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Background: Heterogenous deposition and homeostasis roles of physiologic and

ectopic adipose tissues underscore the impact of fat compartmentalization on

cardiometabolic risk. We aimed to characterize the distribution of abdominal

visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), epicardial adipose

tissue (EAT), and liver fat on magnetic resonance imaging (MRI), and evaluate their

associations with anthropometric indices and adverse cardiac remodeling.

Methods: In this cross-sectional observational study, 149 Asian adults (57.0 ±

12.8 years; 65% males) with at least one cardiometabolic risk factor underwent

multiparametric fat and cardiovascular MRI. Anthropometric indices included

body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and

bioimpedance body fat mass (BFM). Associations between fat depots and

anthropometric measures as well as cardiac remodeling features were

examined as a single cohort and stratified by type 2 diabetes mellitus

(T2DM) status.

Results: VAT and SAT had opposing associations with liver fat and EAT. Therefore

the VAT/SAT ratio was explored as an integrated marker of visceral adiposity.

VAT/SAT was positively associated with EAT (b=0.35, P<0.001) and liver fat

(b=0.32, P=0.003) independent of confounders. Of the anthropometric

measurements assessed, only WHR was independently associated with VAT/

SAT (b=0.17, P=0.021). Individuals with T2DM had higher VAT and lower SAT

compared to those without T2DM, translating to a significantly higher VAT/SAT

ratio. EAT volume was independently associated with adverse features of cardiac

remodeling: increased left ventricular (LV) mass (b=0.24, P=0.005), larger

myocyte volume (b=0.26, P=0.001), increased myocardial fibrosis (b=0.19,
P=0.023), higher concentricity (b=0.18, P=0.035), and elevated wall stress

(b=−0.18, P=0.023).

Conclusion: Multiparametric MRI revealed abdominal VAT and SAT have

differential associations with anthropometric indices and ectopic fats in a

single cohort of Asians at risk of cardiometabolic disease. People with T2DM

have expanded VAT and diminished SAT, endorsing the VAT/SAT ratio beyond
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usual anthropometric measurements as a marker for multiorgan visceral fat

composition. Among the fat depots examined, EAT is uniquely associated with

adverse cardiac remodeling, suggesting its distinctive cardiometabolic properties

and implications.
KEYWORDS

cardiometabolic disease, fat distribution, visceral adiposity, diabetes, anthropometric
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1 Introduction

Disequilibrium or dysfunctional adipose tissue leads to obesity

and metabolic disorders which in turn are risk factors for

cardiovascular complications, described as cardiometabolic

disease (1). As major fat depots, visceral adipose tissue (VAT)

and subcutaneous adipose tissue (SAT) are believed to have distinct

metabolic roles. Ectopically, abnormal expansion of epicardial

adipose tissue (EAT) is associated with coronary artery disease

(CAD), heart failure (HF), and atrial fibrillation (AF) (2) whereas

excessive liver fat accompanying metabolic dysregulation in

metabolic dysfunction-associated fatty liver disease (MAFLD) is

implicated in elevated cardiometabolic risk (3).

The metabolic heterogeneity of adipose tissues in type, size,

function, and distribution as well as their modifiable potential

indicate the need for fat phenotyping, enabled by advances in

imaging-based quantification. However, the utility of conventional

anthropometric indices for accurate assessment of adiposity is often

challenged by the inability to account for the anatomical

composition of fat and the multifactorial variation of body

habitus. Alternative measures have been proposed but have yet to

become mainstays of obesity diagnosis and stratification.

Current data suggest that Asians have a higher propensity

for visceral fat storage and develop metabolic syndrome at a lower

body mass index (BMI) (4). We aim to characterize the distribution

of abdominal VAT and SAT, liver fat, and EAT in Asians at risk of

cardiometabolic disease using multiparametric MRI. Associations of

fat composition with anthropometric indices and features of cardiac

remodeling were examined. We hypothesized heterogeneous

associations among these fat depots with anthropometric indices

and cardiac remodeling characteristics, which are distinguished by

glycemic status.
2 Materials and methods

2.1 Study population

This observational study consisted of participants selected from

the National Heart Centre Singapore Biobank, who had at least one

of the following cardiometabolic risk factors: hypertension, type 2
02
diabetes mellitus (T2DM), hyperlipidemia, fatty liver, increased

BMI, and abdominal obesity. Individuals with inherited

cardiomyopathies (hypertrophic, dilated and infiltrative

cardiomyopathies) were excluded from the study.

