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Background: Endogenous insulin supplementation is essential for individuals

with type 1 diabetes (T1D). However, current treatments, including pancreas

transplantation, insulin injections, and oral medications, have significant

limitations. The development of engineered cells that can secrete endogenous

insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This

approach could potentially circumvent autoimmune responses associated with

the transplantation of differentiated b-cells or systemic delivery of viral vectors.

Methods: We utilized CRISPR/Cas9 gene editing coupled with homology-

directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin

cassette into the 3’ untranslated region (UTR) of the GAPDH gene in human HEK-

293T cells. Subsequently quantified insulin expression levels in these engineered

cells, the viability and functionality of the engineered cells when seeded on

different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we

investigated the therapeutic potential of EMCVIRES-based insulin secretion

circuits in reversing Hyperglycaemia in T1D mice.

Result: Our results demonstrate that HDR-mediated gene editing successfully

integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-

endocrine cell line, enabling the expression of human-derived insulin.

Furthermore, Cytopore I microcarriers facilitated cell attachment and

proliferation during in vitro culture and enhanced cell survival post-

transplantation. Transplantation of these cell-laden microcarriers into mice led

to the development of a stable, fat-encapsulated structure. This structure

exhibited the expression of the platelet-endothelial cell adhesion molecule

CD31, and no significant immune rejection was observed throughout the

experiment. Diabetic mice that received the cell carriers reversed

hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli

were very similar to those of healthy mice.

Conclusion: In summary, our study demonstrates that Cytopore I microcarriers

are biocompatible and promote long-term cell survival in vivo. The promoter-

free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature
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insulin, leading to a rapid reduction in glucose levels. We have presented a novel

promoter-free genetic engineering strategy for insulin secretion and proposed

an efficient cell transplantation method. Our findings suggest the potential to

expand the range of cell sources available for the treatment of diabetes, offering

new avenues for therapeutic interventions.
KEYWORDS
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Introduction

Diabetes mellitus (DM) is a complex and heterogeneous disease

with an increasing prevalence worldwide. Projections indicate that

the number of diabetic patients will reach 693 million by 2045 (1),

continuing to rise at an alarming rate and becoming a significant

global health burden (2, 3). The dysfunction of islet b-cells is a critical
factor in the pathogenesis of diabetes. In type 1 diabetes (T1D), these

cells are targeted by auto-reactive T cells, leading to a loss of 70–90%

of b-cell mass and a consequent reduction or cessation of insulin

secretion (4). In type 2 diabetes (T2D), environmental factors such as

malnutrition or obesity impair insulin function, accelerating the

depletion of islet b-cells (5). Despite ongoing research and

advances in medication and treatment, DM remains a critical

health issue due to its associated complications. Prolonged

hyperglycemia can lead to severe pathological conditions, including

renal failure, cardiovascular diseases, metabolic syndrome, and

hormone dysfunctions (6, 7). The limitations of organ

transplantation, including donor shortages and the requirement for

immunosuppressive drugs (8, 9), make regular insulin administration

the primary treatment for diabetes (10).

However, the burden of frequent insulin injections underscores

the need for less invasive methods of exogenous insulin delivery or

the restoration of b-cell function. These approaches offer great

promise for achieving long-term glycemic control in the treatment

of diabetes. Insulin-secreting cells generated from stem cells (11, 12)

or through genetic engineering of various cell types have emerged as

advanced alternative therapeutic strategies for diabetes (13–17).

However, it is challenging that not all stem cell lines differentiate

with equal efficiency (11). Due to the pluripotent nature of stem

cells and the complexity of the differentiation process, there is a risk

that unintended or potentially dangerous non-target cell types may

persist within the final population of differentiated cells. Of

particular concern is the possibility of highly proliferative

undefined progenitor cells or residual human pluripotent stem

cells, which could pose a tumorigenic risk (18, 19).

Gene-edited engineered cells represent a potentially more

convenient and stable alternative to insulin-producing cells that

require complex differentiation steps. The implantation of glucose-

responsive insulin-expressing elements into extra-pancreatic
02
mammalian cell types could offer protection against DM (20, 21).

Previous studies have demonstrated that human embryonic kidney

293T (HEK-293T) cells are capable of producing high levels of anti-

diabetic proteins (22–24).

However, current approaches to engineer insulin-secreting cells

often rely on viral vectors, where insulin transcription and

translation are driven by strong promoters (25, 26). A significant

concern with this method is the potential for insertional

mutagenesis, which can result from enhancer-mediated

dysregulation of adjacent genes or abnormal splicing processes

(27). To mitigate these risks, we have designed a promoter-free

insulin secretion system using HEK-293T cells.

