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related genes and pathways in
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combining bioinformatic analysis
and machine learning
Wenqi Lv1†, Han Xie1†, Shengyu Wu1, Jiaqi Dong1, Yuanhui Jia2*

and Hao Ying1,2*

1Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji
University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal
Medicine and Gynecologic Oncology, Shanghai, China, 2Department of Clinical Medicine, Shanghai
First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of
Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology,
Shanghai, China
Background: Spontaneous preterm birth (sPTB) is a global disease that is a

leading cause of death in neonates and children younger than 5 years of age.

However, the etiology of sPTB remains poorly understood. Recent evidence has

shown a strong association between metabolic disorders and sPTB. To

determine the metabolic alterations in sPTB patients, we used various

bioinformatics methods to analyze the abnormal changes in metabolic

pathways in the preterm placenta via existing datasets.

Methods: In this study, we integrated two datasets (GSE203507 and GSE174415)

from the NCBI GEO database for the following analysis. We utilized the “Deseq2”

R package and WGCNA for differentially expressed genes (DEGs) analysis; the

identified DEGs were subsequently compared with metabolism-related genes.

To identify the altered metabolism-related pathways and hub genes in sPTB

patients, we performedmultiple functional enrichment analysis and applied three

machine learning algorithms, LASSO, SVM-RFE, and RF, with the hub genes that

were verified by immunohistochemistry. Additionally, we conducted single-

sample gene set enrichment analysis to assess immune infiltration in

the placenta.

Results: We identified 228 sPTB-related DEGs that were enriched in pathways

such as arachidonic acid and glutathione metabolism. A total of 3 metabolism-

related hub genes, namely, ANPEP, CKMT1B, and PLA2G4A, were identified and

validated in external datasets and experiments. A nomogram model was

developed and evaluated with 3 hub genes; the model could reliably

distinguish sPTB patients and term labor patients with an area under the curve

(AUC) > 0.75 for both the training and validation sets. Immune infiltration analysis

revealed immune dysregulation in sPTB patients.
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Conclusion: Three potential hub genes that influence the occurrence of sPTB

through shadow participation in placental metabolism were identified; these

results provide a new perspective for the development and targeting of

treatments for sPTB.
KEYWORDS

spontaneous preterm birth, metabolism, bioinformatics, machine learning,
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1 Introduction

Preterm birth, defined as birth occurring before 37 weeks of

gestation clinically, is the leading cause of neonatal morbidity and

mortality (1). According to the World Health Organization

(WHO), the incidence of preterm birth worldwide is 5-18%, with

spontaneous preterm birth (sPTB) accounting for approximately

70% of preterm births (2). Although the survival of preterm infants

has improved significantly because of technological advances, short-

term complications attributed to the immaturity of multiple organ

systems, such as acute respiratory distress syndrome, necrotizing

enterocolitis, intracerebral hemorrhage, cerebral palsy (3), and

long-term complications such as cardiovascular and metabolic

disorders (4, 5), still threatened the health of offspring. Since the

mechanism of term/preterm labor is not fully understood, there is a

lack of effective methods for preventing and treating preterm labor.

Multiple factors such as environmental exposure, genetic

factors (6), stress, infection (3), etc., contribute to the individual

or community origin and development of sPTB. The placenta is a

medium for the exchange of all nutrients, gases, and even fetal waste

products between mothers and children throughout pregnancy (7).

As a medium of communication between the mother and fetus, the

placenta can strongly reflect the influence of internal and external

factors on pregnancy. The appropriate formation of villi and

vascular structures and the stability of physiological function in

the placenta ensure a healthy and successful pregnancy; otherwise,

several pregnancy and fetal complications may occur, such as

preeclampsia (PE), fetal growth restriction (FGR) (8), and

spontaneous preterm birth (9).

