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Genetically predicted serum
ferritin mediates the association
between inflammatory cytokines
and non-alcoholic fatty
liver disease
XiaoQian Liu1, JianHong Jin1, BaoFa Wang1 and LinPu Ge2*

1Department of Endocrinology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical
University, Hangzhou, Zhejiang, China, 2Department of Orthopedics, The Third Affiliated Hospital of
Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
Objective: Investigating the causal relationship between inflammatory cytokines

and Non-alcoholic fatty liver disease(NAFLD) and identifying and quantifying the

role of serum ferritin as a potential mediator.

Methods: Genetic summary statistics were derived from open genome-wide

association study (GWAS) databases. We conducted a two-sample Mendelian

randomization (MR) analysis to investigate the relationship between

inflammatory cytokines (8,293 individuals) and NAFLD (8,434 cases, 770,180

controls). Furthermore, we used two-step MR to quantitate the proportion of the

effect of serum ferritin-mediated inflammatory cytokines on NAFLD. In this study,

we primarily utilized inverse-variance-weighted Mendelian randomization (MR-

IVW) and reverse MR analysis methods, while other methods were also

performed for sensitivity analysis, false discovery rate (FDR) <0.0012 as

statistical significance in MR analyses.

Results: Our results indicated that high levels of Eotaxin, regulated upon

activation normal T cell expressed and presumably secreted(RANTES),

Interleukin-2(IL-2), macrophage migration inhibitory factor(MIF), tumor

necrosis factor-related apoptosis-inducing ligand(TRAIL) and Stem cell factor

(SCF) were associated with increased risks of NAFLD, while high Cutaneous T

cell-attracting chemokine(CTACK) and Interleukin-16(IL-16) levels that reduced

the risk of NAFLD.The proportion of genetically predicted NAFLD mediated by

ferritin was 2.1%(95% CI = 1.39%−5.61%).

Conclusion: In conclusion, our study identified a causal relationship between

inflammatory cytokines and NAFLD, with a small proportion of the effect

mediated by ferritin, but a majority of the effect of inflammatory cytokines on

NAFLD remains unclear. Further research is needed on additional risk factors as

potential mediators.
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Introduction

NAFLD has emerged as a significant global health issue in

recent years (1). Affecting an estimated 25% of adults worldwide,

NAFLD is characterized by the accumulation of fat in the liver of

individuals with minimal or no alcohol consumption (2, 3). The

pathogenesis of NAFLD is multifaceted, involving genetics,

metabolism, environmental factors, and inflammatory responses

(4–6). Inflammation plays a pivotal role in the development and

progression of NAFLD, with inflammatory cytokines identified as

key mediators in its pathogenesis. These small, secreted proteins,

which regulate immune responses, are released by immune cells and

can modulate tissue injury and repair in various organs, including

the liver (7).

In clinical practice, our team has observed that approximately

20% to 50% of NAFLD patients exhibit increased levels of serum

ferritin (8). This phenomenon raises a critical question: besides the

direct inflammatory effects caused by inflammatory cytokines,

could they also be indirectly involved in the pathogenesis of

NAFLD by regulating other biomarkers (9)? Serum ferritin, a

protein widely used to assess body iron stores, has also been

implicated in the pathogenesis of NAFLD in recent years (10).

Disruptions in iron metabolism play a significant role in the

pathophysiology of NAFLD, with iron overload potentially

leading to increased oxidative stress and subsequent liver damage

(11). Furthermore, elevated serum ferritin levels are associated with

enhanced activity of inflammatory cytokines, suggesting that serum

ferritin may act as a mediator between inflammatory cytokines and

NAFLD (12).

Genetic factors play a crucial role in the pathogenesis of NAFLD.