CRISPR-Cas9 is undoubtedly a powerful gene editing tool for

our purposes. This technique allows for precise insertions or

deletions within genomic DNA sequences, correcting even

genetically mutated cells and tissues. Cells possess several

mechanisms for repairing double-strand breaks (DSBs), including

non-homologous end-joining (NHEJ), which typically introduces

unpredictable mutations, and homology-directed repair (HDR),

which involves copying donor DNA strands into DSB regions

(28). Genome editing based on HDR is increasingly being studied

for its ability to precisely insert DNA fragments, and it has become a

well-established and precise gene editing method (29–34).

To achieve promoter-free insulin secretion, we selected the Internal

ribosome entry site (IRES) as a key component. This natural

translational enhancer, found in various mRNAs, has garnered

increased attention due to its ability to initiate cap-independent

translation (35–37). The encephalomyocarditis virus (EMCV) IRES, in

particular, has been shown to be active in most tissues and organs (37).

Consequently, EMCV-IRES-based vectors are frequently employed to

co-express multiple therapeutic genes within the same transcription unit,

playing a significant role in combined gene therapy (38–43).

In the current study, we successfully integrated a promoter-free

IRES-human furin-cleavable human insulin (IRES-hINS) fragment into

the GAPDH locus using a CRISPR-Cas9-mediated HDR-based knock-

in strategy. This approach resulted in an increase in insulin secretion

without altering gene transcription in the cell itself, successfully

reversing STZ-induced diabetes in mice over a prolonged period.

These findings suggest a highly promising approach in the field of

diabetic therapeutics.
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Materials and methods

Generation of insulin-producing cell lines

Cell culture
HEK-293T cell line was purchased from the American Type

Culture Collection (ATCC). The cells were cultured in Dulbecco’s

modified eagle’s medium (DMEM, D-glucose content 4.5g/L),

supplemented with 10% fetal bovine serum (FBS) and 1% of

penicillin/streptomycin (100 units/mL penicillin and 100 µg/mL

streptomycin) and maintained in a humidified chamber at 37 °C

and 5% CO2. All cultured medium were obtained from Hyclone

Laboratories Inc (Logan, UT, USA).

Plasmid construction and generation of EMCVIns
The donor plasmid, ires-eGFP (+HAs) donor-1 (Cat # 87865)

with human GAPDH left and right homologous arms was

purchased from Addgene. Codon-optimized furin-cleavable

human-derived insulin (hIns) was synthesized according to

previous reports (44). To be brief, modifications have been made

to replace the 62nd arginine to leucine and lysine (29th and 31st) to

arginine respectively, which could favor the furin-mediated cleavage

at B chain junctions of pro-insulin to obtain mature insulin and C-

peptide. Then, the green fluorescence protein (GFP) (next to the

EMCV-IRES) was replaced with the above-mentioned codon-

optimized mCherry-P2A-hInsulin (mchP2AIns) sequences by

inserting EcoR I restriction site using the site-directed

mutagenesis kit (Vazyme, China) and henceforth called ires-

mchP2AIns (+HAs) donor plasmid. Later, the mcherry sequence

in the ires-mchP2AIns (+HAs) donor plasmid was replaced with a

puromycin DNA sequence to create ires-puroP2AIns (+HAs)

donor plasmid. The sgRNA plasmids were constructed by

inserting sg1 and sg4 sequences into pCas-Guide-GFP (Origene

Cat # GE100012) as per the manufacturer’s instructions and are

referred to as Cas-sg1 and Cas-sg4, respectively. The primers used

in this study are given in Supplementary Table 1.

Cas-sg1 and ires-puroP2AIns (+HAs) donor plasmids were co-

transfected into HEK-293T cells using jetPRIME polyplus

transfection reagent (Polyplus Transfection, France) following the

manufacturer’s protocol. Later, the cells were screened with 10 µg/

mL of puromycin for five passages to get pure lines of insulin-

producing HEK-293T cel ls and henceforth named as

EMCVIns cells.
Transfection and integration verification

HEK-293T cells were seeded into 12-well plates at a density of 5

× 105 cells/well and allowed to attach overnight. Then, 1.5 ug DNA

(1 ug donor plasmid + 0.5 ug Cas-sgRNA plasmid) and 3 µl

jetPRIME polyplus transfection reagent (Polyplus Transfection,

France) were used for transfection in each well following the

manufacturer’s protocol. After 48h, the successfully integrated

cells showed red fluorescence and were imaged using an inverted

fluorescence microscope (Nikon, Japan). The efficiency of the
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successful genomic integration of donor DNA (mchP2AIns) was

calculated using Flow cytometer (BD Accuri C6, USA).