In sPTB, several functional disruptions, including apoptosis (10),

senescence (11), and metabolic disorders (12), are observed in the

placenta. These disruptions may contribute to the progression of

pathological processes. Harmonious and appropriate maternal-fetal

metabolic communication guarantees a healthy fetal environment and

sufficient resources to grow until parturition (13). Increasing evidence

has demonstrated the important role of placental metabolism disorders

in sPTB. Several transcriptomic analyses of the placenta have revealed

dysregulated metabolism-related signaling (e.g., glucose and

arachidonic metabolism) in sPTB patients (14–16). Moreover, some

researchers have experimentally verified that disorders in amino acid
02
(17), iron (18), lipid and fatty acid (12, 19, 20) metabolism are

associated with sPTB. Additionally, arachidonic metabolic disorders

can lead to lipid peroxidation and subsequently induce placental

oxidative stress (21). However, existing theories cannot thoroughly

explain the specific effects of metabolism on sPTB. With few studies

focused on the transcriptional regulation of metabolism, we integrated

existing transcriptome data to identify pathways and key genes

associated with sPTB.

sPTB is thought to at least share some characteristics associated

with term labor (TL) (3). A new perspective regards the initiation of

preterm labor as a syndrome of multiple pathologic processes.

However, what exactly promotes the early occurrence of labor in

preterm birth has not yet been elucidated. Therefore, by selecting

women with TL as a control group, we integrated transcriptomic

data of human placentas obtained from women with sPTB

(gestational age between 28 + 0 and 36 + 6 weeks) from the Gene

Expression Omnibus (GEO) database to better understand the

pathogenesis of sPTB. We combined bioinformatics analysis and

machine learning (ML) to screen and identify altered metabolism-

related pathways and hub genes in sPTB, which could be possible

effective therapeutic targets in the future.

2 Materials and methods

2.1 Recruitment of participants and
sample collection

The placenta was obtained from patients in 3 groups: the (1)

spontaneous preterm birth (gestational age between 28 + 0 and 36 + 6

weeks, sPTB) (1); (2) spontaneous term labor (gestational age between

37 + 0 and 40 + 6 weeks, TL); and (3) elective preterm cesarean delivery

due to vasa previa, fetal distress and so on(aka preterm non-labor,

PNL) groups in Shanghai First Maternity and Infant Hospital, Tongji

University School of Medicine (see Supplementary Table 4 for the

clinical characteristics of patients). Patients with any other

complications, such as preeclampsia, fetal growth restriction, or

gestational diabetes, were excluded from this study. The study was

approved by the Ethics Committee of Shanghai First Maternity and

Infant Hospital (KS22305), and all the methods and operation were

executed according to the relevant guidelines and regulations.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1440436
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lv et al. 10.3389/fendo.2024.1440436
2.2 Dataset retrieval

All the datasets we analyzed in this study were obtained from

the National Centre for Biotechnology Information Gene

Expression Omnibus (NCBI GEO, http://www.ncbi.nlm.nih.gov/

geo) (22), using “Preterm” or “Spontaneous preterm” as keywords.

The samples in the dataset fulfilled the following criteria: (1) the

species of samples was HOMO Sapiens; (2) all the samples were

obtained from placenta; (3) the dataset included both sPTB

(gestational age between 28 + 0 and 36 + 6 weeks) and TL

(gestational age between 37 + 0 and 40 + 6 weeks) groups; and (4)

both sPTB and TL samples were collected from patients who

underwent spontaneous (preterm) labor. Based on these criteria,

we acquired 4 GEO datasets, two of which served as training sets

(GSE203507 and GSE174415) and contained 21 samples from each

group, while the others served as validation sets (GSE18809 and

GSE120480). The details of the datasets are shown in

Supplementary Table 1.
2.3 Identification of differentially expressed
genes with batch effect removal

We merged GSE203507 and GSE174415 and utilized the

ComBat_seq function of the R package “sva” to remove batch

effects. Significantly differentially expressed genes (DEGs) were

identified with the R package “DESeq2” under the criteria of p-

adjustment < 0.05 and log2 | fold-change (FC) | >0.5. Subsequently,

DEGs were visualized using the R packages “pheatmap”

and “ggplot2”.
2.4 Weighted correlation network analysis

Weighted correlation network analysis (WGCNA) can identify

clusters (modules) of highly correlated genes and relate the

characteristic module genes with external sample traits (23). In

this study, we used it to assess the relationship between module

eigengene and sPTB. We extracted genes whose median absolute

deviation (MAD) was in the top 75% for “WGCNA” analysis using

the R package “WGCNA”. The algorithm goodSamplesGenes was

used to ensure that there were no abnormal samples or genes.