Parameters evaluated included anthropometric measurements,

body fat mass by bioimpedance analysis, MRI-quantified adipose

tissue (abdominal VAT and SAT areas, liver fat fraction, EAT

volume), and cardiac metrics (mass, volumes, myocardial fibrosis

markers, wall stress) using cardiovascular magnetic resonance (CMR).

Ethics approval was granted by the SingHealth Biobank

Research Scientific Advisory Committee (SBRSA 2019/001). The

study was performed in accordance with ethical principles that have

their origin in the Declaration of Helsinki. All study participants

provided written informed consent.
2.2 Anthropometric indices and
bioimpedance body fat analysis

Anthropometric measurements acquired with standard

methods included BMI, waist circumference (WC), and waist-hip

ratio (WHR). BMI was calculated as weight (kg)/height (m)2. WC

was measured at just above the navel. Hip circumference was taken

at the widest portion of the hip area. The ratio between waist and

hip circumferences was calculated as WHR. All measurements were

taken in a standing position. Bioimpedance analysis (InBody,

Cerritos, California, USA) was used to measure body fat mass

(BFM), calculated as the difference between total body mass and fat-

free mass that was made up of water, protein, and minerals.

Local BMI thresholds guided by the recommendations made by

the WHO Expert Consultation Panel were used to define normal

(<23.0 kg/m2), overweight (23.0-30.0 kg/m2), and obese (>30.0 kg/

m2) (5). Abdominal obesity was defined asWHR >0.90 and >0.85 or

WC >90 cm and >80 cm for males and females, respectively (6).
2.3 Abdominal and cardiac MRI acquisition

MRI was performed for all participants using the 1.5T Siemens

Aera (Siemens Healthineers, Erlangen, Germany). Abdominal VAT

and SAT were examined from a series of contiguous cross-sectional
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abdominal water- and fat-separated images obtained from the two-

point Dixonmethod (TEs: 2.39 and 4.77 ms; TR: 6.5 ms; flip angle: 10

degrees; matrix size: 260 × 320 mm2; FOV: 325-366 × 400-450 mm2;

slice thickness: 4 mm, slice gap: 0.8 mm) (7). Liver proton density fat

fraction (PDFF) was acquired according to LiverMultiScan-Iterative

Decomposition of water and fat with the Echo Asymmetry and Least

Squares estimation method (LMS IDEAL; Perspectum Ltd, Oxford,

London), which has been implemented across MRI platforms (8).

The sequence parameters were as follows: TEs: 1.30, 3.30, 5,30, 7.30,

9.30, and 11.30 ms; TR: 14 ms; flip angle: 5 degrees; matrix size: 232 ×

256 mm2; FOV: 398 × 440 mm2; slice thickness:10 mm; number of

slices: 5; slice gap: 5 mm.

For CMR, balanced steady-state free precession cine images were

acquired in the long-axis 2, 3, 4 chamber views, and short-axis view

extending from the mitral valve annulus to the apex (acquired voxel

size: 1.6 × 1.3 × 8.0 mm3; slice gap: 2mm; 30 phases per cardiac cycle).

Late gadolinium enhancement (LGE) imaging denoting replacement

myocardial fibrosis was performed 8 minutes after 0.1 mmol/kg of

gadobutrol administration (Gadovist; Bayer Pharma AG, Germany).

A breath-held inversion-recovery fast gradient echo sequence was

used, and the inversion time was optimized to achieve appropriate

nulling of the myocardium. The native and 15-minute postcontrast

myocardial T1 maps were acquired with a modified Look-Locker

inversion-recovery sequence, applying a heartbeat acquisition scheme

of 5(3)3 and 4(1)3(1)2, respectively.
2.4 MRI-based fat and cardiac analysis

De-identified abdominal and cardiac images were analyzed at

Perspectum and the National Heart Research Institute (NHRIS)

Core Laboratory, respectively, by trained individuals who were

blinded to clinical data. Abdominal VAT, SAT, and liver PDFF

were analyzed by Perspectum’s expertly trained image analysts who

were blinded to the clinical data.