The genomic DNA was isolated from both transfected (donor

and sgRNA plasmid transfection as mentioned above) and control

(without transfection) cells using Multisource Genomic DNA

Miniprep Kit (Axygen, USA) following the manufacturer’s

instructions. The target site was PCR amplified with different

specific primers (Supplementary Table 2) and the PCR amplicons

were analyzed with Tanaon-4200 Chemiluminescent Imaging

System. The successful integration of the donor DNA

(mchP2AIns/puroP2AIns) sequences into the precise GAPDH

genomic locus was verified using DNA sequencing.
Immunofluorescence staining

EMCVIns cells were seeded into 12-well plates at a density of 5

× 105 cells/well and allowed to attach overnight. Next, cells were

fixed with 4% paraformaldehyde for 15 min, permeabilizated with

0.1% Triton X-100 for 5 min and blocked for 1 h in 3% BSA (Sigma-

Aldrich, SRE0096). Subsequently, cells were incubated with an anti-

insulin primary antibody (1:100 dilution, Abcam, EPR17359)

overnight at 4°C. After 3 times PBST washing, the cells were

incubated with Alexa Fluor 488-conjugated secondary antibodies

(1:500 dilution, Thermo Fisher Scientific, A32731) for 1 h at 37°C.

Next, the cells were washed three times with PBST and

counterstained with DAPI (0.5g/ml) for 5 mins at RT. Then the

cells were imaged using confocal microscopy (Leica, Germany).
Insulin secretion assays

Cellular Insulin Secretion Assay
HEK-293T cells were seeded into 12–well plates at a density of

5 × 105 cells/well and incubated at 37°C overnight (DMEM, D-

glucose content 4.5g/L). About 24h later, the cells were placed with

fresh complete medium. 1.5 ug DNA (1 ug mchP2AIns/

puroP2AIns donor plasmid+ 0.5 ug Cas-sgRNA plasmid) was

transfected using polyplus transfection reagent as mentioned

above. About 4 h later, the transfected cells were replaced with

fresh complete medium. Then the supernatant was collected after

24h and 48h respectively post-transfection.
Glucose-stimulated insulin secretion
Screened pore EMCVIns cells were starved in Krebs-Ringer

buffer supplemented with 2mM glucose for 2 h in a 37°C, 5% CO2

incubator and were stimulated by 1000mL Krebs-Ringer buffer

with low (5mM), middle (11mM) or high (25mM) glucose

concentration. Supernatants were collected after 2 h post

stimulation. To extract the insulin component from the cells, we

treated the cells with 1000 mL of acid-ethanol solution (containing

74% [v/v] ethanol, 1.4% hydrochloric acid, and 24.6% ultrapure

water) at 4°C overnight. All the secreted insulin level was measured

using a sandwich ELISA kit (ABclonal, Wuhan, China)

according to the manufacturer’s instructions. Additionally,
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the total DNA content of each sample was determined using a

DNA Quantification Kit (TIANGEN, China) to standardize

insulin secretion.
Microencapsulation of EMCVIns cells

Cytopore I (GE, USA) and GelMA (Engineering for Life,

China) are two common commercial biomaterials to encapsulate

cells. Before encapsulation, EMCVIns cells cultured in the 2D

system were harvested, labeled with lipophilic tracer DiO

(Yeasen, Shanghai, China) for 20 mins at 37°C and washed

with D-PBS three times. The Cytopore I biomaterials were soaked

in D-PBS, sterilized in high-pressure steam, and followed by

washing with D-Hanks and stored in DMEM with 10%

FBS before use. An adequate number of primed microcarriers

were added to the non-treated tissue culture plate to cover

the bottom, to which the DiO-stained EMCVIns cells were

then added. Crystal violet staining and CCK-8 (Yeasen,

Shanghai, China) kit was used to monitor cell proliferation. At

the same time, EMCVIns cells were mixed with GelMA-60 by

following the manufacturer’s instructions. GelMA-60 inclusions

were labeled with Calcein-AM (Yeasen, Shanghai, China) to

identify living cells.

To measure the secreted human insulin in cell culture, the

culture supernatants of Cytopore I and GelMA-60 encapsulated

cells were collected after 24 h, centrifuged to remove the cell debris,

and evaluated by ELISA kit. The empty microcarriers and GelMA-

60 were used as controls.
Mouse studies

8-week-old male C57BL/6 mice were purchased from Beijing

Vital River Laboratories and were randomly divided into four

groups (n=6 in each group). STZ (Sigma Aldrich, USA) was

dissolved in sterile citrate buffer (0.05 M sodium citrate, pH4.5)

and injected intraperitoneally into mice (40 mg/kg) for five

consecutive days. Control age-matched mice received the same

volume of citrate buffer. Fourteen days after the initial STZ

injection, serum glucose level was measured every 3 days from

tail vein blood using a One-touch glucometer (Roche) in 6 h fasted

mice. Mice with serum glucose levels ranging between 12 to 20

mmol/L for continuous 3 days were considered diabetic.

