH077 Thr2Gln62、Glu263 Top1 -8.692 HJ077

HH080 Asn261、Thr2Gln62、Glu263 Top1 -6.508 HJ080

HH100 Lys249 Top1 -6.583 HJ100

HH101 Val259、Ile264 Top1 -9.638 HJ101
The Composition column represents the components of Zanthoxyli Pericarpium docked with xanthine dehydrogenase (XDH). Hydrogen bonding at inactive sites represents the inactive sites
where XDH and ZP docking can produce hydrogen bonding. The Pockets of druggability column represents whether the compound came from the druggability pocket of Top1. The mean
binding energy of the compounds are lower than -6 Kcal/mol, and the candidate compounds represent the candidate compounds for the treatment of hyperuricemia of Zanthoxyli Pericarpium.
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TABLE 4 ADMET screening of candidate compounds from Zanthoxyli Pericarpium.

Toxicity

Compounds
with
drug

potentialMES ROA Carcinogenicity
Predicted
Toxicity
Class

.104 0.051 0.507 4 HJ010

.012 0.014 0.3 5

.459 0.734 0.76 4

.901 0.571 0.815 5

.806 0.1 0.38 3

.008 0.436 0.029 4 HJ028

.061 0.386 0.863 2

.044 0.029 0.798 4

.066 0.121 0.814 4

.635 0.739 0.667 4

.508 0.035 0.055 5

.026 0.018 0.047 4 HJ059

.809 0.073 0.043 5

.003 0.009 0.108 5 HJ069

.743 0.021 0.715 5

.031 0.036 0.584 4

.004 0.016 0.084 2

.023 0.024 0.248 4

.657 0.065 0.05 3

items of Lipinski Rule were violated, rejected was shown. The probability of oral bioavailability
alue between 0.04 and 20. The output value in metabolic screening represented the probability
e, and thus the frequency of drug administration. A drug clearance of <5 ml/min/kg means low
ip with the carcinogenicity. Rat Oral Acute Toxicity is one of the most important tasks for the
ic. The predicted toxicity grade was divided into five levels, Class I: fatal if swallowed (LD50 ≤ 5);
swallowed (2000 < LD50 ≤ 5000); Class VI: non-toxic (LD50 > 5000).
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Candidate
compound