Cross-sectional areas of VAT and SAT were segmented

from the abdominal Dixon MRI image at the L3 vertebral level

using ITK-SNAP software version 3.8 (PICLS, University of

Pennsylvania, USA) (Figure 1A). This single-slice approach of
Frontiers in Endocrinology 03
quantifying VAT and SAT has been shown to correlate strongly

with total SAT and VAT volumes (r>0.9 in men and women) (9,

10). Liver fat was quantified as PDFF, expressed as a percentage, and

computed as fat/(fat+water) based on MRI-visible fat and water

signals in the regions of interest placed on the PDFF parametric

map, avoiding image artifacts and vessels (11, 12) (Figure 1B). Fatty

liver was defined as PDFF >5.6% (13, 14). LiverMultiScan reports

IDEAL-acquired PDFF with an accuracy within 3% of lab-analyzed

fat samples (15).

EAT volume on the left and right ventricles was quantified at

the end systole on short-axis cines extending from the mitral valve

annulus to the apex using CVI42 (Circle Cardiovascular Imaging,

Calgary, Canada). The bright layer between the myo-epicardial

border and the pericardium constituted the EAT. EAT was carefully

delineated along the pericardium to exclude the paracardial fat

which sits outside the margin of the pericardium (Figure 1C).

LV mass and cardiac volumes were analyzed according to

standardized protocols (16). LV concentricity was defined as the

ratio of LV mass over end-diastolic volume (EDV) (17). The

Remodeling Index (RI) is a surrogate marker of global myocardial

wall stress, calculated as RI =
ffiffiffiffiffiffiffiffiffiffi

EDV3
p

=t, where EDV is the LV end-

diastolic volume (mL) and t is the maximal wall thickness (cm)

across the 16 myocardial segments (18). A lower RI denotes

increased global myocardial wall stress and predicts worse

cardiovascular outcomes in individuals with hypertension (19).

Interstitial volume (mL), as a measure of diffuse interstitial

myocardial fibrosis, was calculated as the extracellular volume

(ECV) fraction × myocardial volume (mL), where extracellular

volume (ECV) was quantified from native and post-contrast T1

maps, and myocardial volume was calculated by dividing the

myocardial mass by the specific gravity of the myocardium (1.05

g/mL). Myocyte volume (mL) = myocardial volume – interstitial

volume (20).
2.5 Statistical analysis

The normality of data distribution was assessed with the Shapiro-

Wilk test. Continuous variables were presented as mean ± standard
FIGURE 1

Quantification of adipose tissue from MRI axial images. Areas of abdominal adipose tissues were acquired at the vertebral L3 level. Green: SAT;
yellow: VAT (A). Liver PDFF was quantified from the whole liver region of interest marked in red lines on a parametric map, avoiding image artifacts
and major vessels (B). EAT was segmented between the epicardium (red line) and the pericardium (green line) on both ventricles at end-systole from
the basal to apical short-axis cines. The paracardial fat outside the pericardium was not included in the EAT contour (C). EAT, epicardial adipose
tissue; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue.
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deviation (SD) if normally distributed or median (interquartile range)

if otherwise. Categorical variables were expressed as frequency

(percentage) and were analyzed using the c2 test.
Depending on the continuous or categorical nature of the

dependent variable, multivariable linear or logistic regression

analyses with adjustment for potential confounders were performed

to evaluate the associations between (i) anthropometric indices and

adipose tissues; (ii) abdominal, epicardial, and liver adipose tissues;

and (iii) adipose tissues and cardiac remodeling markers. Clinically

important potential confounders, including age, sex, ethnicity, BMI,

systolic blood pressure (SBP), hyperlipidemia, and T2DM status,

were adjusted for where applicable.

Mean differences in adipose tissues between categorical groups

(WHR categories, BMI categories, T2DM status) were adjusted for

confounders and compared using a one-way analysis of covariance

(ANCOVA). Post hoc Bonferroni was performed for pairwise

comparison between BMI categories (normal, overweight, and

obese). Adjusted mean differences with a 95% confidence interval

(CI) were reported. We compared the ability of VAT, SAT, and

VAT/SAT ratio to differentiate individuals with and without T2DM

using the area under the receiver operating characteristic

curve (AUC).