Through numerous genome-wide association studies, scientists have

identified several genetic loci closely associated with NAFLD risk

(13). These genetic variations may increase the risk of developing

NAFLD by affecting key physiological processes such as metabolic

pathways, inflammatory responses, or iron metabolism. The aim of

GWAS is to explore the association between genetic exposure to

phenotype and disease outcomes. MR methods use these genetic

variations as instrumental variables to assess the causal relationship

between specific exposure factors (e.g., blood lipid levels) and disease

outcomes (e.g., NAFLD) (14). As genetic variations are randomly

allocated at conception, MR methods can reduce the potential for

confounding bias and reverse causality that may arise in traditional

observational studies. This bias reduction advantage is also applicable

to mediation analysis, which investigates whether one factor
Abbreviations: NAFLD, Non-alcoholic fatty liver disease; MR, Mendelian

randomizat ion; MR-IVW, inverse-var iance-weighted Mendel ian

randomization; RANTES, regulated upon activation normal T cell expressed

and presumably secreted; IL-2, Interleukin-2; MIF, macrophage migration

inhibitory factor; TRAIL, tumor necrosis factor-related apoptosis-inducing

ligand; SCF, Stem cell factor; CTACK, Cutaneous T cell-attracting chemokine;

IL-16, Interleukin-16; GWAS, genome-wide association study; GIS, Genetics of

Iron Status; BMI, body mass index; SNPs, single-nucleotide polymorphisms;

LOO, Leave-One-Out; PRESSO, Pleiotropy Residual Sum and Outlier; FDR, false

discovery rate; IVs, instrumental variables; AUC, area under the curve.
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indirectly affects outcomes by influencing another factor. Therefore,

by examining genetically predicted serum ferritin levels, we can gain a

new perspective on the relationship between inflammatory cytokines

and NAFLD. This approach may reveal how inflammatory cytokines

affect an individual’s susceptibility to NAFLD through genetic

pathways, offering new insights for the prevention and treatment

of NAFLD.

The objective of this study is to explore the role of genetically

predicted serum ferritin levels in the linkage between inflammatory

cytokines and NAFLD. Through a detailed examination of the

correlation between genetic variations and NAFLD, along with

the interactions between serum ferritin, inflammatory cytokines,

and NAFLD, our goal is to elucidate the molecular pathways at play

in this intricate condition and identify potential targets for the

development of novel treatment approaches.
Materials and methods

Study Design

A brief description of the bidirectional MR design displayed in

Figure 1A The data utilized for our examination are accessible to the

public and have received approval from the relevant institutional

review boards associated with the individual studies. Consequently,

there is no necessity for additional permissions. The outcomes

derived from our analysis are comprehensively detailed within the

main body of the article as well as its Supplementary Materials. The

effectiveness of the MR technique hinges on three principal

presuppositions: (1) the genetic variant that has been designated

as the instrumental variable exhibits a strong correlation with the

exposure variable; (2) the genetic variant remains unaffiliated with

any potential confounding factors; (3) the influence of genetic

variations on the outcome is mediated exclusively through the

exposure, precluding any alternative routes of effect (15). In this

study, we used summary-level data from published GWASs of 41

systemic inflammatory regulators, serum ferritin and NAFLD. First,

we selected genetic variants for serum ferritin and each

inflammatory factor. Second, genetic variants associated with

NAFLD were exploited to infer the causality from NAFLD to

inflammatory factors and serum ferritin. To investigate the

potential mediation of ferritin in the causal relationship between

inflammatory cytokines and the outcome of NAFLD, we conducted

a mediation analysis utilizing a two-step MR framework

(Figure 1B). The total effect was delineated into an indirect effect

mediated by the putative mediator and a direct effect that is

independent of the mediator (16). Specifically, the overall impact

of inflammatory cytokines on NAFLD was apportioned into two

components: 1) the direct effect of inflammatory cytokines on

NAFLD(c’ in Figure 1B); and 2) the indirect effect conveyed

through the mediator ferritin, represented by the product of paths

a and b in Figure 1B. The proportion of the effect mediated by

ferritin was ascertained by dividing the indirect effect by the sum of

both direct and indirect effects. Additionally, 95% confidence

intervals for the indirect effect were derived using the delta

method (17).
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Genetic Instrumental variables for
inflammatory factors

The genetic predictors of the 41 systemic inflammatory

regulators were obtained from a comprehensive cytokine-related

GWAS meta-analysis, which included three independent cohorts.

