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and humans based on
bioinformatics analysis
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Background: Diabetic peripheral neuropathy (DPN) is a common chronic

complication of diabetes, while the underlying molecular mechanisms are still

unclear. The aim of this study was to screen the key genes and the roles of

immune infiltration in DPN using bioinformatics analysis.

Methods: DPN mice datasets including GSE222778, GSE11343, GSE70852,

GSE27382, and GSE34889 were retrieved from the GEO database. Data of human

DPNwere retrieved from the dbGaP. The differentially expressed genes (DEGs) were

selected and further analyzed by using Gene Ontology, Kyoto Encyclopedia of

Genes and Genomes enrichment analysis, and Gene Set Enrichment Analysis (GSEA)

to find the shared key pathway. Protein–protein interaction networks were built in

shared mouse and human DEGs. The hub genes were selected and verified in vitro

using high- glucose-treated PC12 cells and Schwann cells. The single-sample GSEA

(ssGSEA) algorithm was used to analyze the proportions of infiltrating immune cells

in human DPN and the subsequent correlations with hub genes.

Results: A total of 323 mouse DEGs and 501 human DEGs were selected, and

they were found significantly enriched in immune-related biological functions

and pathways. A total of 13 DEGs were found shared in mice and human DPN

datasets, and among them, there were 7 hub genes, namely, PLAUR, S100A8,

IL7R, CXCL13, SRPX2, CD300LB, and CFI. The expression of Cfi, S100a8, Cxcl13,

and Cd300lb was consistently confirmed in vitro. The scores of neutrophils and

NK CD56bright cells varied most significantly by immune cell infiltration analysis

(p < 0.01). Furthermore, the selected hub genes were found to be highly

correlated with the immune infiltration.

Conclusion: Our study indicated the importance of immune dysregulations in DPN

and identified several hub genes through combined analysis inmice and humanDPN

samples, thus providing potential diagnostic and therapeutic targets in the future.
KEYWORDS

diabetic peripheral neuropathy, bioinformatics analysis, differentially expressed genes,
hub genes, immune infiltration
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1 Introduction

Diabetic peripheral neuropathy (DPN) is a prevalent chronic

complication of diabetes mellitus (DM), affecting approximately

50% of DM individuals in the world (1). Previous studies indicated

that the prevalence of clinically diagnosed DPN could rise to 60% to

75% when more sensitive nerve conduction testing methods are

conducted (2–4). DPN had brought up huge economic and medical

burden for the affected individuals (5), as it served as a primary

factor in the development of diabetic foot and was a significant

contributor to non-traumatic lower limb amputations (6).

Nevertheless, the initial symptoms of DPN were currently not

apparent, and the relevant reliable biomarkers for early

identification of DPN were scarce, which easily led to the affected

patients progressing to an irreversible stage before clinical detection.

Prior research had shown that the onset and progression of

DPN were primarily attributed to elevated blood glucose levels,

insulin insufficiency, and abnormal lipid profiles (7, 8). However,

the precise molecular pathways underlying nerve dysfunction and

diminished regenerative potential remained poorly understood. The

emergence of bioinformatics has introduced novel approaches to

investigating DPN. Through the analysis of multi-omics data

encompassing the genome, transcriptome, proteome, and

metabolome, bioinformatics analysis could elucidate the

molecular mechanisms and pathological pathways of the diseases,

identify pivotal factors driving their progression, and establish a

theoretical framework for personalized therapeutic interventions (9,

10). Furthermore, leveraging data mining techniques and machine

learning algorithms, bioinformatics analysis could sift through vast

biomedical datasets to pinpoint biomarkers associated with the

onset, progression, and prognosis of defined diseases.

In recent years, there has been several studies conducted on the

regulatory pathways and genes associated with DPN using

bioinformatics analysis (11–19). For instance, Elzinga et al.

employed a combination of the streptozotocin-induced db/+

murine model of type 1 diabetes mellitus (T1DM) and the db/db

murine model of type 2 diabetes mellitus (T2DM) and found the

crucial role of inflammation in the development of DPN (14). Li

et al. utilized bioinformatics and machine learning techniques to

identify potential biomarkers in DPN mice, ultimately pinpointing

LTBP2 and GPNMB as diagnostic markers for DPN (19). Hal et al.

used transcriptome analysis in human sensory neuron samples with

DPN and found increased expression levels of inflammation-related

genes and decreased expression levels of neuronal-related genes,

thus revealing the contributions of inflammation and neuronal loss
Abbreviations: DPN, diabetic peripheral neuropathy; DM, diabetes mellitus;

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; SCN, sciatic

nerve; DEGs, differential expressed genes; GSEA, gene set enrichment analysis;

PPI, protein–protein interaction; TF, transcription factor; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; MCC, maximal clique

centrality; qRT-PCR, quantitative real-time PCR; GAPDH, glyceraldehyde-3-

phosphate dehydrogenase; BP, biological process; CC, cell compartment; MF,

molecular function; PCA, principal component analysis; MOCODE, Molecular

Complex Detection; TNF-a, tumor necrosis factor-alpha; NLR, neutrophil- to-

lymphocyte ratio.
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to pain on DPN (20). However, the previous studies primarily

focused on either mice or human samples and seldom studies aimed

to found conservatively shared pathogenesis among mice and

human DPN. This study involved the acquisition of five datasets

containing sciatic nerve (SCN) samples from mice with DM and a

dataset containing dorsal root ganglia from human DPN.