Medicinal
Chemistry Absorption Distribution Metabolism Excretion

PAINS
Lipinski
Rule

F20% VD

CYP 1A2/
2C19/2C9/

2D6/
3A4

inhibitor

CYP 1A2/
2C19/2C9/

2D6/
3A4

substrate

CL
H-
HT

A

HJ010 0 Accepted 0.004 0.818 0.4396 0.5876 6.597 0.052 0

HJ016 0 Accepted 0.927 2.704 0.2954 0.2956 9.707 0.917 0

HJ022 0 Accepted 0.002 0.435 0.7356 0.6882 11.219 0.134 0

HJ026 0 Accepted 0.002 1.575 0.2418 0.4796 9.232 0.343 0

HJ027 0 Accepted 0.295 0.908 0.5788 0.7054 4.503 0.098 0

HJ028 0 Accepted 0.017 1.179 0.1264 0.6062 18.537 0.261 0

HJ030 0 Accepted 0.117 0.618 0.6408 0.6278 12.128 0.31 0

HJ037 0 Accepted 0.027 1.092 0.623 0.8436 11.466 0.067 0

HJ047 0 Accepted 0.732 0.833 0.6136 0.7534 14.042 0.036 0

HJ051 0 Accepted 0.002 0.413 0.7162 0.8448 8.747 0.162 0

HJ053 0 Accepted 0.949 0.657 0.7094 0.5718 7.066 0.066 0

HJ059 0 Accepted 0.01 1.963 0.0842 0.5912 16.686 0.16 0

HJ064 1 Rejected 0.477 0.904 0.0428 0.1186 5.369 0.144 0

HJ069 0 Accepted 0.351 2.46 0.6638 0.5282 8.496 0.42 0

HJ074 0 Rejected 0.045 0.61 0.009 0.1274 1.387 0.062 0

HJ077 0 Accepted 0.304 0.925 0.6 0.673 13.319 0.795 0

HJ080 0 Accepted 0.116 0.74 0.1642 0.2648 2.573 0.018 0

HJ100 0 Accepted 0.004 1.177 0.3906 0.4748 2.727 0.019 0

HJ101 1 Accepted 0.93 0.579 0.4706 0.21 8.284 0.1 0

PAINS, Pan Assay Interference Compounds, showed that 1 of the pain compounds were screened for false positive results or suspected compounds. Lipinski Rule, if more than 2
of 20% is greater than 0.7, indicating good bioutilization effect. VD, Volume Distribution, is an important parameter that describes the distribution of drugs in the body, with a
of being a substrate/inhibitor and ranged from 0 to 1. CL, clearance of a drug, is an important pharmacokinetic parameter, which defines the volume of drug distribution, half-li
clearance. H-HT, drug-induced liver injury, which output value represents the probability of causing injury. The Ames test for mutagenicity, which effect has a close relationsh
safety evaluation of drug candidates. An output value greater than 0.7 for H-HT, Ames, ROA and Carcinogenicity indicates that the compound is likely to be carcinogenic or tox
Class II: fatal if swallowed (5 < LD50 ≤ 50); Class III: toxic if swallowed (50 < LD50 ≤ 300); Class IV: harmful if swallowed (300 < LD50 ≤ 2000); Class V: may be harmful i
v
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usually becomes stable when it binds to the drug molecule. That is,

with the increase of temperature, the protein will degrade. When the

protein binds to the drug, at the same temperature, The amount of

non-degraded protein will increase. With the increase of

temperature, the expression of XDH after the intervention of

HJ010 was more and the binding was more stable, compared with

DMSO group. In addition to this, we add the application of CB-

Dock2, a database for blind docking between proteins and ligands,

integrating cavity detection, docking and homologous template
Frontiers in Endocrinology 14
fitting (54). Five blind grafting results proved that the

combination of HJ010 and XDH was stable (Supplementary Table

S7). One of the most suitable binding pockets and a 2015 article

"Aromatic aldehydes at the active site of aldehyde oxidoreductase

from desulfovibrio gigas: reactivity and molecular details of the

enzyme-substrate and enzyme-product interaction". Binding

pockets are similar and can be cross-validated, improving the

reliability of reported binding affinities (Figure 8C). All in all, 2'-

methylacetophenone and XDH form a stable complex.
FIGURE 6

Structural analyses of the apo-, HJ010-, HJ028-, HJ059- and HJ069-bound XDH based on molecular dynamics simulation. The four inhibitors’
values of selected parameters are illustrated as follows, including protein (A) RMSD, (B) ligand RMSD, (C) Rg, (D) SASA, (E) RMSF, (F) change in RMSF,
(G) the number of hydrogen bonds and (H) the number of pairs within 0.35 mm.
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4 Discussion

HUA is defined as a fasting blood uric acid level of more than

420 mmol/L on two different days in adults with a normal purine

diet, irrespective of gender (8). It has a growing prevalence year by

year and has become the second most prevalent metabolic disease in

China, second only to diabetes mellitus (87). In addition to causing

gout, elevated serum uric acid levels are associated with an increased

risk of hypertension, cardiovascular disease, mortality, and

progression of chronic kidney disease (88, 89). According to the

mechanism of action, commercially available uric acid-lowering

drugs mainly focus on inhibiting uric acid production and

increasing uric acid excretion, which can also cause significant

side effects on the human body in clinical practice (90, 91).

Currently, safe, reliable and economical uric acid-lowering drugs

are being developed (92). The high number of people with HUA

worldwide is costly in terms of medical expenditure, and the

dangers associated with poorly controlled development of gout

are enormous (93). Consequently, HUA has become an

important risk factor affecting the quality of life, and the

prevention and control of HUA have become an important public

health issue. It is worth every clinical worker to pay attention to it.