Moreover, we used the hclust function to construct a cluster

dendrogram and determine whether there were outlier samples,

and eventually, we removed two samples whose heights were

greater than 70. After the soft threshold was determined to be 8,

with a minimum of 30 genes per module, we obtained modules of

similar coexpressed genes and applied Pearson correlation analysis

to define the association between modules and disease phenotypes.
2.5 Functional enrichment analysis

To investigate the potential functions of the genes, gene set

enrichment analysis (GSEA) (24), Gene Ontology (GO) (25, 26),

Kyoto Encyclopedia of Genes and Genomes (KEGG) (27) pathway
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were performed, enabling us to understand the biological functions

of these genes in a comprehensive and multifaceted way. Then we

conducted CNBplot (28) analyses to visualize the possible links

between these functions at the genetic level. The analyses were

implemented and the results were visualized with the R packages

“clusterProfi ler” , “pathview” , “enrichplot” , “ggplot2” ,

“org.Hs.eg.db”, and “CBNplot”. p < 0.05 indicated a statistically

significant difference.
2.6 Identification of metabolism-
related DEGs

A total of 3937 metabolism-related genes were retrieved from the

Human Gene Database GeneCards (https://www.genecards.org/), with

the key words “metabolism” and a relevance score > 2.5 as criteria.

Similarly, we retrieved 951 metabolism-related genes from the

GSEA/MSigDB database (https://www.gsea-msigdb.org/gsea/

index.jsp). The results revealed that the two databases shared 780

overlapping genes (Supplementary Table 2). By comparing these

780 metabolism-related genes with DEGs and genes in modules

related to sPTB (absolute value of correlation coefficient > 0.4 and p

< 0.05), we identified 19 candidate hub genes (MRDEGs).
2.7 Machine learning to screen hub genes

In this study, we employed three ML algorithms, least absolute

shrinkage and selection operator (LASSO), support vector machine

recursive feature elimination (SVM-RFE), and random forest (RF)

analysis, to further screen hub genes. LASSO logistic regression is a

method for building generalized linear models (29). Here, LASSO

regression was used to screen variables of MRDEGs with 10-fold

cross-validation, and a was set to 1 in these circumstances. SVM-

RFE is a backward selection method that starts with all features and

then recursively removes the least important features based on

model performance. The performance of the model was evaluated

using 10-fold cross-validation techniques in this study. The

SVM-RFE method provides a feature ranking based on the

importance of the features, and the optimal features can be

screened to build the final model (30). RF is an ensemble learning

method that extends from Bagging. Based on the integration of the

decision tree classifier, RF imports random attribute selection in the

training of the decision tree, thereby increasing its accuracy and

generalizability. We ran the model with 10-fold cross-validation

and obtained the genes with the highest accuracy. The LASSO,

SVM-RFE, and RF algorithms were implemented through the R

packages “glmnet”, “e1071”, and “randomForest”, respectively.
2.8 Hub gene validation and
nomogram construction

The receiver operating characteristic (ROC) curves and the

corresponding area under the curve (AUC) are widely used to assess

the classification performance of a model or gene discriminating
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between samples from a specific patient group and a non-patient

group. To verify the performance of the hub genes identified by the

three ML algorithms, we generated ROC curves with the R package

“pROC” and 8 overlapping hub genes. Moreover, we validated the

hub genes in two distinct external datasets (GSE18809 and

GSE120480) with ROC curves. Based on the verified hub genes, a

nomogram was constructed with the R package “rms”, which can

integrate multiple factors as a new classifier to discriminate disease

phenotypes. Calibration curves were employed to evaluate the

consistency between the observed and predicted values. ROC

curves were created to estimate the performance of the

nomogram using the internal and external verification datasets.
2.9 Building a TF-miRNAs-mRNA
regulatory network