Differentially expressed genes (DEGs) were initially identified

within these datasets. The enrichment pathways and biological

functions of these shared DEGs were subsequently analyzed,

which highlighted the significance of immune regulation in DPN,

prompting further analysis of immune infiltration using the single-

sample Gene Set Enrichment Analysis (ssGSEA) algorithm.

Following this, the mouse DEGs were mapped to human gene

IDs and validated in human DPN. The protein–protein interaction

(PPI) networks were constructed using shared DEGs identified

from mice and human DPN datasets to identify hub genes.

MicroRNAs and transcription factors (TFs) associated with these

shared DEGs were investigated. Additionally, the relationship

between the hub genes and immune infiltration was examined.

Finally, the mRNA expression levels of the hub genes were validated

using a high- glucose-treated PC12 cell model in vitro. Overall, our

findings underscored the significance of immune dysregulation in

the pathogenesis of DPN and found key shared genes among

humans and mice of DPN, which might serve as potential

diagnostic and therapeutic biomarkers for DPN in the future.
2 Materials and methods

2.1 Collection of the datasets

GSE222778, GSE11343, GSE70852, GSE27382, and GSE34889

were retrieved based on the keyword “diabetic peripheral

nephropathy” and downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). To ensure consistency of analysis,

mouse samples only containing the SCN tissues were selected.

The probes in the above datasets were subsequently annotated

according to the platform file. Table 1 shows the basic

information of the above five datasets from mice and Figure 1

shows the basic flow chart of the whole analysis. Microarray

measurements including SCN samples of 16-week-old db/+, STZ-

treated db/+, and db/db mice from the dataset GSE222778 were

selected (n = 6 in each group). The dataset GSE222778 consists of

two subgroups, one of which was STZ-induced T1DM mice and

another was T2DM db/db mice; thus, we divided it into two groups,

which we defined as GSE222778a and GSE222778b separately for

further analysis. The GSE27382 dataset contains six SCN samples

from 24-week-old db/db mice and seven SCN samples from db/+

mice. The GSE70852 dataset contains five SCN samples from 26-

week-old ob/ob mice and five SCN samples from db/+ mice. The

GSE11343 dataset contains four SCN samples from 24-week-old

DBA/2J mice and four SCN samples from STZ-treated age-matched

DBA/2J mice. The GSE34889 dataset contains seven SCN samples

from 24-week-old db/+ mice and eight SCN samples from db/db

mice. The original data of human diabetic peripheral nerve tissues

were retr ieved from the dbGaP with access ion code
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phs002548.v1.p1, which includes five dorsal root ganglia samples of

DPN patients and seven dorsal root ganglia samples of non-

DPN patients.
2.2 Identification of differentially
expressed genes

Six DPN mice groups in total were selected for further analysis

including two groups of T1DM and four groups of T2DM. The

GEOquery package in R (21) was used to download the original

data of GSE11343 and GSE222778. The limma package was

subsequently used to normalize the data and find the DEGs.

DEGs for GSE70852, GSE27382, and GSE34889 datasets were

analyzed through the GEO2R (https://www.ncbi.nlm.nih.gov/geo/

geo2r/) web tool that also used the limma package for identifying

DEGs. The Benjamini–Hochberg false discovery rate (FDR) method

was applied to discover genes that were statistically significant and

limited false positives. Genes that met the cutoff criteria, adjusted p-
Frontiers in Endocrinology 03
values (padj) <0.05, and |log2FC| ≥1 were considered as DEGs in

these six groups except for GSE11343, which had limited numbers

of DEGs under the above criteria; thus, we reset the cutoff criteria, at

p-values <0.05 and |log2FC| ≥1 instead. A volcano plot was used to

visualize the differential analysis results. Venn analysis was used to

find the common DEGs. Genes that have appeared three or more

times in six groups of mouse DPN datasets were considered to be

the common mouse DEGs.
2.3 Gene Ontology and pathway
enrichment analysis of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis were performed using the

clusterProfiler package, org.Hs.eg.db package, enrichplot package,

and ggplot2 package in R language for analysis and image

generation separately. The significance cutoff value was set at a

padj < 0.05.
TABLE 1 Overview of mice datasets with their GEO features and DEGs.