There is increasing recognition of the value of active ingredients

in traditional Chinese medicine, and emerging evidence indicates

that a number of herbal formulas can reduce uric acid production

by inhibiting the activity of adenosine deaminase and (or) xanthine

oxidase, or increase uric acid excretion by regulating the expression

of uric acid transporter protein, and play a role in the

pharmacological effect of lowering uric acid. Studies have shown

that Paeonia veitchii Lynch (94) and turmeric (95) can inhibit

xanthine oxidase activity and reduce blood uric acid levels.

Dioscorea villosa (96, 97), Gardenia jasminoides (98) and Paeonia

veitchii Lynch (94) can regulate the expression of urate transporter

protein, reduce the reabsorption of uric acid, and promote the

excretion of uric acid. ZP, a traditional Chinese herb and spice, has a

powerful medicinal and dietary value. ZP has anti-inflammatory

and analgesic effects, and studies have shown that peppercorns in

ZP are known to activate the JAK2/STAT3 signaling pathway,

which inhibits inflammation and reduces the production of pro-

inflammatory cytokines such as IL-6 and TNFa, showing anti-

inflammatory and analgesic a effects in a variety of animal models
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(13). A research study has found that extracts of peppercorn fruits

have the effect of inhibiting xanthine oxidase activity in vitro (22),

which may provide a new preventive and therapeutic direction in

drug discovery for the prevention and treatment of HUA.

In this paper, with the support of computer-aided drug design

and virtual drug screening, we have proposed a number of active

ingredients and mechanisms of action that may be involved in ZP’s

uric acid-lowering effects. This approach may enable more rapid

development of new uric acid-lowering drugs and save human,

material and financial resources; accelerate the speed of target

discovery and improve the accuracy of target discovery to develop

new drugs purposefully; and start from consideration of

microscopic biomolecular structure, which can be more intuitive

to understand and explain the experimental results showing ZP’s

effects on uric acid-lowering.

With the TCMSP, UniProt and SwissTargetPrediction

databases, we obtained the active ingredients of ZP and their

corresponding targets and obtained a total of 101 active

ingredients of ZP and 81 of its targets. Then we screened HUA-

related targets through GeneCards, CTD and Open Target

databases, and there were 140 HUA targets. Finally, we found 10

targets of hyperuricemic drugs through DrugBank.

The intersecting targets of ZP, hyperuricemia and drug were

obtained by using Venny 2.1.0 and uploaded to the String database

for PPI network mapping. The core targets included 15 genes

including XDH, PTGS2, TNF, ESR1 and MAOA. In addition, we

filtered and created a PPI map of “ZP-HUA-drug” using CytoNCA

plug-in for Cytoscape v3.8.2. We examined degree values to explore

the biological importance of proteins in a network, identifying

nodes that are critical for communication within the network.

Proteins with high values are important intermediate proteins

that play important functional and kinetic roles, as well as serving

as potential drug targets (99). From the Target sorting diagram, we

found that XDH had the highest degree value among the core

proteins. In mammals, catabolism of uric acid cannot function

without Xanthine dehydrogenase. Xanthine dehydrogenase, also

known as XDH or XO or XAN1, is an aerobic dehydrogenase

enzyme with FAD (Flavin Adenine Dinucleotide) and FMN (Flavin

Mononucleotide) as cofactors (100). This enzyme is involved in the

metabolism of xanthine, converting it to uric acid by catalysis (101).

It has been demonstrated that inhibition of XDH activity reduced
TABLE 5 Structural analyses of stabilized trajectories following equilibration at 10 ns.

Analysis XDH-apo XDH -HJ010 XDH -HJ028 XDH -HJ059 XDH-HJ069

Protein RMSD (nm) 0.203 ± 0.014 0.184 ± 0.011 0.208 ± 0.015 0.184± 0.009 0.230± 0.012

Ligand RMSD (nm) N/A 0.015 ± 0.006 0.021 ± 0.005 0.129 ± 0.025 0.114 ± 0.018

Radius of gyration (nm) 3.216 ± 0.006 3.201 ± 0.006 3.218 ± 0.006 3.214 ± 0.006 3.215 ± 0.008

Solvent accessible surface area (nm2) 497.8 ± 3.969 490.119 ± 4.446 494.235 ± 3.906 492.086 ± 5.289 492.435 ± 4.407