NetworkAnalyst (http://www.networkanalyst.ca/faces/

home.xhtml) (31) was utilized to predict and establish a TF-

miRNA−mRNA network, in which literature curated regulatory

interaction information was collected from the TarBase v8.0 and

ChEA databases. Subsequently, we analyzed and mapped the results

using Cytoscape software to visualize possible upstream and

downstream regulatory relationships of genes.
2.10 Immune infiltration analysis

Immune infiltration was evaluated through the single-sample

gene set enrichment analysis (ssGSEA) algorithm with the R package

“GSVA” (32). We compared the distribution of different immune

cells between the sPTB and TL groups. Moreover, the correlation

between the expression of hub genes and the level of immune cell

infiltration was estimated via Spearman correlation analysis.
2.11 Immunohistochemistry

All tissues were collected 30 minutes after placental delivery and

soaked in 4% paraformaldehyde solution overnight, followed by

paraffin embedding. For the sectioning of paraffin-embedded tissue,

the tissue was dewaxed, rehydrated and subjected to antigen

retrieval before being successively incubated with 3% hydrogen

peroxide solution, 3% BSA at room temperature and primary

antibodies overnight (Supplementary Table 5) at 4°C. The next

day, the sections were incubated with secondary antibodies and

DAB reagent to stain the tissue.
2.12 Statistical analysis

Statistical analysis was performed with RStudio (version 4.1.2)

and IBM SPSS Statistics 25 software. The differences in clinical

characteristics between sPTB patients and TL patients were

analyzed by Student’s t test. P < 0.05 was considered to indicate

statistical significance.
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3 Results

3.1 GEO dataset preprocessing and
DEGs identification

The flow chart for the workflow of this study is shown in

Figure 1. First, two training sets (GSE203507 and GSE174415) were

merged, and batch effects were removed. Then, we identified outlier

samples with a cluster dendrogram and eventually removed two

samples because their height was greater than 70. Figures 2A, B

depict the cluster dendrograms of the samples before and after

filtering, respectively. We reanalyzed the remaining 40 samples.

Before any subsequent analysis, the data were standardized or

normalized to eliminate the effect of sequencing depth or

differences between samples. Figures 2C, D show the principal

component analysis (PCA) results of the two datasets before and

after the removal of batch effects. The samples from the two datasets

were evenly distributed, as shown in Figure 2D, indicating that

disease differentially expressed gene analysis of the sPTB group and

TL group could be conducted. Additionally, box plots and cluster

dendrograms of these two datasets before and after de-batching are

presented in Supplementary Figures 1A–D.

As shown in Figure 2E, 307 upregulated genes and 209

downregulated genes were identified as DEGs under the criteria

of p-adjusted < 0.05 and log2 | FC | >0.5. The detailed expression of

these DEGs is visualized in Figure 2F, which shows the differential

expression patterns of the sPTB and TL groups intuitively.
3.2 WGCNA module identification and
correlation analysis

After normalizing the merged datasets (Supplementary

Figure 1E), we used WGCNA to obtain 32 gene modules whose

genes showed similar expression patterns (Figure 3C), with the

optimal soft threshold value identified as eight to ensure a scale-free

distribution of the network (Figures 3A, B). Modules with

correlation coefficients > 0.4 and p-adjusted < 0.05 were

considered significantly correlated with sPTB (Figure 3D) and are

part of the royal blue, brown-yellow, cyan, and light green modules.

Thereafter, these modules were compared with the DEGs to identify

228 sPTB-related DEGs (Figure 3E, Supplementary Table 3), which

were used for subsequent analysis.