DM type Strain Age GEO
accession

GEO
platform

Total DEGs Upregulated
DEGs

Downregulated
DEGs

Type 1 db/+ 16 weeks GSE222778a GPL13112 731 421 310

DBA/2J 24 weeks GSE11343 GPL1261 308 175 133

Type 2 ob/ob 26 weeks GSE70852 GPL16368 161 61 100

db/db 24 weeks GSE27382 GPL9746 1,213 653 560

db/db 24 weeks GSE34889 GPL9746 1,233 669 564

db/db 16 weeks GSE222778b GPL13112 1,035 370 665
FIGURE 1

Flow chart of this study.
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2.4 PPI networks and the extraction of
hub genes

The retrieval of interacting genes database called STRING

(https://www.string-db.org/) was used to construct the PPI

network of proteins derived from DEGs. The medium confidence

score of 0.500 was set to generate the PPI network. The Cytoscape

(v.3.9, https://cytoscape.org/) software was used for a visual

representation and further PPI network studies. Cytohubba

(https://apps.cytoscape.org/apps/cytohubba) and Molecular

Complex Detection (MOCODE), two plugins in Cytoscape, were

used to calculate the hub genes in the PPI network. Topological

analysis including maximal clique centrality (MCC) was also

selected for finding the top hub genes. The GeneMANIA (https://

genemania.org) website was used to construct the hub gene network

diagrams and present the relationships between the hub genes.
2.5 Identification of TFs and miRNAs

The NetworkAnalyst platform (https://www.networkanalyst.ca/

) was used to construct TF–DEG and DEG–miRNA regulatory

networks to analyze relevant TFs and miRNAs. The TF–DEG

network was established using the JASPAR database. The DEG–

miRNA network was established using the TarBase v8.0. In general,

the degree filter was set as 2 to generate the optimal layout.
2.6 Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis (GSEA) was performed

using the clusterProfiler package (5, 22). The reference gene set was

c2.cp.all.v2022.1.Hs.symbols.gmt [All Canonical Pathways] (3050).

The significant conditions were padj < 0.05 and FDR (q-value) <

0.25. The ssGSEA algorithm provided in the R package-GSVA was

utilized to calculate the immune infiltration status of the uploaded

data (23).
2.7 Quantitative real-time PCR

The PC12 cell was obtained from the American Type Culture

Collection and cultured in Dulbecco’s modified Eagle’s medium

(DMEM) (PM150210B, Pricella, China). Generally, PC12 cells were

cultivated in a medium with normal glucose (25 mM, D-glucose;

NG) or high glucose (100 mM, D-glucose; HG) according to the

previous literature (24) for 48 h. The Schwann cell RSC96 was

obtained from Procell Life Science & Technology Co., Ltd. (CL-

0199, China) and cultured in DMEM. RSC96 cells were cultivated in

a medium with normal glucose (25 mM, D-glucose) or high glucose

(50 mM, D-glucose) for 48 h (25). Total RNA was extracted from

cultured cells with the TRIzon Reagent (CW0580S, CWBIO, China)

and reverse transcription was performed to gather cDNA. The real-

time PCR reactions were conducted using the SYBR Green PCR

system (E096-01A, Novoprotein, China). The PCR program was set
Frontiers in Endocrinology 04
as follows: 95°C for 1 min, 95°C for 20 s, 55°C for 20 s, and 72°C for

30 s, for 40 cycles. Relative quantities were calculated using the

2−DDCt method with actin as inner control. The primers used for

PCR are shown in Supplementary Table 1.
2.8 Statistical analysis

Data were expressed as the mean ± SEM. Principal component

analysis (PCA) was performed to view sample differences after

dimensionality reduction of high-dimensional data between the

DPN group and the control group. Spearman correlation analysis

was used between the immune infiltration scores and hub genes.

The Welch t -test was performed for comparisons between the

control group and the DPN group. p-values < 0.05 were considered

statistically significant.
3 Results

3.1 Identification of DEGs and common
DEGs among DPN mice

As shown in Table 1, 731 DEGs (421 upregulated and 310

downregulated) were found in GSE222778a and 1,035 DEGs (370

upregulated and 665 downregulated) were found in GSE222778b.

For GSE11343, there were 175 upregulated DEGs and 133

downregulated DEGs. In addition, 161 DEGs (61 upregulated and

100 downregulated) in GSE70852, 1,213 DEGs (653 upregulated

and 560 downregulated) in GSE27382, and 1,233 DEGs (669

upregulated and 564 downregulated) in GSE34889 were found.