Transplantation of EMCVIns cells
About 5 × 106 EMCVIns cells were resuspended in DMEM,

taken in a 2 mL syringe, and allowed to sink for a while before

being seeded on Cytopore I. The extra medium was then expelled,

and the encapsulated microcarriers were subsequently injected

into the inguinal fat pad of the mice. Another set of mice

received the same number of encapsulated control HEK-293T

cells, whereas the control group received empty microcarriers

without cells. Serum glucose level was monitored every 3 days

after implantation.
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The intraperitoneal glucose tolerance test
An intraperitoneal glucose tolerance test (IPGTT) was

performed on mice on day 14 of post-implantation. Mice were

given an intraperitoneal injection of glucose (2 g/kg body weight)

after overnight fasting. The glucose levels were measured after the

injection at regular intervals of 0, 15, 30, 60, 90, and 120 min, post-

glucose injection. Healthy mice served as the control. To measure

the human insulin in the mice plasma, mice were anesthetized and

the blood was collected from the abdominal aorta followed by a

centrifugation at 3000rpm for 10 min to get the serum. The

obtained serum was subsequently analyzed with an ELISA kit to

determine the quantities of human insulin.
Statistical analysis

Data were represented as means ± standard deviation (SD).

Statistical comparisons were made using Student’s t-test or one-way

analysis of variance (ANOVA) and Tukey post-test. Statistical

significance was considered if P < 0.05.
Results

In vitro expression of insulin by
mchP2AIns-293 cells

We successfully engineered insulin-producing cells by

integrating a modified insulin gene into the GAPDH locus of

HEK-293T cells using CRISPR/Cas9-mediated HDR (Figure 1A).

A reporter system coupled with the modified insulin gene allowed

direct quantification of CRISPR/Cas9-induced HDR-mediated

insulin gene integration. We selected two different sgRNA

sequences targeting the human GAPDH locus from a previously

published report (45). Flow cytometry analysis indicated that

integration frequency was slightly higher with Cas9sg1 (4.8–5.1%)

compared to Cas9sg4 (4.1–4.3%), with a transfection efficiency of

84.2% (Figure 1C). No mCherry-positive cells were detected in the

absence of either sgRNA or donor plasmid. Subsequent genomic

DNA PCR and sequencing of mCherry-positive cells confirmed the

integration of mchP2AIns at the GAPDH 3’UTR, demonstrating

HDR-mediated targeting (Figure 1D).

To assess whether the integrated modified insulin gene could

secrete mature insulin into the culture medium, both mchP2AIns

cells and their supernatant were analyzed by ELISA. A fresh culture

medium served as a control. The culture supernatant of mchP2AIns

cells and the intracellular level showed mature insulin production of

0.45 ± 0.061 mIU·105 cells-1·mL-1·24 h-1 and 0.38 ± 0.06 mIU·105

cells-1·mL-1·24 h-1, respectively, indicating successful synthesis and

secretion of mature insulin via CRISPR/Cas9-induced HDR-

mediated gene integration (Figure 1B).

We then investigated the effect of various glucose

concentrations and formulations on EMCV IRES-mediated

insulin synthesis. mchP2AIns cells were subjected to glucose

stimulation tests with both L- and D-glucose. Notably, the cells
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FIGURE 1

HDR-mediated modified human insulin gene knock-in in HEK293T cells. (A) Schematics of the donor plasmid and targeting strategy for HDR-
mediated knock-in of the modified human insulin at GAPDH 3′-UTR. Dashed lines indicate sections of homology between the GAPDH genomic
locus and donor plasmid DNA. Arrows indicate the positions of PCR primers for insulin integration examination. (B) The quantity of insulin in culture
media (supernatant) and cell lysis(intracellular) were assessed using ELISA. Fresh culture medium was used as negative control (NC). (C) HDR-
mediated integration efficiency of Cas9sg1 and Cas9sg4 using fluorescence images and Flow cytometer analysis. Cas9 plasmid without sgRNA was
used as a control. (D) Genome PCR analysis of mcherry+ cells produced with Cas9sg1 in sequencing results of the PCR amplicons with expected
modifications (human insulin gene) were integrated precisely at both 5′- and 3′-junctions. (E) Insulin secretion from mchP2AIns in response to
different types of glucose stimulation. Data are expressed as mean ± SD. n = 5; ***p < 0.001 by student’s t-test.
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responded to D-glucose, which is metabolically active in the human

body (Figure 1E).
EMCVIns cells give stable insulin secretion
in vitro

To obtain pure lines of engineered insulin-producing cells, we

replaced the mCherry sequence in the ires-mchP2AIns (+HAs) donor

plasmid with a puromycin DNA sequence, creating the EMCVP2AIns

(+HAs) donor plasmid. We then co-transfected Cas-sg1 with the

EMCVP2AIns (+HAs) donor plasmid into HEK-293T cells, as

previously described. The cells were subsequently screened with 10

µg/mL of puromycin for five passages to obtain pure lines of insulin-

secreting HEK-293T cells, designated as EMCVIns (Figure 2A).