We performed functional enrichment of these shared genes via

GO and KEGG analyses to further evaluate the potential biological

functions of these genes. There categories of GO terms were included

in enrichment analysis: biological process (BP), which included

extracellular matrix organization and extracellular structure

organization; cellular component (CC), which included collagen-

containing extracellular matrix; and molecular function (MF),

which included metallopeptidase activity and heparin binding, as

depicted in Figure 4A. KEGG analysis revealed that genes related to

neuroactive ligand−receptor interactions, the Ras/PI3K-Akt signaling

pathway, cytokine−cytokine receptor interactions and some

metabolic pathways, such as arachidonic acid, glutathione, a-
linolenic acid and linoleic acid metabolism, were enriched
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(Figure 4B, Supplementary Figures 2A, B). GSEA indicated that these

two datasets were primarily enriched in glutathione, cytochrome

P450 and arginine and proline metabolism (Figure 4C). Notably, a

number of metabolic pathways enriched in those sPTB samples,

which is consistent with what’s been reported before (12, 14). As a

medium of communication between mother and fetal, metabolic

abnormalities in the placenta may have far-reaching consequences for

both sides. Thus, we focused on the metabolic changes in the

following analysis and aimed to identify metabolism-related hub

genes involved in sPTB. By comparing metabolism-related genes

acquired from the open database (Supplementary Table 2) and the

abovementioned shared genes, we obtained 19 MRDEGs (PAPSS2,

CEL, NNMT, SDS, CKMT1B, MINPP1, ASMT, GGT5, LDHD,

PLA2G2A, CYP4F3, PLA2G4A, SGPP2, SULT1E1, PDE2A,

ANPEP, CA1, GATM, and PGD) to utilize in further analysis

(Figure 4D). In addition, we speculated that there was a possible

relationship between pathways based on GSEA, GO and KEGG with

CBNplot analyses (Supplementary Figure 2).
3.3 Identification and validation of hub
MRDEGs with three machine learning
algorithms and IHC

To further identify feature genes that could play a role in sPTB,

we used the LASSO, RF, and SVM-RFE algorithms to identify hub

genes based on the MRDEGs identified above. The LASSO

algorithm extracted 11 genes from the MRDEGs (Figures 5A, B).
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Based on SVM-RFE, we identified 14 genes by tenfold cross-

validation (Figures 5C, D). In RF, the optimal number of trees

was defined as 14 when the error rate was minimized (Figure 5E).

The results of the three ML algorithms shared 8 feature genes,

namely, ANPEP, ASMT, CA1, CKMT1B, MINPP1, PDE2A,

PLA2G4A and SDS (Figure 5H), which were regarded as

candidate hub genes in sPTB. The different expression patterns of

the 8 significant MRDEGs in the sPTB and TL groups are depicted

in Figure 5F.

To validate the contribution of these 8 MRDEGs to

differentiation of the sPTB and TL groups, ROC analysis was

utilized for the training sets and validation sets. In the training

sets, which included the combined GSE203507 and GSE174415

datasets, all 8 MRDEGs had area under the curve (AUC) values

exceeding 0.75, as depicted in Figure 5G. Then, we performed ROC

analysis on two external validation datasets (GSE18809 and

GSE120480) separately. Three genes (ASMT, PDE2A and SDS)

were excluded because their AUC values were less than 0.75

(Supplementary Figures 3A, 4A). Finally, we selected 5 MRDEGs

(ANPEP, CA1, CKMT1B, MINPP1 and PLA2G4A) as feature hub

genes in sPTB.

To verify the pivotal roles of the hub genes (ANPEP, CA1,

CKMT1B , MINPP1 and PLA2G4A) , we pe r f o rmed

immunohistochemical staining of placentas from the sPTB and

TL groups (n=5). As shown in Figure 6 and Supplementary

Figures 5, 6, the levels of ANPEP, CKMT1B and PLA2G4A were

significantly greater in the sPTB group than in the TL group, which

was consistent with the results of the bioinformatics analysis.
FIGURE 1

Flow chart of the research design. DEGs, differentially expressed genes; sPTB, spontaneous preterm birth; TL, term labor; PNL, preterm nonlabor.
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Notably, unlike the other four genes located in trophoblast cells,

ANPEP was mainly expressed in intravillous stromal cells. MINPP1

was barely expressed in the placenta; therefore, we excluded it from

the list of hub genes.