The volcano plot in Figure 2A visually demonstrated the overall

picture of gene expressions in the six groups, where red and blue

dots indicated upregulated and downregulated genes with

significant differences. Subsequently, the UpSet plot was utilized

to select the upregulated and downregulated DEGs as shown in

Figures 2B, C, and a total of 323 genes that have appeared three or

more times in six groups of DPN datasets were considered to be the

common mouse DEGs.
3.2 Functional enrichment and pathway
analysis in common mouse DEGs

As shown in Figures 2D–F, the top 10 GO terms were illustrated

in the bubble graphs for biological process (BP), cell compartment

(CC), and molecular function (MF) respectively. The DEGs were

significantly enriched in the negative regulation of the immune

system process, regulation of cell–cell adhesion, mitotic cell cycle

phase transition, leukocyte cell–cell adhesion, leukocyte migration,

regulation of leukocyte cell–cell adhesion, regulation of mitotic cell

cycle phase transition, myeloid leukocyte activation, negative

regulation of cell cycle phase transition, and negative regulation of

mitotic cell cycle phase transition in the subset of BP as shown in

Figure 2D. In Figure 2E, the DEGs were significantly enriched in the
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presynapse, collagen-containing extracellular matrix, apical plasma

membrane, chromosomal region, condensed chromosome,

chromosome, centromeric region, kinetochore, serine-type

peptidase complex, and outer kinetochore in the subset of CC. In

the subset of CC, the DEGs were enriched in cell adhesion molecule

binding, glycosaminoglycan binding, metallopeptidase activity,

heparin binding, growth factor binding, modified amino acid

binding, phosphatidylserine binding, protein–lipid complex

binding, lipoprotein particle binding, and acylglycerol O-

acyltransferase activity as seen in Figure 2F. The KEGG pathway

analysis as shown in Figure 2G revealed the following top 10

pathways: complement and coagulation cascades, p53 signaling

pathway, cell cycle, progesterone-mediated oocyte maturation,

oocyte meiosis, neuroactive ligand–receptor interaction, apelin

signaling pathway, regulation of lipolysis in adipocytes, pancreatic

secretion, and renin–angiotensin system. Supplementary Table 2 lists

details of the top 10 GO terms and the KEGG enrichment pathways.
3.3 The immune dysregulation in human
DPN peripheral nerve tissues by
bioinformatics analysis

In order to validate our findings of DPN mice in human, we

firstly downloaded data from the dbGaP with accession code

phs002548.v1.p1, which included five dorsal root ganglia samples

of DPN patients and seven dorsal root ganglia samples of non-DPN

patients. A total of 501 DEGs were found as seen in Figure 3A, and

subsequent functional enrichment analysis revealed that the DEGs
Frontiers in Endocrinology 05
were most significantly enriched in humoral immune response

mediated by circulating immunoglobulin in the subset of BP,

enriched in the immunoglobulin complex in the subset of CC,

and enriched in antigen binding in the subset of MF as shown in

Figure 3B. As shown in Figure 3C, the KEGG pathway analysis

revealed the following nine pathways: cytokine–cytokine receptor

interaction, viral protein interaction with cytokine and cytokine

receptor, complement and coagulation cascades, Staphylococcus

aureus infection, osteoclast differentiation, B-cell receptor

signaling pathway, TNF signaling pathway, allograft rejection, and

IL-17 signaling pathway, which were mainly involved in immune

regulation. Subsequently, we did a GSEA in the human DPN

samples as shown in Supplementary Figure 1 and Supplementary

Table 3. The top five pathways and biological processes were

FCGR3A-mediated IL10 synthesis, signaling by the B-cell

receptor BCR, Fcgamma receptor (Fcgr)-dependent phagocytosis,

Fceri-mediated Nf-kB activation, and parasite infection as shown in

Supplementary Figure 1, which were highly related to immune

response. As the above analysis indicated that immune

dysregulation played an important role in DPN, an immune cell

infiltration analysis was utilized. As shown in Supplementary

Figure 2 and Figure 3D, the PCA cluster plot of immune cell

infiltration and the correlation analysis of 24 immune cell types

were separately presented. The scores of immune infiltration

analysis were compared between the control group and the DPN

group as shown in Figure 3E. Five types of immune cells were

significantly different between DPN and control groups, namely, B

cells (p < 0.05), DC cells (p < 0.05), macrophages (p < 0.05),

neutrophils (p < 0.01), and NK CD56bright cells (p < 0.01).
FIGURE 2

Identification of common DEGs and the functional enrichment and pathway analysis in DPN mice. (A) Dysregulated genes in six groups with
significant differences. The red dots indicated upregulated genes and the blue dots indicated downregulated genes. (B, C) The UpSet plot of genes
that were upregulated (B) and downregulated genes (C) in six groups. (D–G) GO annotations of common DEGs: BP (D), CC (E), MF (F), and KEGG
pathway (G). Top 10 GO terms were illustrated.
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3.4 Validation of mouse DEGs in
human DPN