Immunofluorescent staining confirmed insulin expression in

EMCVIns cells (Figure 2B).

Then, to evaluate whether the CRISPR/Cas9-induced HDR-

mediated modified insulin gene integration in EMCVIns cells could

successfully secrete mature insulin into the culture medium, both

EMCVIns cells and their supernatant were analyzed by ELISA. The

mature insulin production detected in the EMCVIns culture medium

after stable transfection was 1.95 ± 0.26 mIU·105cells-1·mL-1·24 h-1
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(Figure 2C). EMCVIns cells were then stimulated with different

concentrations of D-glucose (5mM, 11mM, 25mM), and ELISA was

used to assess changes in insulin levels. The results showed no

significant changes in insulin levels with varying glucose

concentrations (Figure 2D). Furthermore, we measured the total

insulin synthesis versus secretion levels of engineered EMCVIns

cells at 24 h, 48 h, and 72 h after cell seeding. The data indicated

that the total insulin synthesis level did not increase over time

(Figure 2E). However, the insulin secretion level increased with time

and peaked at 48 hours (Figure 2F). These results suggest that mature

insulin can be successfully synthesized and secreted into the

supernatant using the CRISPR/Cas9-induced HDR-mediated gene

integration method.
Cytopore I is favorable for
EMCVIns microencapsulation

The triggered immune response is an unavoidable and crucial

factor that must be considered during implantation (46, 47). To

minimize immune responses potentially triggered by EMCVIns cell

engraftments, the cells were encapsulated using Cytopore I or

GelMA-60 at a density of 5 x 105 cells/mL. To assess the survival
FIGURE 2

Engineering of stable EMCVIns cells for exogenous insulin. (A) Schematic of modified donor plasmids and progression to obtain stable insulin
expressing EMCVIns cells. (B) Insulin expression was analyzed with immunofluorescence. Green fluorescence indicated human insulin. Scale bar:
50mm (C) Supernatant Insulin level produced by EMCVIns cells and mchP2AIns cells were assessed using ELISA. Total insulin content by EMCVIns
cells at different concentrations of (D) glucose and (E) incubation times. (F) Insulin secretion from engineered cells at different times. Fresh culture
medium was used as negative control (NC). Data are expressed as mean ± SD. n = 5; **p < 0.01, ***p < 0.001 by student’s t-test, one-way ANOVA
and Tukey post-test.
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of EMCVIns cells post-encapsulation, Calcein-AM staining was

used to label living cells within the capsules. Both materials were

found to carry living cells (indicated by green fluorescence), with

Cytopore I microcarriers encapsulating a greater number of living

cells (Figure 3A). The relative cell proliferation of EMCVIns cells

encapsulated in both materials was determined using a CCK-8 assay

by measuring absorbance at 450 nm. Cytopore I-encapsulated cells

exhibited greater proliferative ability compared to GelMA-60

(Figures 3B, C), and viability was also confirmed by crystal violet

staining (Figure 3D). To ensure continuous insulin secretion and to

evaluate whether the encapsulation materials could hinder insulin

secretion in vitro, the culture supernatant was collected and

analyzed by ELISA. As shown in Figure 3E, the mature insulin

production in the conditioned medium was 0.22 ± 0.02 mIU·105

cells-1·mL-124 h-1 and 0.66 ± 0.08 mIU·105 cells-1·mL-124 h-1 for

Cytopore I-encapsulated EMCVIns cells. Overall, compared to

GelMA-60, Cytopore I was superior for cell survival, proliferation,

and did not interfere with insulin secretion, making it the preferred

choice for further in vivo studies.
Frontiers in Endocrinology 07
Implantation of insulin-secreting EMCVIns
into streptozotocin-induced diabetic mice
ameliorated hyperglycemia

Diabetic mice were generated by administering streptozotocin

(STZ) at a dose of 40 mg/kg to C57BL/6 mice for five consecutive

days, as described in the methods (Figure 4A). Hepatic glycogen

depletion was confirmed by periodic acid-Schiff reactions in the

livers of STZ-treated mice compared to controls (Supplementary

Figure 2B). Additionally, H&E staining revealed clear pathological

and morphological alterations in the pancreas of STZ-treated mice

compared to controls (Supplementary Figure 2A).