Additionally, to confirm that the differences in the expression of

these hub genes were caused by pathological changes rather than

variations between term and preterm births due to gestational age

(GA), we compared the expression levels with 37 previously

identified GA-specific candidate genes (33) and evaluated the

differences in expression between the placentas of sPTB patients

and preterm non-labor (PNL) patients via immunohistochemistry

(Figure 6; Supplementary Figures 5, 6, n=3). Ultimately, we

regarded CA1 as a GA-related gene because of its low and

undifferentiated expression in both the PNL and sPTB groups

and its high expression in the TL group. Hence, we eliminated

CA1 from the list of hub genes. Ultimately, we kept ANPEP,
Frontiers in Endocrinology 06
CKMT1B, and PLA2G4A as the hub genes, which were enriched

in glutathione (GSH) and arachidonic acid metabolism. Both of

them are reported to be involved in the development of sPTB

(12, 34).
3.4 The establishment of nomograms and
the TF-miRNA-hub gene network

To determine whether these hub genes have a comprehensive

effect on sPTB, we established a nomogram based on the expression

of the remaining 3 hub MRDEGs in the training set (Figure 7A) and

validated the results using the GSE18809 and GSE120480 datasets.

ROC curves and calibration curves were generated, which indicated

that the nomogram could accurately evaluate the risk of sPTB

(Figures 7B, C). In addition, the nomogram also fit the GSE18809
FIGURE 2

Integration of datasets and DEGs identification (A) Cluster dendrogram of the raw data. The region above the red line represents the outlier sample.
(B) Cluster dendrogram of filtered data. (C, D) PCA plots according to merged datasets before and after batch effects were removed. (E) Volcano
plots of DEGs (p-adjustment < 0.05 as well as log2FC>0.5). (F) Heatmap of significant DEGs.
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and GSE120480 datasets, which confirmed the critical role of the 3

hub genes (Supplementary Figures 3B, C, 4B, C).

To investigate the upstream regulatory factors of the 3 hub

genes, we established a TF-miRNA-hub gene network based on

NetworkAnalyst. The network included 40 TFs and 55 miRNAs. In

addition, PLA2G4A and ANPEP can be regulated by some mutual

miRNAs, and they both shared one upstream TF, TP63. Figure 7D

shows the relationships between the 3 hub genes and their potential

TFs and miRNAs in detail.
3.5 Immune cell infiltration analysis

The immune cells that exist in the basal plate of the

placenta (decidua) have been extensively studied during placental

implantation and development, as well as parturition (35). However,

the quantity and function of immune cells in the interstitial space

within the placental villi are poorly understood. We used ssGSEA to

determine the differences in the infiltration of 22 immune cell types

between the sPTB and TL groups. Figure 7E illustrates the diverse

distribution of immune cells in each sample. Activated B cells,

activated CD8 T cells, natural killer cells, macrophages, Th2 cells,

Tregs and Th17 cells were significantly increased in sPTB patients
Frontiers in Endocrinology 07
(Figure 7F), indicating that the modifications in the immune

microenvironment may contribute to the development of sPTB.

Then, we calculated the correlations between the hub genes and

immune cell infiltration in the placenta and found that the hub genes

were related to NK cells, Th2 cells, activated CD8+ T cells, monocytes

and neutrophils (Figure 7G). Among the immune cells, PLA2G4A

was most strongly related to NK cells and monocytes, while ANPEP

and CKMT1B were correlated with neutrophils, indicating that

metabolism may influence immune cell infiltration to some extent.

This finding suggested a potential mechanism of sPTB and future

directions of treatment.
4 Discussion

Preterm birth, as a syndrome with profound impact, places a great

burden on the health of premature infants and the financial conditions

of their families. By understanding and exploring its pathogenesis, we

can prevent the occurrence of preterm birth and intervene early.