In order to show the shared pathways of mouse DEGs in human

DPN, we used the gene database from the NCBI website (https://

www.ncbi.nlm.nih.gov/gene) to convert the mouse genes into

human genes. In total, the intersection contained 299 genes

(Figure 4A). Further GSEA showed that the top five enriched

pathways were the cell cycle mitotic, cell cycle, neutrophil

degranulation, innate immune system, and nuclear receptors meta

pathway in human DPN (Figures 4B–F).
3.5 Intersection and functional enrichment
analysis of human and mouse shared DEGs
in DPN

We further merged the mouse DEGs and human DEGs in DPN

using Venn analysis, and as shown in Figure 5A, 13 genes were

found, namely, HSPB6, LRRN1, CXCL13, SUSD2, CFI, CDH9,

SRPX2, CD300LB, WIPF3, IL7R, HILPDA, S100A8, and PLAUR.

The expression heat map of the human and mouse shared DEGs is

illustrated in Figure 5B. As shown in Figure 5C and Supplementary

Table 4, the top four GO terms of BP and MF included chronic

inflammatory response, positive regulation of synapse assembly,

positive regulation of cell–cell adhesion, defense response to

bacterium, growth factor binding, RAGE receptor binding, and

Toll-like receptor binding long-chain fatty acid binding. There was

no significant CC subset, and only one KEGG pathway, the

complement and coagulation cascades, was found.
Frontiers in Endocrinology 06
3.6 Exploration of hub genes

We further generated the PPI network of the shared DEGs

between human and mouse DPN. We used the online database

STRING to calculate relationships between genes and introduced

the interacting genes into Cytoscape for network visualization

analysis as shown in Supplementary Figure 3. Seven hub genes

were selected, namely, PLAUR, S100A8, IL7R, CXCL13, SRPX2,

CD300LB, and CFI. The PPI network of the above hub genes

included seven nodes and eight edges, which were visualized by

GeneMANIA (Figure 5D).

In addition, the PPI network of mouse common DEGs were also

established as seen in Supplementary Figure 4A. The plugin

application MCODE was used to identify the core subnetwork

(Supplementary Figure 4B). Additionally, the MCC algorithm in the

plugin application “cytoHubba” was utilized to select the top 10

genes in the network, and completely overlapped with the gene

MCODE selected (Supplementary Figure 3C), namely, Kif4, Kif20a,

Cdk1, Cdca5, Ccna2, Bub1, Aurkb, Ttk, Ndc80, and Kif11.
3.7 Construction of regulatory networks

The interactions of miRNAs regulators with hub genes are

shown in Figure 5E. Blue squares represented miRNAs and red

circles represented hub genes. Our results showed that PLAUR,

IL7R, CFI, and S100A8 were the top four genes with the highest

scores of degrees and betweenness of this network. Moreover,

we also detected the significant hub miRNAs from the miRNA–

gene interaction network, namely, hsa-mir-374a-5p, hsa-mir-
FIGURE 3

Bioinformatics analysis of human DPN peripheral nerve tissues. (A) Volcano plot of the distributions of all DEGs. The red dots indicated upregulated
genes and the blue dots indicated downregulated genes. (B) GO annotations of DEGs. The top four GO terms were illustrated. (C) KEGG enrichment
analysis of DEGs. (D) The correlation analysis of immune cells in DPN samples. Different shades of squares represent the degree of negative or
positive correlation. (E) Comparison of the scores of immune infiltrations between control and DPN groups. *p < 0.05; **p < 0.01.
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26b-5p, hsa-mir-182-5p, hsa-mir-34b-5p, hsa-mir-27a-3p, and

hsa-mir-129-2-3p, which had more than three scores of degrees

and top six betweenness. The TF regulator interaction with the

hub genes is illustrated in Figure 5F. From Figure 5F, TFs
Frontiers in Endocrinology 07
including GATA2, PPARG, FOXC1, JUN, POU2F2, NFYA,

STAT3, and SRF were found as significant hub TFs that had

more than three scores of degrees and top eight betweenness

as presented.
FIGURE 5

Co-analysis of mouse DEGs and human DEGs in DPN. (A) Venn diagram intersected mouse DEGs and human DEGs. (B) Heatmap displayed
expression patterns of common DEGs in control and human DPN samples. (C) The Circos plot of enriched GO terms based on common DEGs.
GO:0002544: chronic inflammatory response; GO:0022409: positive regulation of cell–cell adhesion; GO:0045785: positive regulation of cell
adhesion, GO:0022407: regulation of cell–cell adhesion; GO:0002920: regulation of humoral immune response; GO:0019838: growth factor
binding; GO:0048306: calcium-dependent protein binding; hsa04610: complement and coagulation cascades. (D) The PPI network of common
DEGs generated by GeneMANIA. (E) TFs–DEG network. (F) DEG–miRNA network.
FIGURE 4