To verify the ability of EMCVIns cells to ameliorate

hyperglycemia in the diabetic mouse model, Cytopore I-

encapsulated EMCVIns cells were implanted into STZ-induced

diabetic mice. Fasting blood glucose levels were significantly

reduced after EMCVIns + Cytopore transplantation in a time-

and dose-dependent manner (Figures 4B, D). Compared to

untreated diabetic mice, EMCVIns cells encapsulated in Cytopore
FIGURE 3

Microencapsulation supports the proliferation of EMCVIns cells. (A) Morphology of GelMA and Cytopore I encapsulated EMCVIns cells were imaged
under bright field and fluorescence by inverted microscopy. Green fluorescence indicated living cells by Calcein-AM. Scale bar: 200 mm. The relative
cell proliferation of (B) Cytopore I and (C) GelMA encapsulated EMCVIns cells were determined by CCK8 assay, respectively. (D) The absolute cell
viability of Cytopre I encapsulated EMCVIns cells were tested using Crystal violet staining. Unencapsulated cells cultured in a 2D environment served
as control. (E) Insulin level in the different microencapsulation group was checked by ELISA. An equal number of EMCVIns cells cultured in normal
2D-culture conditions was used as positive control, while fresh culture medium was used as negative control (NC). Data are expressed as mean ±
SD. n = 3; **p < 0.01 by student’s t-test and one-way ANOVA.
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I (1×107) effectively reversed blood glucose levels within 72 hours

post-implantation. However, this group developed persistent

hypoglycemic symptoms and eventually died. In contrast, the

group receiving 5×105 EMCVIns cells encapsulated in Cytopore I

maintained the current glucose level without further increases.

Notably, in the group implanted with 5×106 Cytopore I-

encapsulated EMCVIns cells, fasting blood glucose levels

remained close to the normal range throughout the experiment

without inducing hypoglycemia (Figure 4B). Therefore, 5×106

EMCVIns ce l l s were se lected for encapsulat ion and

transplantation in further studies. The insulin production by

Cytopore+5×10^6 EMCVIns cells reached 26.09 6.0.13

mIU·106cells-1·mL-1 in the culture media, as tested by

ELISA (Figure 4C).

Remarkably, EMCVIns + Cytopore implantation therapy

reversed high blood glucose concentrations in diabetic mice over
Frontiers in Endocrinology 08
six weeks, maintaining fasting blood glucose levels at 11.6 ± 2.15

mmol/L (Figure 4D). Excision of grafts two weeks after

transplantation resulted in a spike in fasting blood glucose levels,

reverting to hyperglycemia (Figure 4E), confirming the effectiveness

of the grafts.

An intraperitoneal glucose tolerance test was conducted on

different groups of mice (Cytopore I + EMCVIns-treated STZ-

induced mice, STZ-induced diabetic mice, and normal mice) to

confirm the ability of EMCVIns cells encapsulated in Cytopore I to

maintain blood glucose levels. On day 14, C57BL/6 mice were

injected with a 20% glucose solution (2g/kg), and their blood

glucose and insulin levels were monitored. Blood glucose levels

increased in both the EMCVIns-implanted group and the normal

mice group 30 min after glucose stimulation and then recovered,

reaching normal levels approximately 2 hours after stimulation

(Figure 4F). In the diabetic group, blood glucose levels decreased
FIGURE 4

Implantation of Cytopore I encapsulated EMCVIns cells ameliorated hyperglycemia in diabetic mouse models. (A) Schematic timeline of diabetic mice
model induction and implantation treatment. (B) Various numbers of EMCVIns cells were encapsulated into Cytopore I microcarriers and given to STZ-
induced diabetic mice. Blood glucose was monitored at indicated time points. (C) The quantity of insulin produced by 5x106 EMCVIns cells encapsulated
in Cytopore I was determined by ELISA. A fresh culture medium was used as negative control (NC). (D) An equal number (5x106) of EMCVIns and HEK-
293T cells were encapsulated by Cytopore I and implanted into an inguinal fat pad in STZ-induced diabetic mice, respectively. Blood glucose was
monitored at indicated time points. (E) In the group of EMCVIns+ Cytopore-R, the implanted EMCVIns cells were removed from treated mice on day 14
as indicated by the arrows. Blood glucose was monitored at indicated time points. Blood (F) glucose and (G) human insulin levels were monitored at the
indicated time point after intraperitoneal glucose stimulation. Data are expressed as mean ± SD.; *p < 0.1, **p < 0.01, ***p < 0.001, ****p < 0.0001 by
student’s t-test, one-way ANOVA and Tukey post-test.
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slowly after the initial spike and remained hyperglycemic. Human

insulin produced by EMCVIns cells, detected in the serum of the

mice, declined within 90 min after glucose stimulation and then

gradually rebounded (Figure 4G), suggesting its involvement in

reducing glucose levels.

The tissue compatibility of microcarriers was examined two

weeks post-implantation by retrieving the grafts for further analysis.

As shown in Figure 5A, the implanted grafts were encapsulated by

the host’s adipose tissue, forming a solid, tissue-like structure with

its own blood supply. The implants were then paraffin-embedded

and sectioned for immunohistochemical (IHC) staining using

CD31, a marker for endothelial cells, to detect the presence of

endothelial cells in the invaded blood vessels of the excised

implants. A strong CD31 signal was observed in the excised

implants (Figure 5B), indicating successful blood vessel formation

within the grafts. H&E staining was performed on the implants to

visualize the morphology of encapsulated cells within the tissue-like

structure (Figure 5C). Additionally, immunofluorescent staining for

human insulin in the implant revealed significant insulin expression

within the EMCVIns-encapsulated grafts (Figure 5C).