Statistical significance was defined as P<0.05. Statistical analyses

were performed using IBM SPSS Statistics Version 26 (IBM Corp,

Armonk, NY, USA) and GraphPad Prism Version 7.05 (GraphPad

Software, Inc, La Jolla, CA, USA).
3 Results

A total of 149 participants (57.0 ± 12.8 years old; 65%males; 83%

Chinese) with cardiometabolic risk factors had MRI assessment of

compartmental fat and cardiac remodeling (Table 1). Mean BMI was

26.9 ± 4.2 kg/m2 and meanWHR was 0.93 ± 0.08 (males: 0.96 ± 0.06,

females: 0.87 ± 0.09; P<0.001). The prevalence of normal, overweight,

and obese status defined by BMI was 22%, 58%, and 20%,

respectively. These participants had other cardiometabolic risk

factors including hypertension (n=120, 81%), T2DM (n=56, 38%),

hyperlipidemia (n=75, 50%), and fatty liver (PDFF=6.7 [3.3-14.3] %).

A greater proportion of T2DM participants were men (n=43, 77%;

P=0.020 for sex difference) but the proportion of hyperlipidemia and

fatty liver was not significantly different between sexes (P=0.275 and

P=0.913, respectively).
3.1 Association between anthropometric
indices and fat depots

All anthropometric measurements were independently

associated with VAT and SAT, with modest differences in the

strength of associations: WHR was associated more strongly with

VAT, whereas WC, BMI, and BFM were associated more with

SAT (Table 2).

VAT and SAT were significantly higher in individuals with

abnormal WHR and BMI (Figures 2A–D). We explored the VAT/

SAT ratio as an integrated variable to examine the relative
Frontiers in Endocrinology 04
TABLE 1 Baseline characteristics.

Demographics and Clinical Characteristics

Age, years 57.0 ± 12.8

Male, n (%) 97 (65.1)

Chinese, n (%) 124 (83.2)

24-hour mean SBP, mmHg 131 ± 13

24-hour mean DBP, mmHg 80 ± 11

Hypertension, n (%) 120 (80.5)

Hyperlipidemia, n (%) 75 (50.3)

T2DM, n (%) 56 (37.5)

Fatty liver, n (%) 84 (56.4)

Ischemic heart disease, n (%) 4 (2.7)

HbA1c, %∏ 7.0 (6.5-7.5)
Anthropometric and Bioimpedance Indices

Body surface area, m2 1.79 ± 0.21

Weight, kg 73.1 ± 14.6

Height, m 1.64 ± 0.09

BMI, kg/m2 26.9 ± 4.2

Waist circumference, cm 93 ± 12

Hip circumference, cm 100 ± 8

WHR 0.93 ± 0.18

Bioimpedance BFM, kg 24.4 ± 8.3

Skeletal muscle mass, kg 27.5 ± 8.7

Adipose Tissue Characteristics

VAT area, cm2 170.8 ± 82.7

SAT area, cm2 180.5 ± 87.3

VAT/SAT ratio 1.10 ± 0.68

EAT volume, cm3 113.2 ± 38.5

Liver PDFF, % 6.7 (3.3-14.3)
Cardiovascular Magnetic Resonance Characteristics

Indexed LV mass, g/m2* 50 ± 11

Indexed LV EDV, mL/m2* 70 ± 12

Indexed LV ESV, mL/m2* 29 ± 8

Indexed LV SV, mL/m2* 41 ± 7

LV EF, % 59 ± 6

LV mass/EDV ratio 0.71 ± 0.15

Indexed RV EDV, mL/m2* 71 ± 13

Indexed RV ESV, mL/m2* 30 ± 10

Indexed RV SV, mL/m2* 41 ± 7

RV EF, % 58 ± 9

Late gadolinium enhancement, n (%) 28 (18.8)

(Continued)
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distribution of VAT and SAT by anthropometry. VAT/SAT ratio

was strongly associated with male sex (b=0.27, P<0.001), increasing
age (b=0.35, P<0.001), and T2DM status (OR=4.071, P=0.001;

Supplementary Table S1). Of all the anthropometric measures

assessed, only WHR was independently associated with VAT/SAT

ratio (b=0.17, P=0.021).
VAT/SAT ratio was significantly increased in those with abnormal

WHR but not across BMI categories (Figures 2E, F). EAT volume was

greater with abnormal WHR, and across BMI (Figures 2G, H); liver

PDFF was increased in those with abnormal WHR, but not

significantly different between overweight and obese individuals

(Figures 2I, J). All findings were adjusted for age, sex, ethnicity, SBP,

hyperlipidemia, and T2DM (Supplementary Tables S2, S3).
3.2 Association between fat depots

Abdominal VAT and SAT were weakly correlated with each

other (r=0.19, P=0.024) and had opposing associations with EAT

and liver PDFF. While an increase in VAT was associated with an

increase in EAT (b=0.48; P<0.001), an increase in SAT was

associated with a smaller EAT volume (b=−0.42; P=0.001).