Accumulating evidence suggests that metabolism has an impact on

the occurrence of sPTB. Several studies suggested that maternal

metabolic disorders such as bile acid (BA) (36), folate (37) and

glucose (38) metabolism disorders and dyslipidemia (39–41) were
FIGURE 3

WGCNA (A, B) Analysis of network topologies for various soft-threshold powers. (C) Clustering dendrogram of coexpressed genes in different
modules as indicated by various colors. (D) Heatmap of the correlation between module genes and sPTB with the corresponding p values and
correlation coefficients. (E) Venn diagrams representing the common DEGs and WGCNA modules related to sPTB (p < 0.05 and correlation
coefficient > 0.4).
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associated with increased risks of preterm birth. Besides, many

metabolic disorders were observed in placenta of sPTB as mentioned

before. Placenta is an important organ for communication between

mother and fetus. Normal placental development and stable placental

function are essential for a successful pregnancy. While metabolic

disorders may disrupt homeostasis, leading to early senescence,

inflammation, and oxidative stress in the placental (19, 42–46).

Therefore, identifying the metabolic characteristics of placenta in

sPTB patients may provide a new perspective on treatment and

improve patient prognosis. To more precisely determine the role of

placental metabolic abnormalities in sPTB, we excluded patients with

known maternal metabolic disorders.

In this study, we integrated two GEO datasets, GSE203507 and

GSE174415, which included 20 sPTB samples and 20 TL samples

collected from human placentas as the training set. After identifying

sPTB-related genes by comparing WGCNA and DEGs, we carried out

pathway enrichment analysis; the results revealed that several

metabolism-related pathways, such as arachidonic acid metabolism,

glutathione metabolism, and a-/linolenic acid metabolism, were

involved. Previous studies of placental transcriptomic and

metabolome signatures revealed that impaired placental bioenergetic

and metabolic stability may be involved in sPTB (12, 47, 48). However,

the molecular mechanisms that cause metabolic changes are still

unknown. In this study, we used multiple machine learning methods

to identify metabolism-related hub genes in sPTB and focused on the

pathways associated with those genes.
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We noticed that the hub genes we identified were mostly

enriched in glutathione (GSH) and arachidonic acid metabolism.

GSH metabolism was enriched in both the GSEA and KEGG

analyses and was associated with the clearance of reactive oxygen

species (ROS). In a reaction catalyzed by glutathione peroxidase

(GSH-PX), GSH reduces intracellularly produced H2O2 to O2 and

H2O, while at the same time, GSH is oxidized to glutathione

(GSSG), which is catalyzed by glutathione reductase (GSR) to

regenerate GSH (49, 50). Through this process, GSH can remove

oxygen ions and other free radicals in the body and inhibit lipid

peroxidation. Some studies have suggested that oxidative stress

generation and GSH are involved in sPTB (12, 51, 52), and that

glutathione-mediated detoxification is disrupted in sPTB placentas.

KEGG analysis revealed that the metabolism of arachidonic acid

(AA) was also altered in sPTB and TL patients; this result was also

reported in another transcriptomic analysis (14). In general, AA

derivatives are referred to as eicosanoids that are generated through

three different metabolic pathways and are widely involved in

multiple physiological and pathological processes (53, 54).

Through the cyclooxygenase (COX), lipoxygenase (LO), and

cytochrome P450 (CYP450) pathways, AA can be converted into

prostaglandins (PGs), leukotrienes (LTs), epoxyeicosatrienoic acids

(EETs) or hydroxyeicosatetraenoic acids (HETEs) (55, 56). PGE2

and HETEs synthesized from arachidonic acid can facilitate the

ripening of the cervix, myometrial contraction and membrane

activation during parturition and preterm labor (34, 57, 58); the
FIGURE 4

Multiple pathway enrichment analysis. (A, B) GO and KEGG enrichment analyses of the shared genes. (C) GSEA of sPTB samples. (D) Venn diagrams
displaying MRDEGs.
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levels of PGE2 and HETEs were significantly increased in sPTB

placentas (12). Regarding infection-related preterm birth, the level

of arachidonate lipoxygenase metabolite leukotriene B4 (LTB4) was

markedly increased in the placenta and amniotic fluid (59, 60).