To eva lua t e the b iocompa t ib i l i t y o f the g ra f t s ,

immunofluorescence staining was conducted, including the

apoptosis factor TUNEL and immune cell markers CD3, CD4,

and CD8, at the conclusion of the experiment. Compared to normal

adipose tissue (Figure 6B), there was no substantial infiltration of

immunological factors in the grafts, indicating that the grafted

microspheres provided effective immune isolation. A minimal

presence of TUNEL-positive cells suggested a low level of
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apoptosis within the grafts (Figure 6A). In summary, the study

results indicate that Cytopore I is biocompatible and exhibits

immune isolation effects. The absence of significant immune

factor infiltration suggests that this transplantation method has a

low risk of inflammation. Moreover, the grafts enable the formation

of host blood vessels, which facilitates the exchange of nutrients,

including oxygen, between the graft and the host. This environment

supports the prolonged survival of engineered cells in vivo while

preserving the normal insulin secretion function of EMCVIns.

Collectively, our results demonstrate that Cytopore I-

encapsulated EMCVIns implants are capable of uninterrupted

insulin secretion, which may contribute to the reversal of

hyperglycemia and the potential achievement of long-term blood

glucose homeostasis.
Discussion

Despite medical advancements, diabetic patients continue to

rely on the invasive infusion of exogenous insulin, primarily insulin

analogs, which remain a burden due to the need for multiple

dosages. These structurally altered synthetic agonists interact

differently with insulin receptors compared to endogenous

insulin. Notably, unlike endogenous insulin, synthetic insulin

analogs can act at nearly all ligand concentrations under

abnormal physiological conditions, leading to shorter or longer

receptor stimulation and potentially significant alterations in

subsequent signaling and biological effects (48, 49). The use of
FIGURE 5

Tissue compatibility of Cytopore I microcarriers. 200 mL of Cytopore I encapsulated EMCVIns cells were injected into the inguinal fat pad of C57BL/6
mice. (A) Gross view of Cytopore I microcarriers formed structures 14 days after injection. (B) IHC staining to check the expression of CD31(platelet
endothelial cell adhesion molecule 1) on sectioned Cytopore I microcarriers formed structures. (C) H&E staining on sections of the normal fat pad
and Cytopore I+ EMCVIns cells- formed structures. Immunofluorescence staining to confirm human insulin expression (Green) on sections of the
normal fat pad and Cytopore I+ EMCVIns cells- formed structures. Scale bar: 50 mm.
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gene editing to create insulin-secreting engineered cells typically

involves introducing strong promoter-mediated insulin-secreting

constructs into the genome or cells using lentiviruses or

adenoviruses (50–52). However, it has been shown that the

intervention of a strong promoter may trigger the silencing or

aberrant expression of nearby genes. Additionally, studies have

revealed that a vector-borne promoter, intended to drive the

expression of the transgene, can be randomly integrated,
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potentially leading to the unexpected activation of nearby genes,

including oncogenes (53, 54).

Site-specific gene integration enables stable expression of

exogenous genes, heralding a new era in gene therapy. With the

aid of CRISPR/Cas9 technology, targeted DNA breaks can be

introduced at specific genomic sites using pre-designed sgRNAs,

facilitating precise HDR-based integration that reduces the risk of

off-target integration (55, 56). Leveraging this approach, we have
FIGURE 6

Grafts exhibit good in vivo biocompatibility. Cytopore I+ EMCVIns cells Graft (A) and normal mouse adipose tissue (B) apoptosis factor Tunel (green),
immunity factors CD3, CD4, CD8 (red) characterization, and DAPI (blue). Scale bar: 100 mm.
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constructed a promoter-free, IRES-based expression system that

couples insulin expression with the robust expression of GAPDH

without disrupting its own expression.

To create a promoter-free endogenous insulin expression

system, we synthesized modified insulin genes featuring furin-

excisable sites (PC1/3 and PC2 recognition sites modified

accordingly) based on previous research (44) These genes were

integrated into a specific site of the GAPDH locus in HEK-293T

cells using CRISPR-Cas9 tools (Figures 1A, C, D). The successful

integration and secretion of mature insulin, facilitated by the

modified furin-cleavable sites, were confirmed via ELISA

(Figures 1B, E, 2B). However, the engineered cells based on this

IRES were not glucose-responsive (Figures 2D, E). Stimulation with

varying glucose concentrations (5mM, 11mM, 25mM) did not

result in significant changes in total insulin content, likely because

the EMCV-IRES is not inherently sensitive to glucose. To address

this, replacing it with a different type of IRES or integrating glucose-

sensitive components could be promising, and such work is

ongoing. Additionally, the percentage of insulin secretion peaked

at 48 hours (Figure 2F) and then decreased at 72 hours, possibly due

to limited cell proliferation in the culture system.