Similarly, greater VAT area was associated with higher liver
Frontiers in Endocrinology 05
PDFF (b=0.48; P<0.001) but no association was observed between

SAT and liver PDFF (b=0; P=0.999) (Figure 3).
Using the VAT/SAT ratio to examine the contrasting effects

between VAT and SAT, we observed that an increase in VAT/SAT

ratio was significantly associated with an increase in both EAT

(b=0.35, P<0.001) and liver PDFF (b=0.32, P=0.003) (Figure 3). All
analyses were adjusted for age, sex, ethnicity, BMI, SBP,

hyperlipidemia, and T2DM status.

Despite similar anthropometric measures (WC, WHR, BMI,

and bioimpedance BFM) between individuals with and without

T2DM (Supplementary Figure S1), individuals with T2DM had an

increased propensity for visceral fat accumulation. Compared to

non-diabetic participants, those with T2DM had significantly

increased VAT (193.0 ± 7.2 versus 157.4 ± 5.4 cm2, P<0.001), less

SAT (164.3 ± 7.0 versus 190.3 ± 5.3 cm2, P=0.006), a larger EAT

volume (124.5 ± 4.5 versus 106.4 ± 3.4 cm3, P=0.003), and a higher

liver PDFF (11.7 ± 1.1 versus 7.9 ± 0.8%, P=0.007) after adjustment

for potential confounders (Figure 3; Supplementary Table S4).

The higher VAT and lower SAT in T2DM translated to a

significantly higher VAT/SAT ratio in individuals with T2DM than

those without (adjusted mean difference=0.37, 95% CI=0.18-0.56,

P<0.001) (Figure 4; Supplementary Table S4). Indeed, VAT/SAT

ratio demonstrated the highest discrimination for the presence of

T2DM (AUC=0.79, 95% CI=0.72-0.86, P<0.001) compared to VAT

(AUC=0.71, 95% CI=0.63-0.80, P<0.001) and SAT (AUC=0.62,

95% CI=0.53-0.71, P=0.019) alone (Supplementary Table S5).
3.3 Association between fat depots and
CMR markers of cardiac remodeling

Among all the fat depots assessed in the study, EAT

demonstrated consistent and independent associations with adverse

features of cardiac remodeling on CMR, which remained significant

after adjustment for age, sex, SBP, hyperlipidemia, and T2DM status

(Figure 3). Specifically, an increase in EAT volume was independently

associated with increased LV mass (b=0.24, P=0.004), expanded
interstitial volume denoting diffuse interstitial myocardial fibrosis

(b=0.19, P=0.023), larger myocyte volume (b=0.26, P=0.001),

increased concentricity (LV mass/EDV ratio: b=0.18, P=0.035), and
reduced RI denoting increased myocardial wall stress (b=−0.18,
P=0.023). A higher VAT/SAT ratio demonstrated independent

association only with increased concentricity (b=0.23, P=0.035)
(Figure 5; Supplementary Table S6).

A total of 28 individuals (18.8%) had LGE on CMR (ischemic

pattern consistent with infarction, n=4; non-ischemic pattern,

n=24). Individuals with LGE had similar EAT volumes compared

to those without (125.7 ± 33.9 versus 110.8 ± 38.8 cm3, P=0.064),

although this should be interpreted with caution because only a

small proportion of individuals had LGE.
4 Discussion

Our results showed that abdominal VAT and SAT were both

increased in central and systemic obesity, with WHR (but not BMI
TABLE 2 Multivariable linear regression demonstrating independent
associations between anthropometric indices and abdominal fat.

VAT, cm2 SAT, cm2 VAT/SAT ratio

WC, cm 0.75, P<0.001 0.81, P<0.001 0.071, P=0.311

WHR 0.53, P<0.001 0.39, P<0.001 0.172, P=0.021

BMI, kg/m2 0.61, P<0.001 0.78, P<0.001 0.007, P=0.909

BFM, kg 0.62, P<0.001 0.78, P<0.001 0.045, P=0.470
All analyses were adjusted for age, sex, ethnicity, SBP, hyperlipidemia, and T2DM. Data
presented as standardized b coefficients and corresponding P values. BFM, body fat mass on
bioimpedance; BMI, body mass index; WC, waist circumference; WHR, waist hip ratio; SAT,
subcutaneous adipose tissue; VAT, visceral adipose tissue.
TABLE 1 Continued