RMSF (nm) 0.113 ± 0.056 0.104 ± 0.050 0.111 ± 0.073 0.112 ± 0.065 0.111 ± 0.066

Number of hydrogen bonds N/A 1069 ± 0.443 204 ± 0.221 322 ± 0.272 1358 ± 0.626

Number of pairs within 0.35 nm N/A 111 ± 0.164 6158 ± 1.002 1695 ± 0.521 4170± 0.988
N/A, not applicable; RMSD, root mean square deviation of backbone Ca atoms; RMSF, root mean square fluctuation; XDH, xanthine dehydrogenase; HJ010, 2’-methylacetophenone; HJ028,
ledol; HJ059, beta-sitosterol;HJ069, ethyl geranate.
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blood uric acid levels (102). All of these are involved in the

development of HUA, and XDH is an important protein in this

PPI network that exerts a biological role in uric acid lowering as well

as a potential drug target.

With the help of the DAVID database, we performed GO and

KEGG pathway enrichment analyses on the intersected targets. The

CC from the GO enrichment analysis graph reflected the

localization of genes or proteins within the cell, with the plasma

membrane and extracellular exosome enriched with the highest

number of genes. It is well known that about 70% of uric acid in the

body is excreted mainly through the kidneys (103, 104), and a large

number of uric acid transporters are present in the membrane of

renal cells, which reduce the level of uric acid in the blood through

reabsorption. Some renal transporter proteins enhance the

membrane transport of uric acid by facilitating ion transport as a

driving force (10). In addition, the basic molecular alterations in the

multi-omics networks of patients with gouty knee osteoarthritis

involve acute inflammatory response, exosomes, immune response,
Frontiers in Endocrinology 16
lysosomes, linoleic acid metabolism and synthesis (105). Also,

circulating exosomal miRNAs may be involved in the

pathogenesis of nonalcoholic fatty liver disease and are associated

with aminotransferase and uric acid (106). This suggests that the

active ingredients of ZP may exert uric acid-lowering effects and

functions in the plasma membrane and extracellular exosome.

KEGG pathway enrichment mainly includes metabolic

pathways and lipid and atherosclerosis signaling pathways. We

found the presence of uric acid-lowering active ingredient in ZP and

the results showed that the active ingredient may be related to

metabolic pathways and inflammatory pathways. The uric acid

metabolic process is also involved in a variety of diseases of chronic

inflammatory response. High uric acid in the blood will trigger the

production of inflammatory bodies (107, 108). ZP’s active

ingredients have analgesic and anti-inflammatory effect, and can

reduce the inflammatory response brought about by high uric acid,

and thus achieve the effect of controlling uric acid. IL-17 signaling

pathway plays a key role in inflammation and autoimmune diseases
FIGURE 7

Molecular dynamics simulation of 200 ns trajectories for apo- and HJ010- XDH complex. (A, B) RMSD (C) Radius of gyration for apo- and HJ010-
XDH complex. (D) Solvent accessible surface area. (E) RMSF diagrams obtained from molecular dynamics simulation of apo- and HJ010- XDH
complex. (F, G) Hydrogen bonds between ligands and proteins during molecular dynamics simulations.
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(109). Studies have shown that uric acid injection in rats

significantly increased renal injury, including renal tubule injury

score, blood urea nitrogen, and serum creatinine, and at the same

time induced the mass production of IL-17 and the recruitment of

Th17 cells. Treatment of rats with a specific anti-IL-17 mAb

mitigates urico-induced kidney injury with the inactivation of

nuclear factor-kB. In conclusion, uric acid can induce the

expression of IL-17 and activate the IL-17 signaling pathway,

thereby leading to kidney injury. Neutralizing IL-17 can inhibit

NF-kB signaling, thereby alleviating urico-induced kidney injury

(110). The discovery that IL-17 signaling pathway is involved in

hyperuricemia associated kidney injury provides a new perspective

for understanding the role of uric acid in kidney injury. Advanced

glycosylation end-product-receptor signaling pathway refers to the

binding of protein glycosylation products (AGEs) to their receptor

(RAGE) caused by hyperglycemia, Signaling pathways that trigger a

series of reactions (111). High concentration of uric acid can

increase the expression and exosecretion of high mobility group

protein B1 (HMGB1) in endothelial cells, and HMGB1 interacts

with advanced glycosylation end-product receptor (RAGE).