These cohorts consisted of 8,293 Finnish participants from the

Cardiovascular Risk in Young Finns Study (YFS) and the ‘FINRISK’

studies (FINRISK1997 and FINRISK2002) (18). Those 41

cytokine distributions were normalized with two-step inverse

transformation. An additive genetic model with the adjustment

for age, sex, body mass index (BMI), and the first ten genetic

principal components.

Genetic variants of ferritin(log10-transformed, ug/l) were

obtained from a meta-analysis of GWAS including 23,986

individuals of European ancestry within the Genetics of Iron

Status (GIS) consortium (19). Genetic associations between SNPs

and ferritin were adjusted for age, principal component scores and

other study specific covariates

Summary-level data on NAFLD were extracted from a GWAS

of 7786147 individuals (8,437cases vs 770,180 controls) of European

ancestry from UK Biobank(2,558 cases vs 395,241 controls) and

Estonian Biobank(4,119 cases vs 190,120 controls), adjusted for age,

gender, body mass index, genotyping site and the first three ancestry

based principal components (20).

Then we employed two-sample MR approaches using GWAS

summary statistics to infer the causal association of inflammatory

cytokines and serum ferritin with NAFLD. There was no

overlapping samples of inflammatory regulators, ferritin, and

NAFLD obtained from the different consortiums. The data
Frontiers in Endocrinology 03
utilized in this research were sourced from existing literature and

publicly accessible databases, following the provision of consent

from the participants and adherence to ethical guidelines.

Consequently, there is no requirement for additional ethical

approval from the institutional review board for this particular

study (Supplementary Table S1).

To satisfy the MR assumptions, the independence between the

selected SNPs was evaluated based on pairwise linkage

disequilibrium (21), all SNPs are strongly and independently (R2

< 0.001 within 10 Mb) predicted exposures from the published

GWAS at genome wide significance (P <5×10-8). Since only 8

systemic inflammatory regulators and ferritin had 3 or more

independent SNPs that reached genome-wide significance and no

genome-wide significant SNPs for NAFLD, we adopted a less

stringent threshold of 5×10-6 to obtain more SNPs for

inflammatory regulators. We evaluated the strength of each SNP

using the F statistic, which is a function of the magnitude and

precision of the genetic effect on the trait: F = R2(N2)/(1-R2),where

R2 is the proportion of the variance of trait explained by the SNP

and N is the sample size of the GWAS of SNPs with the trait (22).

The R2 values were estimated using the formula R2 = 2×EAF×(1-

EAF)×b2, where EAF is the effect allele frequency (EAF) of the SNP

and b is the estimated effect of SNP on trait (23). We excluded SNPs

with F <10, because F >10 suggested sufficient strength to ensure the

validity of the SNPs (24). Moreover, to avoid weak instrumental

bias, we evaluated the strength of the IV correlations by calculating

the Fstatistic and selected SNPs with F-statistic >10 for inclusion in

this MR analysis (25). Finally, whenever unavailable SNPs are

found, we use the LDlink Website (https://ldlink.nci.nih.gov/) to

search for proxy SNPs (r2 > 0.8) to replace them (26).
FIGURE 1

Study overview.
frontiersin.org

https://ldlink.nci.nih.gov/
https://doi.org/10.3389/fendo.2024.1437999
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1437999
Sensitivity analyses

The IVW method, as a primary approach for estimating the

causal relationship between exposure and outcome, calculates the

ratio of the effect size of SNPs associated with the outcome to the

effect size of SNPs associated with the exposure (27). Sensitivity

analyses are essential to ensure the robustness of our conclusions.