Cardiovascular Magnetic Resonance Characteristics

Extracellular volume fraction, % 25.1 ± 2.5

Indexed interstitial volume, mL/m2* 11.9 ± 2.6

Indexed myocyte volume, mL/m2* 35.6 ± 7.9

Remodeling index 5.9 ± 1.1

Global longitudinal strain, % -16.6 ± 2.3

Global circumferential strain, % -19.4 ± 2.6

Global radial strain, % 33.9 ± 7.7

Cardiovascular Magnetic Resonance Characteristics
∏ Only in individuals with T2DM. *Indexed to body surface area calculated using the DuBois
formula = 0.007184 × height (m)0.725 × weight (kg)0.425.
BFM, body fat mass; DBP, diastolic blood pressure; EDV, end-diastolic volume; EF, ejection
fraction; ESV, end-systolic volume; LA, left atrial; LV, left ventricular; PDFF, proton density
fat fraction; RA; right atrial; RV, right ventricular; SAT, subcutaneous adipose tissue; SBP,
systolic blood pressure; SV, stroke volume; T2DM, type 2 diabetes mellitus; VAT, visceral
adipose tissue; WHR, waist-hip ratio.
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classification) as a better indicator of visceral adiposity. To the

best of our knowledge, this study is the first to report that VAT

and SAT have inverse associations with ectopic fats and T2DM,

endorsing the potential value of the VAT/SAT ratio as an

indication of relative visceral adiposity. The amounts of EAT
Frontiers in Endocrinology 06
and liver fat were associated with VAT, all of which were

distinctively increased in the presence of T2DM while SAT was

diminished. Among the fat depots assessed, the accumulation of

EAT was associated with adverse features of cardiac remodeling

on CMR.
FIGURE 2

Abdominal VAT and SAT were significantly higher in individuals with abnormal WHR and across BMI categories (A–D). VAT/SAT ratio was significantly
increased in individuals with elevated WHR but not across BMI categories (E, F). EAT was increased in those with abnormal WHR and across BMI
categories (G, H). Liver PDFF was greater in those with abnormal WHR. Across BMI categories, PDFF was higher than normal but not significantly
different between overweight and obese individuals (G–J). Results are presented in Tukey box and whisker plots. WHR thresholds: males, 0.90,
females, 0.85. Asian BMI thresholds: normal <23 kg/m2, overweight 23-30 kg/m2, obese >30 kg/m2. BMI, body mass index; SAT, subcutaneous
adipose tissue; VAT, visceral adipose tissue; WHR, waist-hip ratio.
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4.1 Relative visceral adiposity

VAT, being a metabolically active endocrine organ, confers

higher cardiometabolic risks over SAT (21, 22). A cross-sectional

study of 3,197 Japanese healthy adults demonstrated a greater

association between VAT and metabolic diseases. SAT, by

contrast, demonstrated an inverse association with impaired

glucose metabolism in men and no significant association in

women (23). In another study involving biopsy-proven non-

alcoholic fatty liver disease (NAFLD) patients, MRI-quantified

VAT was associated with insulin resistance, glucose, triglyceride,

and WHR whilst SAT was negatively associated with these same

indices (24). Inflammatory mediators were also differentially

associated with VAT and SAT. Pro-inflammatory factors were

expressed in a greater amount by VAT than SAT (25, 26).
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Conversely, adiponectin, which has a putative anti-inflammatory

effect, was less abundant in the VAT (27). Lower levels of

adiponectin were associated with a higher prevalence and

increased risk of cardiovascular diseases (28, 29). These

differences supported our observations of the opposite

associations of VAT and SAT with T2DM, liver fat, and EAT.

Different treatments had different effects on adiposity. For

instance, an improvement in glycemic profile with troglitazone

therapy was accompanied by increased SAT (30) whereas

glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy

decreased VAT and not SAT (31, 32). Furthermore, surgical

removal of VAT ameliorated metabolic syndrome while the

effects of SAT removal have been inconsistent, with some

demonstrating an improved (33, 34) or neutral (35, 36) effect on

insulin sensitivity. For these reasons, the absolute amount of either
FIGURE 3

Visceral and subcutaneous adipose tissue (VAT and SAT) had inverse associations with epicardial adipose tissue (EAT) and liver proton density fat
fraction (PDFF). An increase in the integrated VAT/SAT index was associated with an increase in both EAT and liver PDFF. Individuals with type 2
diabetes mellitus (T2DM) had increased visceral and ectopic fat depots. Regardless of diabetes status, adverse cardiac remodeling was observed with
the accumulation of ectopic EAT. Multivariable regressions were adjusted for age, sex, ethnicity, systolic blood pressure, hyperlipidemia, body mass
index, and T2DM. Mean differences in fat depots between T2DM and non-DM were analyzed using one-way ANCOVA adjusted for all confounders
except T2DM status. *P<0.05; **P<0.001.
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of these fat depots may not fully reflect obesity-related