Validation of mouse DEGs in human DPN and the enrichment plots from GSEA. (A) The Venn diagram showed the validation of mouse DEGs in
human DPN. (B–F) The enrichment plots from GSEA. Several pathways and biological processes were differentially enriched in cell cycle mitotic (B),
cell cycle (C), neutrophil degranulation (D), innate immune system (E), and nuclear receptors meta pathway (F).
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3.8 Correlation analysis between hub
genes and infiltrating immune cells

We subsequently performed a correlation analysis between hub

genes and infiltrating immune cells to explore their potential

relationships. As shown in Figures 6A–G, genes including

PLAUR, S100A8, CD300LB, and CFI were positively correlated

with neutrophils, while CXCL13 was negatively correlated with

neutrophils (all p < 0.05). For NK CD56bright cells, PLAUR (p <

0.01), S100A8 (p < 0.01), CD300LB (p < 0.01), and CFI (p < 0.05)

were highly negatively correlated with, while CXCL13 (p < 0.05) was

highly positively correlated with.
3.9 Validation of DEGs by qRT-PCR

The quantitative real-time PCR (qRT-PCR) was carried out to

further validate hub genes obtained from microarray analysis using

the high- glucose-treated PC12 cell model, which was a well-

established peripheral nerve cell model previously used in the

literature to mimic DPN nerve cells (26–28). As seen in

Figure 7A, the expressions of Cfi (p < 0.001), S100a8 (p < 0.05),

Plaur (p < 0.01), Cxcl13 (p < 0.001), Cd300lb (p < 0.001), and Il-7r

(p < 0.05) were consistently changed in the HG group. Although the

expressions of Srpx2 showed no statistically changes between the

NG and HG group, there was an increasing trend in the HG group

that was consistent with our previous findings.
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Schwann cells were reported to have a critical role in the

peripheral nervous system (29) and the high-glucose Schwann cell

culture model was also a well-established cell model validated for

DPN-like conditions in previous literature (30–33). Recent studies

used the single-cell RNA-seq for peripheral nerve tissues isolated

from DPN animals, and the results demonstrated that not only

neurons but also Schwann cells played vital roles in the progression

of DPN (34). We subsequently performed qRT-PCR on the high-

glucose-treated Schwann cell model. As seen in Figure 7B, the

expressions of Cfi (p < 0.001), S100a8 (p < 0.001), Cxcl13 (p < 0.01),

and Cd300lb (p < 0.001) were significantly changed in the HG

group and the changing trends were consistent with the previous

bioinformatics findings. Similar to the results in the high- glucose-

treated PC12 cell model, the expressions of Srpx2 showed no

statistical changes between the NG and HG group in Schwann

cells. Interestingly, the expressions of Plaur (p < 0.05) were

significantly decreased in the HG group that was inconsistent

with bioinformatics findings, which might be because nerve cells

and glial cells behave differently. For the Il-7r gene, we found that

expressions were very few in the Schwann cells, which consequently

was not demonstrated.
4 Discussion

In light of advancements in gene sequencing technology, a

substantial volume of gene chip data pertaining to DM and its
FIGURE 6

The correlation between differential immune infiltrating cells and the hub genes found in shared common DEGs of DPN mice and human samples.
(A) The correlation between differential immune infiltrating cells and PLAUR. (B) The correlation between differential immune infiltrating cells and
S100A8. (C) The correlation between differential immune infiltrating cells and IL7R. (D) The correlation between differential immune infiltrating cells
and CXCL13. (E) The correlation between differential immune infiltrating cells and SRPX2. (F) The correlation between differential immune infiltrating
cells and CD300LB. (G) The correlation between differential immune infiltrating cells and CFI. The color of the dots represents the p-value, and the
size of the dots represents the strength of the correlation between genes and immune cells. *p < 0.05; **p < 0.01; *** p < 0.001. ns, not significant.
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associated complications has been deposited into online repositories

(35), which has provided new insights for the diagnosis and

treatment of DM and its complications, including DPN (9),

diabetic kidney disease (DKD) (36), and diabetic cardiomyopathy

(37). In this study, bioinformatics methods were employed to

retrieve nerve datasets of DPN from the GEO database and

dbGaP for a combined analysis. A total of 323 DEGs were

identified in mouse DPN, which were further validated and

intersected with the human DPN DEGs, revealing 13 shared

DEGs. Subsequently, GO analysis, KEGG analysis, and PPI

analysis were performed on these selected DEGs. Among them,

seven genes, namely PLAUR, S100A8, IL7R, SRPX2, CD300LB,

CFI, and CXCL13, were identified as core PPI sites that indicated

the potential new targets in diagnosing and treating DPN.