Microcarriers have been effectively utilized for the culture of

anchorage-dependent cells, facilitating easy scale-up and benefiting

cell therapy applications (57, 58). Adequate oxygen supply and

favorable substance exchange are crucial for cell survival post-

transplantation (59). We observed that EMCVIns cells could

proliferate and grow on both GelMA and Cytopore I

microcarriers (Figures 3A–D), with microcarriers being more

conducive to cell survival and insulin secretion. Encapsulation in

GelMA resulted in insulin secretion levels in the medium

supernatant that were less than one-third of those detected under

normal conditions, possibly due to the electrostatic interaction

between the negatively charged GelMA hydrogel and the

positively charged insulin protein (Figure 3E).

Cytopore I microcarriers demonstrated an exceptional ability to

form tissue-like structures that support encapsulated transplanted

cells with an appropriate blood supply (Figure 5B). After extended

in vivo transplantation, the cell-carrying microspheres were

securely enveloped by the host’s inguinal fat pad, creating a stable

and robust fat inclusion body, free from vacuolar structures caused

by apoptosis (Figures 5A,C). These inclusions simplified the

localization of grafts in mice and could be removed as needed,

potentially reducing immune risks associated with transplantation

(57, 60). The cells within the grafts exhibited healthy growth, with a

substantial amount of insulin detected (Figure 5C), and minimal

apoptotic factors were observed at the end of the experiment,

indicating active cell proliferation (Figures 6A, B). Throughout

the six-week study, fasting blood glucose levels in the

transplanted mice were maintained at 11.6 ± 2.15 mmol/L,

representing a significant decrease compared to diabetic mice

(25.16 ± 4.8 mmol/L) and reversing hyperglycemia [fasting blood

glucose ≥ 16 mmol/L is considered to be diabetic (61)]. Upon graft

removal, fasting blood glucose levels in the de-transplanted group

rebounded to over 16 mmol/L (Figure 4E), strongly illustrating the

hypoglycemic effect of the engineered cells.
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To simulate the changes in blood glucose profile after feeding in

mice, we conducted an IPGTT. The results were encouraging, as the

blood glucose fluctuations in the EMCVIns-implanted group were

comparable to those in the normal group. Following an

intraperitoneal injection of glucose, the blood glucose levels in the

mice increased rapidly, peaking at 30 min, and then declined until

they stabilized at 2 hours, eventually returning to normal

(Figure 4F). This indicates that the implanted EMCVIns cells

have a beneficial hypoglycemic effect in vivo. However, it is

disappointing that the current engineered EMCVIns cells

did not exhibit glucose-sensing mediated regulation of insulin

secretion, mirroring the in vitro experimental results. The

observed decrease and subsequent increase in human insulin

levels in the mice may be attributed to the continuous secretory

nature of EMCV-IRES. Initially, insulin is used to equilibrate

with the additional high glucose load, leading to depletion and

then gradual recovery. Additionally, this may be due to the

absence of insulin vesicle structures in the engineered cells, unlike

b-cells (Supplementary Figure 3), which prevents the cells from

releasing large amounts of stored insulin to address spikes in blood

glucose. Further in-depth studies are required to address

this limitation.

At the conclusion of the experiment, we assessed the grafts for

immune factors, including CD3, CD4, and CD8, and detected only a

minimal level of positive expression (Figures 6A, B). The mice in the

transplantation group exhibited no signs of inflammation, such as

skin ulceration or swelling, and maintained smooth hair and

normal body condition. These findings imply that the

transplantation of cell-carrying microspheres into the groin is a

relatively safe approach. Both the fat pads and the microspheres

may provide a degree of immune isolation for the engineered cells,

which is beneficial for their long-term survival and the maintenance

of their normal function within the host body.

In conclusion, this study—the first to demonstrate that pre-

inoculation of IRES-mediated insulin-secreting cells on

microcarriers lowers blood glucose in T1D diabetic mice—

presents several significant findings: (i) It introduces a promoter-

free protein expression system that does not interfere with the host’s

gene expression. (ii) It proposes a convenient and effective method

of cell transplantation that has not triggered significant immune

rejection, suggesting the potential for long-term in vivo

functionality. (iii) It establishes a correlation between insulin

production and the number of cells, indicating that the degree of

blood glucose regulation can be modulated by adjusting the number

of transplanted cells. (iv) It shows post-feeding glycemic kinetics

comparable to those of a healthy group, suggesting that this

approach may offer greater therapeutic potential for diabetes than

long-acting or fast-acting insulin.
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