cardiometabolic risk. Visceral adiposity, which has an established

link with insulin resistance (37, 38), is therefore an appealing option

that may be represented by the VAT/SAT ratio. Our findings

corroborated this postulation, demonstrating the superior ability

of the VAT/SAT ratio to discriminate diabetes status over VAT and

SAT alone. This integrated index, interpreted in the context of the

absolute amount of SAT and VAT, will likely inform a more

complete metabolic profile of an individual.
4.2 Anthropometric indices and fat depots

In our study, BMI correlated weakly with VAT, EAT, and liver

PDFF compared with waist-derived measurements. The advantage

of WHR in estimating visceral adiposity is substantiated by the

ability of abnormal sex-specificWHR to indicate an increased VAT/

SAT ratio. In contrast, the Asian-specific BMI classification showed

no difference in the VAT/SAT ratio between normal, overweight,

and obese status. BMI’s inference on obesity as a function of weight
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and height lacked the sensitivity to delineate body fat composition.

Such inadequacy in reflecting true adiposity and the associated

cardiometabolic risk has given rise to phenomena such as normal-

weight obesity (39, 40) and metabolically healthy obesity (41).

Despite accounting for muscle, water, and bone mass,

bioimpedance BFM is a measure of generalized fat storage and

does not differentiate anatomical fat distribution. The predominant

localization of VAT around the intra-abdominal organs and SAT in

the gluteal-femoral region (42, 43) may suggest WHR as the

preferred surrogate measure for abdominal visceral adiposity.
4.3 Abdominal, epicardial, and liver
fat depots

Parallel with predominant visceral adiposity at the abdominal

level, we observed greater EAT volume and liver fat in patients with

T2DM. EAT is considered the true visceral fat of the heart as it

originates from the same embryonic layer as VAT and is in direct

contact with the myocardium (44). Our finding is in line with this
FIGURE 4

Individuals with T2DM had increased VAT (A), reduced SAT (B), and this translated to a higher VAT/SAT ratio (C). Results are presented in Tukey box
and whisker plots. DM, diabetes mellitus; SAT, subcutaneous adipose tissue; T2DM, type 2 diabetes mellitus; VAT, visceral adipose tissue.
FIGURE 5

Increased EAT volume was associated with features of adverse cardiac remodeling: increased indexed LV mass (A), indexed interstitial volume
(B), indexed myocyte volume (C), LV mass/EDV ratio denoting concentricity (D), and reduced remodeling index, a marker of elevated myocardial wall
stress (E). These associations remained significant after adjusting for potential confounders as listed in the text. DM, diabetes mellitus; EDV, end-
diastolic volume; LV, left ventricular; T2DM, type 2 diabetes mellitus.
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theory such that EAT was positively associated with VAT but

negatively with SAT. Notably, in non-diabetic patients, although

they had relatively more abdominal SAT, there was a good

correlation between their VAT/SAT ratio and EAT volume,

implying that EAT size could be approximated by relative

abdominal visceral adiposity regardless of their diabetes status.

On a similar note, the liver PDFF was significantly higher with

more abdominal VAT but not SAT. This differential association

between abdominal fat with PDFF could be explained by insulin

resistance exacerbated by visceral adiposity. The free fatty acids of

VAT are drained by the portal vein (45) which when increased in

metabolic disorders would lead to hepatic steatosis (46, 47). Whilst

NAFLD increases the risk of cardiac complications (48), NAFLD

patients with expanded EAT are at risk of more severe liver fibrosis

(49), suggesting a bidirectional pathophysiological cross-talk

between the heart and the liver. Trials with GLP-1RAs and

sodium-glucose co-transporter 2 (SGLT2) inhibitors have

reported reductions in EAT thickness, liver fat, and abdominal

fat, often without significant BMI changes or correlation (50–55),

highlighting the interrelation of these fat depots as well as their

modifiable potential independent of body weight, hence the value of

their quantification for risk prevention and treatment monitoring.
4.4 Epicardial adipose tissue and CMR
markers of cardiac remodeling