The PLAUR gene, which was reported responsible for encoding

the urokinase plasminogen activator receptor (uPAR) protein,

exhibited primary expression in neutrophils, monocytes, and

macrophages, playing a crucial role in various physiological

pathways including the plasminogen activation pathway,

inflammation, regulation of cel l adhesion, migration,

proliferation, and division (38). Previous research has indicated

that uPAR, especially its soluble form, could serve as a diagnosis and

prognosis biomarker in T1DM-related (39), T2DM-related (40),

and DM-related complications such as diabetic cardiovascular

diseases (41) and DKD (42). The SRPX2 gene, responsible for

encoding a unique chondroitin sulfate proteoglycan, has been

identified as playing a role in mediating seizure disorders,

angiogenesis, and cellular adhesion (43). Furthermore, SRPX2 has

been shown to act as a ligand for uPAR, contributing to the

proteolysis of the extracellular matrix, angiogenesis, and

endothelial cell remodeling (44). In our study, we found that both

PLAUR and SRPX2 were upregulated, further suggesting the

potential application of elevated uPAR levels as a future diagnosis

and prognosis biomarker in DPN.

The S100A8 protein, a member of the S100 protein family,

predominantly formed S100A8/A9 heterodimers in the body and

functioned as an important pro-inflammatory factor. Upon binding

to TLR4 or RAGE, the S100A8/A9 heterodimer acted as a critical

cell activation factor, stimulating the secretion of pro-inflammatory
Frontiers in Endocrinology 09
cytokines by immune cells and facilitating the recruitment,

aggregation, and adhesion of leukocytes. Recent studies have

implicated S100A8/A9 in the pathogenesis of various diabetic

complications, such as diabetic retinopathy (45), diabetic foot

ulcers (46), and diabetic atherosclerosis (47). Lei et al. et al.

observed a significant increase in the expression of S100A8 and

S100A9 in DKD and suggested that targeting S100A8/A9 could be a

promising therapeutic approach for DKD (48). In line with a

previous report, we found that S100A8 gene was also upregulated,

indicating the possible usage of inhibition of S100A8/A9 in the

therapy of DPN in the future.

The gene IL-7R encoded a protein that was a member of the

type I cytokine receptor family and found mainly expressed in

lymphoid precursor cells (pre-L), B progenitor cells (pro-B), T cells,

thymocytes, myeloid cells, and monocytes. This protein played a

crucial role in the development and specialization of lymphocytes

through its interaction with the ligand IL-7 (49). Research

conducted by Paul et al. reported that patients with T1DM had

lower monocyte IL-7R expression (50). Kevan et al. et al. utilized

RN168, a monoclonal antibody targeting the IL7Ra, in patients of

T1DM, and observed that RN168 selectively hindered the survival

and function of memory T cells, while maintaining the populations

of naive T cells and Tregs (51). In our study, we did not validate Il-

7r expressions in high- glucose-treated Schwann cells because of the

poor expression of Il-7r in Schwann cells. However, we observed a

significant upregulation of IL-7R in the high- glucose-treated PC12

cells and the whole DPN nerve samples, and the expression was

highly correlated with T cells, which indicated the possible usage of

inhibition of IL-7R in T cells for treating DPN.

Complement Factor I, encoded by the CFI gene, served as an

inhibitor of the complement system and played a role in the

complement activation pathway. In the presence of cofactors, CFI

was able to cleave C3b and C4b, thereby modulating immune

responses and preventing excessive activation of the complement

system. Previous reports found that CFI was increased in diabetic

complications such as diabetic retinopathy (52) and diabetic

cardiovascular diseases (53). Consistent with a previous report,

we found that CFI gene was also upregulated in DPN and

subsequently validated in vitro, which indicated that the immune
FIGURE 7

qRT-PCR validation of the hub genes in high- glucose-treated PC12 cells (A) and Schwann cells (B). * p < 0.05; ** p < 0.01; *** p < 0.001.
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response activation mediated by CFI was important in

DPN pathogenesis.

CXC chemokines were a small class of peptide molecules that

acted in conjunction with G protein-coupled receptors (GPCRs) to

recruit immune cells involved in inflammatory responses. CXCL13,

a CXC chemokine ligand, served as the primary regulator for

directed chemotaxis of B cells, specifically binding and

modulating the directed movement of B cells, participating in

inflammatory responses. Sisi et al. et al. reported that CXCL13/

CXCR5 signaling contributed to diabetes-induced tactile allodynia

in the spinal cord of male mice (54). Hui et al. et al. found that

overexpression of CXCL13 promoted the proliferation of bone

marrow stromal cells’ in vitro high-glucose environment (55). In

this study, a significant downregulation of CXCL13 was observed in

the DPN group compared to the control group, suggesting a

potential role for CXCL13 deficiency in the pathogenesis of DPN

via inflammatory mechanisms. Conversely, upregulation of

CXCL13 may hold therapeutic promise for the treatment of DPN.