These analyses primarily include tests for heterogeneity to assess

differences among IVs. If substantial differences exist among IVs, it

indicates heterogeneity within these IVs. Of particular importance

is the assessment for horizontal pleiotropy, where a P-value greater

than 0.05 suggests the absence of horizontal pleiotropy. The

presence of horizontal pleiotropy renders our conclusions

unreliable. Other methods, such as Leave-One-Out (LOO) and

Pleiotropy Residual Sum and Outlier (PRESSO), are also used.

The LOO test involves iteratively excluding individual observations

from the analysis dataset to evaluate their impact on the results.

PRESSO is a statistical tool used to detect potential shared

genetic effects (pleiotropy) influencing the genotype-outcome

relationship (28).
Statistical analysis

We ensured that the effect of SNPs on exposure and outcome

corresponded to the same alleles by harmonising the summary

statistics for both datasets. To infer causal associations, we

conducted TSMR analyses using multiple methods, including IVW,

weighted median regression, MR−Egger regression, simple mode,

and weighted mode. The IVW method, as a primary approach for

estimating the causal relationship between exposure and outcome, is

used to calculate the ratio of the effect size of SNPs associated with the

outcome to the effect size of SNPs associated with the exposure (27).

The IVW method was used as the primary method for MR, which

combined the Wald ratio estimates of different SNPs to provide a

consistent estimate of the causal effect of exposure on the outcome

(28). The reliability of the IVW method depends on the absence of

horizontal pleiotropy of the IVs (29). When at least half of the SNPs

were effective IVs, the weighted median method provided a consistent

estimate of the causal effect (30). To adjust for multiple testing, we

calculated the false discovery rate (FDR) using the Benjamini-

Hochberg method. MR−Egger regression was used to confirm the

existence of horizontal pleiotropy, and its intercept represented the

effect estimate of horizontal pleiotropy (31). Even when the IVs have

horizontal pleiotropy, MR−Egger regression can still be used to

obtain an unbiased estimation of causal associations. Compared to

the MR−Egger method, the weighted median method improved the

accuracy of the results (32). Simple mode and weighted mode were

used for complementary analyses (33). Additionally, scatter plots and

funnel plots were used to demonstrate the robustness of the

correlation and lack of heterogeneity. All analyses were conducted

in R 4.3.2 software using the R packages TwoSampleMR and MR-

PRESSO (34). The R packages randomForest and ggplot2 were used

for plotting.
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Results

Figure 2 presents a circular heat map illustrating the suggestive

genetic correlation between inflammatory cytokines and serum

ferritin in relation to NAFLD.
Association of inflammatory cytokines
with NAFLD

IVW were used to estimate the causal relationship between

genetically predicted inflammatory cytokines and NAFLD (Figure 3

and Supplementary Table S2). As 41 inflammatory cytokines were

used for MR analysis as exposure, Eotaxin(OR=1.033 95%

CI=1.018–1.048,p=8.9e-06), IL-2(OR=1.154 95%CI=1.116–1.194,

p=1.2e-16), RANTS(OR=1.053 95%CI =1.026–1.80, p=8.0e-05),

MIF(OR=1.171 95%CI=1.128–1.216, p=1.8e-16, SCF(OR=1.097

95%C =1.067–1.128, p=9.6e-11) and TRAIL(OR=1.080 95%

CI=1.069–1.091, p=8.2e-49) acted as a promote, while CTACK

(OR=0.942 95%CI=0.932–0.952, p=1.0e-29) and IL-16(OR=0.966

95%CI=0.953–0.980, p=1.5e-06) acted as an inhibitor.The scatter

plot is depicted in Supplementary Figure S1. To adjust for multiple

testing, we calculated the false discovery rate (FDR) using the

Benjamini-Hochberg method. However, the results of our MR

analysis showed no reverse causality for genetically predicted