Induced oxidative stress and inflammation (112) These

mechanisms reveal the important role of uric acid in the

occurrence of metabolic diseases and cardiovascular diseases, and
Frontiers in Endocrinology 17
provide a potential target for the treatment of multi-tissue organ

damage caused by hyperuricemia.

Subsequently, we sought to clarify the mechanisms of the

specific components of ZP, to find stable compound structures in

ZP with drug-forming potential. We performed molecular docking

of the potential active ingredients to the core target using Autodock

Vina. The optimal binding sites of the ZP compounds to the urinary

drug-lowering proteins were predicted using the Protein Plus

platform. MD simulation was used to verify the stability of the

optimal binding site. According to the molecular docking results,

the core active ingredient of ZP was able to bind well to XDH, the

target of the drug for HUA. A total of 49 optimal binding sites were

identified for the peppercorn compounds and the urinary-lowering

drug proteins using the Protein Plus platform, and four sites with

the highest potential were selected based on druggability measures.

Short 50 ns molecular simulations were performed for ligand-XDH

complexes where the ligand was bound to the active site, and the

HJ010-XDH complex was selected based on the high number of

hydrogen bonding, and favorable RMSF, RMSD, Rg, and SASA

properties. Finally, three longer MD simulations of 200 ns were

carried out to further verify the binding stability of the site.

The results of the time-dependent RMSD analysis showed that

all four systems (3xHJ ligand-protein complex simulations and the

apo XDH) achieved equilibrium, although the ligands caused a

greater shift to the overall structure compared to apo XDH. In

contrast to existing studies on XDH, the values and magnitudes of

RMSD values for simulated HJ-XDH complexes (between 0.184 and

0.260 nm) were consistent, and occasionally outperformed a variety

of natural compounds: geraniol (0.39 nm) and lignans (0.27 nm)

(113), and a potent XDH inhibitor: allopurinol (0.43 nm) (114).

These differences may be a result of the simulation time, as longer

simulations capture larger changes in protein structure.

Although the RMSD values were relatively stable, the structural

compactness of the protein, as measured by the mean Rg and SASA,

differed from another study, which showed that in XO, the Rg value

was stable at around 2.88 nm and the SASA value was stable at

about 326 nm2 and this result was similar to that of the XO-

allopurinol complex (114). This differed considerably from our MD

simulation results, probably because xanthine oxidase has two
TABLE 6 Molecular dynamics simulations of 200 ns XDH with 2’-
methylacetophenone in triplicate.

Analysis XDH-apo XDH -HJ010

Protein RMSD (nm) 0.303 ± 0.044 0.262 ± 0.028

Ligand RMSD (nm) N/A 0.237 ± 0.082

Radius of gyration (nm) 3.234 ± 0.007 3.207 ± 0.007

Solvent accessible surface
area (nm2)

498.635 ± 5.854 492.777 ± 5.232

RMSF (nm) 0.130 ± 0.087 0.127 ± 0.077

Number of hydrogen bonds N/A 3527 ± 0.456

Number of pairs within
0.35 nm

N/A 302 ± 0.242
N/A, not applicable; HJ010, 2’-methylacetophenone.
FIGURE 8

CESTA for interaction between 2’-methylacetophenone and XDH. (A) A representative graph of CETSA and (B) the density of the bands were
measured and shown as a line chart. Values are expressed as mean ±SEM (n = 3). (C) 2’-methylacetophenone and XDH molecular docking of the
most fit predictive pocket schematic, via CB-Dcok2.
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interconverted forms: xanthine dehydrogenase (XDH) and

xanthine oxidase (XO), and therefore small differences were

observed in the protein structure, thus leading our results to show

higher Rg and SASA values as we simulated the XDH form. In the

200 ns simulation of HJ010 with XDH, the average Rg and SASA

values of HJ010-XDH were almost all smaller than those of apo

XDH, suggesting that the folding pattern of the protein did not

undergo significant changes due to binding to the ligand, and

therefore may remain stable throughout the simulation period.