Of the fat depots we assessed, a greater EAT volume was associated

with adverse cardiac remodeling: expanded myocyte and interstitial

volumes, increased LV mass, a more concentric LV, and higher global

myocardial wall stress. The anatomic proximity of EAT to the

myocardium facilitates infiltration of lipids, vasocrine and paracrine

factors into the myocardium (56), rendering it susceptible to a cascade

of metabolic, inflammatory, and immune activity alterations. It has

been reported that paracrine exertion of EAT-derived adipokines was

associated with LV systolic and diastolic functions (57). Such paracrine

effects could have modulated the structural LV remodeling observed

with increased EAT in the present cohort of relatively well individuals

prior to discernable functional deterioration.

In insulin resistance, glucose utilization and lipolysis are

reduced in EAT. Such metabolic remodeling along with the

hemodynamic changes due to mechanical impediment imposed

by an excessive fat pad could increase the cardiac output and energy

demands of the heart, leading to elevated myocardial wall stress.

The left and right filling pressures are elevated with greater EAT

volume in patients with obesity and concomitant heart failure with

preserved ejection fraction (HFpEF) (58). To compensate for

pressure overload, cardiomyocytes undergo hypertrophic growth,

manifested as increased myocyte volume and LV mass, to reduce

wall stress. The disproportionate growth of wall thickness was

accompanied by increased wall stress and concentricity, reflected

in lower RI and mass/volume ratio, respectively. One study reported

that even in patients with no HF or other cardiovascular risk factors,

increased visceral adiposity was associated with myocardial

steatosis, impaired myocardial energetics, increased LV mass,

concentric remodeling, and diastolic dysfunction (59).
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We have previously determined that increased myocardial wall

stress was associated with myocardial fibrosis, possibly mediated by

inflammation and immune activation (18, 60). Considering the

implications of inflammation on EAT (61), we observed that a

greater EAT volume was associated with an expansion of interstitial

volume, a marker of diffuse interstitial myocardial fibrosis. While

diabetic patients had worse cardiac remodeling (60), the present

study demonstrated that the association between features of adverse

cardiac remodeling and EAT amount appeared to be independent

of T2DM status, hinting at a complex interplay between glucose

metabolism, epicardial adiposity, and cardiac remodeling, which

calls for further investigations.
4.5 Strengths and limitations

A strength of this study lies in the multiparametric MRI

quantification of fat depots in the abdomen, liver, and heart that

are metabolically important in the regulation of cardiometabolic

health, providing insights into the implications of fat distribution

for myocardial remodeling. Along with imaging data,

comprehensive anthropometric indices offered a surrogate

indication of fat composition for easy and quick measurement.

Our cohort predominantly consisted of Chinese participants.

Investigations on ethnic differences in fat composition,

anthropometry, and implications in cardiac remodeling are

warranted in future studies.

The quantification of PDFF did not account for T1 and T2* and

thus estimation of liver fat may be affected by the presence or extent

of inflammation, fibrosis, and iron. However, calculating PDFF

using this approach was shown to provide excellent diagnostic

accuracy for liver fat similar to biopsy-confirmed non-alcoholic

steatohepatitis (11). Furthermore, assessing PDFF using the LMS

IDEAL approach has been validated against lab-analyzed fat

samples (15). The LMS IDEAL method is also robust against the

fat/water swapping error. These factors increased the confidence of

our PDFF analyses while acknowledging that correction for T1 and

T2* should be considered for future studies involving fibrotic and

inflammatory liver pathologies.
5 Conclusion

In Asian adults with cardiometabolic risk factors, our study,

using multiparametric MRI, demonstrated that abdominal VAT

and SAT have differential associations with anthropometric indices

and ectopic fats. Distinctive abdominal visceral adiposity indicated

by an increased VAT/SAT ratio was more prominently implicated

in T2DM and was associated with increased liver and epicardial fat,

the latter of which was uniquely associated with adverse cardiac

remodeling. With the current data suggesting a close link between

epicardial, liver, and abdominal visceral adiposity, further

investigations are needed to validate the utility and reliability of

measuring these fat depots using anthropometric measures such as

WHR for assessment and monitoring of cardiometabolic health

and remodeling.
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