NAFLD on inflammatory cytokines by using the IVW method

(Supplementary Table S3).
Association of inflammatory cytokines
with ferritin

IVW were used to estimate the causal relationship between

genetically predicted inflammatory cytokines and serum ferritin

(Figure 4 and Supplementary Figure S4). As 41 inflammatory

cytokines were used for MR analysis as exposure, Eotaxin

(OR=1.033 95% CI = 1.018–1.048, p = 8.9e-06) acted as a

promote, while GCSF (OR=0.942 95% CI = 0.932–0.952, p =

1.0e-29) acted as an inhibitor. The scatter plot is depicted in

Supplementary Figures S6, S7. To adjust for multiple testing, we

calculated the false discovery rate (FDR) using the Benjamini-

Hochberg method.
Association of ferritin with NAFLD

Genetic instruments for ferrintin explained 2.2% of its variance,

with an F-statistic of 11.4. As shown in Figure 3 and Supplementary

Table S2, we presented all genetic instruments associated with

ferritin at the genome-wide significance level (P < 5 x 10-8). As

shown in Figure 3, genetically predicted ferritin was significantly

positively correlated with NAFLD [OR=1.53 95% CI=1.20-1.96,

p=7.16E-04] by using the IVW method.
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Proportion of the association between
inflammatory cytokines and NAFLD
mediated by ferritin

We analyzed ferrintin as a mediator of the pathway from

inflammatory cytokines to NAFLD. We found that NAFLD was

associated with increased Eotaxin, which in turn was associated

with an increased risk of NAFLD. As shown in Figure 4, our study

showed that ferritin accounted for 2.1% of the increased risk of

inflammatory cytokine associated with NAFLD (proportion

mediated: 2.1%; 95% CI = 1.39%−5.61%).
Sensitivity analysis

The results of the tests for heterogeneity and pleiotropy when

inflammatory cytokines and serum ferritin were used as exposures are

presented in Supplementary Table S2. The results of the tests for

heterogeneity and pleiotropy when inflammatory cytokines were used

as outcomes are presented in Supplementary Table S3. The results of

the tests for heterogeneity and pleiotropy when analyzing the

associations of inflammatory cytokines with the risk of serum ferritin
Frontiers in Endocrinology 05
are presented in Supplementary Table S4. In addition, the scatter plot,

funnel plot, forest plot, density plot and leave-one-out analysis results

are presented in Supplementary Figures S1-S7. Details of SNPs

analyzing the associations of inflammatory cytokines and serum

ferritin with the risk of NAFLD are presented in Supplementary

Tables S5-S13.Details of SNPs analyzing the associations of

inflammatory cytokines with the risk of serum ferritin are presented

in Supplementary Tables S14, S15.
Discussion

NAFLD is a non-bacterial chronic inflammatory state of the

liver, characterized by elevated inflammatory markers and

potentially progressing to cirrhosis or hepatocellular carcinoma

(35). In the context of this condition, we conducted a two-sample

Mendelian randomization analysis to explore the relationship

between inflammatory cytokines and NAFLD.

Through the PhenoScanner website (http://www.phenoscanner.

medschl.cam.ac.uk/), we excluded Single Nucleotide Polymorphisms

(SNPs) associated with hepatitis and systemic infections to

minimize the impact of confounding factors. Ultimately, after
FIGURE 2

Circular Heat Map.
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excluding confounding and other factors, the association between

certain inflammatory cytokines and NAFLD was identified as a

genuine causal effect.

We also utilized MR-Egger regression to assess the potential

pleiotropic effects of the selected SNPs as instrumental variables

(IVs), which may provide valuable insights into whether horizontal

pleiotropy (such as hepatitis, systemic infections, etc.) affects the

analysis. Some analyses with horizontal pleiotropy were excluded.