Notably, in our study, both the DEGs in mice and humans were

significantly enriched in immune response pathways using various

enrichment analysis. Prior studies have suggested that heightened

low-grade chronic inflammation was a significant factor in the

pathogenesis of DPN. Elevated levels of inflammatory markers such

as high-sensitivity C-reactive protein, IL-6, tumor necrosis factor-

alpha (TNF-a), IL-1RA, and soluble intercellular adhesion

molecule-1 showed strong correlations with the onset and

progression of DPN (56). Thus, we conducted immune

infiltration analysis to examine disparities in immune cell

infiltration in human DPN. The findings suggested a significant

higher proportion of neutrophils in DPN, as demonstrated in

Figure 3F. Additionally, hub genes such as PLAUR, S100A8,

CXCL13, CD300LB, and CFI were found to be significantly

correlated with neutrophils, as shown in Figure 6. Neutrophils

have been recognized as a key player in the innate immune

system and acute inflammation, but emerging evidence suggested

their active participation in chronic inflammatory processes and

adaptive immune responses (57). Shahrabi et al. et al. conducted a

meta-analysis investigating the association between neutrophil- to-

lymphocyte ratio (NLR) and DPN, and the results showed that

individuals with DPN exhibited elevated NLR levels compared to

those without DPN (58). Li et al. et al. found that when NLR ≥2.66,

the odds ratio was significantly higher for the risk of DPN, which

indicated that NLR could be a predictive indicator in DPN (59).

As the third largest subset of lymphocytes, NK cells played a

crucial role in the innate immune response and have been

implicated in serving as a link between innate and adaptive

immunity in the development of autoimmune diseases such as

TIDM (60). Additionally, Seaward et al. observed that circulating

NK cells in diabetic women exhibited altered tissue homing

capabilities during and after pregnancy (61). NK cells could be

divided into CD56 dim NK cells and CD56 bright NK cells based on

the relative quantities of low-affinity FcgR CD16 and adhesion

molecule CD56. The CD56 bright NK cells were known to

predominantly produce various cytokines, including IL-10,

interferon-g , tumor necrosis factor-a, and granulocyte-
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macrophage colony-stimulating factor, which played a regulatory

role in the function of dendritic cells, monocytes, and T cells (62). In

our study, we found that the proportion of CD56 bright NK cells in

human DPN samples was significantly higher than that in the

control group. In addition, the hub genes including PLAUR,

S100A8, CXCL13, CD300LB, and CFI were significantly

correlated with CD56 bright NK cells, which suggested that

modifying expression of those above hub genes might influence

cell subtypes of NK and facilitate the production of specific

chemokines to modulate the immune function status of the body,

thus subsequently influencing the pathogenesis of DPN.

There were several limitations in this study. Firstly, the

validation of the hub genes and the exploration about the TFs

and microRNAs related to hub genes were inadequate, particularly

due to the absence of in vivo experiments. Therefore, future research

should focus on conducting functional validation and investigating

the molecular mechanisms to confirm the biological significance of

key genes and the upstream regulatory mechanisms of key genes

and downstream targets associated with DPN. Secondly, the

diversity and complexity of biological systems posed challenges to

bioinformatics methods as different species, genomes, and

biological processes might have unique characteristics and

patterns. Due to data noise, incomplete data preprocessing, and

algorithm limitations, it might lead to erroneous discoveries or

omissions of real biological patterns to reveal the real relationships

between immune regulation and hub genes. More specific analysis

methods and tools need to be developed and performed in the

future. Ultimately, the retrospective data mining restricted the

adequate acquisition of clinical information pertaining to human

nerve tissue samples. Additional studies involving more clinical

details were required for further validation.
5 Conclusions

In this study, we utilized bioinformatics analysis to identify

DEGs in multiple DPN datasets from mice and humans, revealing

common shared DEGs between the two species. Subsequently,

seven hub genes were identified through PPI analysis and mostly

confirmed through in vitro experiments. Additionally, key TFs and

microRNAs interacting with the hub genes were identified.

Furthermore, through functional enrichment and pathway

analysis of DEGs, the importance of dysregulated immune

response in the pathogenesis of DPN was revealed. Thus, we

examined immune cell infiltration in human DPN samples and

explored the relationship between hub genes and immune cells.

Ultimately, these findings hopefully provided new research targets

and insights for the diagnosis and treatment of DPN.
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