RMSF values were also comparable to existing studies on MD

simulations of similar enzymes. The apo-protein showed greater

RMSF fluctuation compared to ligand-bound structures around

peaks at Lys185 and Glu530 in our study, consistently echoing the

findings from the ligand-bound and ligand-free studies on XO by Pan

2021 (114). As can be seen from the hydrogen bond analysis, HJ010,

followed by HJ069, formed the largest number of polar contacts with

XDH residues. Although the polar interactions within 50 ns

simulations were volatile, compared with other ligands such as

HJ028 and HJ059, a largely consistent pattern shows that the

pockets have strong ligand interaction. The higher hydrophilicity of

HJ010 may have contributed to the increased polar contacts. Further

mutagenesis studies are needed to determine the role of these polar

contacts on XDH inhibition. Three 200 ns MDS showed that the

HJ010-XDH complex yielded favorable RMSD, RMSF and Rg values,

while no separation of receptor and ligand was observed during all

simulations. These results strongly suggested that the binding of the

active compounds to their targets is stable and therefore these core

compounds warrant further experimental investigation.

We have some limitations with regard to this article. In molecular

docking, only rigid docking was selected, ignoring the flexibility of the

receptor, and induced coordination docking or assembly docking can

better understand the interaction between ligand and protein. In

pharmacokinetics, although hepatotoxicity and carcinogenicity were

assessed, other potential side effects, such as cardiovascular or renal

toxicity, were not explored. Given that ZP may play a role in

hyperuricemia induced multisystem damage, cardioToxCSM will be

introduced later to predict cardioToxCSM (115) and renal toxicity of

Extra - tree model (116). The research mainly relies on computational

methods (docking, simulation and network pharmacology), and our

next research goal will be to verify the molecular mechanism of ZP

treatment of hyperuricemia from in vivo and in vitro models.

Based on bioinformatics analysis of network pharmacology,

molecular docking and MD simulations, we propose that chemical

constituents in ZP have a role in controlling uric acid and that these

compounds could be viable candidates for future development of

XDH inhibitors. The chemical composition of ZP is mainly divided

into alkaloids, terpenoids, flavonoids, fatty acids and other chemical

compounds (14), of which volatile oil has been a hot spot of

research in recent years (117). The main chemical components of

volatile oil and its content are affected by factors such as production

area, harvesting time and extraction and processing techniques. At

present, the development of ZP products in the market has great

prospects, but first of all, it is necessary to solve the problem of the

instability of the volatile oil of ZP. Only by maintaining the stability
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of the volatile oil of ZP can the loss of active chemicals be reduced so

that they are not easily volatilized in food or medicine. In addition,

understanding the pharmacological mechanism of action of the

active substances of ZP in vivo can improve the success rate of

product development and reduce the risks in clinical development.

Our next task is to comprehensively validate the pharmacological

mechanism of action of the active ingredients of ZP in vivo through

experiments and to assess the biosafety of these ingredients, for

which more clinical trials and comprehensive pharmacological and

biochemical studies are necessary.
5 Conclusions

In this paper, a computational molecular modelling method is

used to predict and calculate the interactions between potential

active compounds of ZP with XDH, a target of HUA, which may

become a uric acid-lowering drug. This will help clinical drug

development and reduce time, effort and financial resources

required to develop an effective medicinal treatment, giving new

hope to a large number of patients with high uric acid and gout.

Importantly, the compound we identified comes from a seasoning

product with both medicinal and culinary value, a necessity in

everyday diet that is safe, reliable and deeply culturally ingrained.

We will continue to research and develop an understanding of the

mechanism of controlling uric acid by ZP in depth, with subsequent

research to be performed on cells and animals, so as to accumulate

reference data for the development of derivatives of ZP, and to

increase public awareness of its potential in the management of

HUA. The capability to control uric acid through flexible intake of

ZP in daily diet would be of immense benefit.
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