This study found that genetically predicted levels of Eotaxin, IL-2,
Frontiers in Endocrinology 06
RANTES, MIF, and TRAIL were positively correlated with the risk of

NAFLD, while CTACK and IL-16 were negatively correlated. Some

of these findings are consistent with the results of other studies that

are less likely to be affected by confounding biases and

reverse causality.

Eotaxin and RANTES are both members of the CC chemokine

family, playing a crucial role in inflammation and immune responses.

These factors selectively attract eosinophils and are involved in the

recruitment of immune cells to sites of inflammation. In the context
FIGURE 3

Association of inflammatory cytokines with NAFLD.
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of NAFLD, Eotaxin-1 may exacerbate the inflammatory state of the

liver by promoting the migration and activation of inflammatory cells

(36). RANTES may intensify liver damage by promoting the

infiltration of immune cells and enhancing the inflammatory

response. For instance, RANTES may be involved in the hepatic

inflammatory process by attracting specific immune cell subsets, such

as T cells and monocytes (37). Additionally, studies have shown that

levels of Eotaxin-1 are associated with metabolic disorders such as

insulin resistance, impaired glucose tolerance and abnormal lipid

metabolism, which are all risk factors for the development of NAFLD

(38). In some studies, the levels of Eotaxin-1 have been found to

correlate with the extent of hepatic steatosis and liver enzyme levels

(such as alanine aminotransferase and aspartate aminotransferase)

(39). Therefore, Eotaxin-1 may serve as a biomarker linking these

metabolic disorders with NAFLD. Given the role of Eotaxin-1 in the
Frontiers in Endocrinology 07
development of NAFLD, it may represent a potential therapeutic

target. For example, the use of anti-Eotaxin-1 monoclonal antibodies

may help to alleviate inflammation and immune-mediated liver

damage associated with NAFLD.

IL-2 is an immunomodulatory cytokine primarily produced by

CD4+ T cells. The regulation of IL-2 gene expression involves

various transcription factors and plays a significant role in

modulating immune responses and anti-tumor activity (40).

Although the direct link between IL-2 and NAFLD has not yet

been clearly established, considering the role of IL-2 in immune

regulation, it may indirectly affect the development of NAFLD by

influencing the hepatic immune microenvironment. For example,

IL-2 may influence inflammatory responses and hepatocyte damage

by regulating T cell activity in the liver. However, further research is

needed to clarify the specific role of IL-2 in NAFLD.
FIGURE 4

Association of inflammatory cytokines with ferritin.
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Similarly, TRAIL, known for its ability to induce apoptosis in

various cancer cells, has also been found to play a role in regulating

inflammatory responses and the progression of liver diseases.

MIF is a cytokine with multiple biological functions and plays a

key role in inflammation and immune responses (41). The

association between MIF and NAFLD may be related to its role

in regulating immune cell function and promoting inflammatory

responses. MIF may be involved in the development of NAFLD by

affecting the migration and activation of macrophages.

On the other hand, the chemokine CTACK (CCL1) and IL-16

are negatively correlated with NAFLD. CTACK is a skin-related

chemokine that controls the migration and aggregation of immune

cells, potentially affecting the inflammatory response, some study

have confirmed that CTACK has a significant correlation with

certain autoimmune liver diseases (42). IL-16 is mainly produced by

activated CD8+ T cells, with CD4 as its receptor, and can

chemoattract CD4+ T cells, monocytes, and eosinophils, inducing

the expression of IL-2R and HLA class II molecules in T cells and

monocytes (43). Recent studies have found that IL-16 is present in

many cells and plays an important regulatory role in T cell function

and intercellular communication (44). IL-16 plays different roles in

various pathological processes; it acts as a chemoattractant in some

diseases, a pro-inflammatory factor in others, and may even

function as an inhibitor in Th2-mediated diseases (Exogenous

interleukin-16 inhibits antigen-induced airway hyper-reactivity,

eosinophilia, and Th2-type cytokine production in mice) (45). It

is speculated that both may exert a protective effect by regulating the

activity of immune cells in the hepatic microenvironment, and

further research is needed to clarify their specific roles in the

pathogenesis of NAFLD.

Furthermore, studies have shown an inseparable link between

iron, redox biology, and inflammation. During infection, elevated

levels of ferritin represent an important host defense mechanism by

depriving bacteria of iron for growth and protecting immune cell

function (46). It may also have a protective role by limiting the

production of free radicals and mediating immune regulation.

Additionally, hyperferritinemia is a key acute-phase reactant, and

clinicians use it as an indicator for therapeutic intervention, aiming

to control inflammation in high-risk patients (47). One view is that

hyperferritinemia is an “innocent bystander” biomarker of

uncontrolled inflammation, useful for measuring the effectiveness of

interventions (48). Another school of thought suggests that ferritin

induction may be a protective negative regulatory loop (47). Some

scholars consider ferritin to be a key mediator of immune

dysregulation, especially in extreme hyperferritinemia, through direct

immunosuppression and pro-inflammatory effects (49). Clearly,

further research is needed to determine the role of ferritin as a

biomarker and mediator in uncontrolled inflammatory conditions,

as its occurrence identifies patients at high risk of mortality, and its

resolution can predict an improvement in their survival rate.

Serum ferritin is a common protein associated with reactive

oxygen species, leading to necrotic inflammation and fibrosis. In the

latest prospective cohort study, the area under the curve(AUC) for

diagnosing NAFLD using serum ferritin was 0.791 (50). A study

confirmed that elevated serum ferritin greater than 1.5 times the
Frontiers in Endocrinology 08
upper limit of normal is associated with the diagnosis of NAFLD

and advanced fibrosis (51). Another study established a scoring

system combining serum ferritin, type IV collagen 7S, and fasting

insulin to predict NAFLD (52).

This study suggests that ferritin was significantly positively

correlated with NAFLD [OR=1.53, 95% CI, 1.20-1.96; P=7.16E-

04] using the IVW method. We analyzed ferritin as a mediator of

the pathway from inflammatory cytokines to NAFLD. We found

that NAFLD was associated with increased Eotaxin, which in turn

was associated with an increased risk of NAFLD. As shown in

Figure 5, our study showed that ferritin accounted for 2.1% of the

increased risk of inflammatory cytokine associated with NAFLD

(proportion mediated: 2.1%; 95% CI = 1.39%−5.61%).

Our study has several aspects that make it superior to others: (1)

The statistical data for exposure and outcome are summarized from

recent GWAS, with a large sample size and no overlapping samples

in each study cohort. (2) Strict criteria were set for selecting IVs,

enhancing statistical power. (3) Since genetic variations are

distributed across multiple chromosomes, the potential for gene-

gene interactions to affect the results is likely minimal. (4) To

improve the accuracy of the estimates, this study excluded SNPs

that may be related to confounding factors and heterogeneity in the

studies. This study does have some limitations: (1) The GWAS used

only included populations of European ancestry. Therefore,

additional studies should be conducted in non-European

populations to explore the mediating effects. (2) NAFLD has

many subtypes, and further research is needed to analyze whether

the subtype results are consistent with our study. (3) Accurately

describing the causal link of exposure factors is crucial for the

success of mediation analysis, as statistical methods cannot

distinguish between the concepts of mediation and confounding.

(4) The assessment of inflammatory cytokines was limited. Other

types of analyses should be conducted to explore other potential

mediating factors.
Conclusion

In summary, our study attempts to preliminarily establish the

certain relationship between certain inflammatory cytokines and

NAFLD, with a portion of the effect mediated by ferritin, but the

majority of the impact of these inflammatory cytokines on NAFLD
FIGURE 5

Proportion of the association between inflammatory cytokines and
NAFLD mediated by ferritin.
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is not yet clear. Further research is needed to identify other risk

factors that may act as potential mediators. In clinical practice,

NAFLD patients with hyperferritinemia warrant closer monitoring.
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