Moreover, higher concentrations of 5-HETE or DHA signal a

greater risk of spontaneous preterm birth (61), thus confirming

the role of AA metabolism in sPTB.

Based on the enriched metabolism-related pathways, we

wondered whether hub genes in sPTB placentas are involved in

those pathways. Data from the Human Gene Database and

GeneCards were combined with that from the GSEA/MSigDB

database to identify metabolism-related genes. Then, we

employed three ML algorithms to acquire 8 candidate hub genes.

ML is a subset of artificial intelligence with the goal of enabling

machines to perform tasks that require human intelligence, such as

diagnosis, planning, and prediction. Based on existing data, ML can

reveal potential models of gene expression in different groups and

then make predictions to identify critical genes that are effective

targets for disease treatment. In our study, 8 genes (ANPEP, ASMT,

CA1, CKMT1B, MINPP1, PDE2A, PLA2G4A and SDS) were
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identified by the three ML methods (LASSO, RF, and SVM-RFE);

then, we utilized ROC curves to verify their ability to distinguish the

sPTB and TL groups in the training and validation sets. In this way,

5 hub genes (ANPEP, CA1, CKMT1B, MINPP1 and PLA2G4A)

that may play principal roles in sPTB through metabolic processes

were identified.

Given the difficulty of obtaining placental samples from the

same individual at different times of gestation, exploring

longitudinal changes in placental metabolism with gestational

weeks in humans is hard to achieve. However, several studies of

the blood composition have shown possible differences in maternal

metabolism across gestational weeks, including lipid metabolism

(62), carbon metabolism (63), glucose metabolism (64) and so on.

Also, a study elucidated the characterization of normal longitudinal

changes in placental metabolism throughout pregnancy in mice

(65). Therefore, considering the possible effect of different

gestational ages on transcription levels in the TL and sPTB

groups, we included another group, the PNL group, in the

validation process. Ultimately, we identified 3 metabolism-related

genes (ANPEP, CKMT1B and PLA2G4A) as hub genes.
FIGURE 5

Three machine learning methods were utilized to identify hub genes. (A) LASSO coefficient diagram. Each curve represents one specific gene. (B) The cross-
validation curve shows the best l value, and the X-axis above corresponds to the number of variables. (C, D) Visualization of the SVM-RFE results
demonstrates that the accuracy and error of the model vary with the number of features. The features with the highest accuracy and lowest error were used
for subsequent studies. (E) RF analysis was used to identify the genes with the highest accuracy. (F) Boxplot showing the differential expression of 8 genes.
(**p < 0.01; ***p < 0.001; ****p < 0.0001, Student’s t test). (G) The ROC curves of ANPEP, ASMT, CA1, CKMT1B, MINPP1, PDE2A, PLA2G4A, and SDS. (H)
Venn diagram depicting the candidate hub genes obtained by comparing the results of three machine learning algorithms.
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ANPEP (APN, CD13) is an enzyme that is capable of releasing an

N-terminal amino acid from a peptide, amide or arylamide and is

enriched in the GSH metabolism pathway. ANPEP is involved in the

processing of various peptides, including peptide hormones, such as

angiotensin III and IV, and may play a role in angiogenesis (66),

decidualization, and placental implantation (67, 68). In late

pregnancy, the expression of ANPEP is significantly lower at E20d

in mouse placenta (69), which is different from the high expression in

sPTB in our study. CKMT1B is related to creatine and Inositol

phosphate metabolism (70, 71), and CKMT1B deficiency may be

related to preterm birth and neurodevelopmental defects in newborns

(72). However, the expression and distribution of ANPEP and

CKMT1B in the placenta have not yet been characterized by other

study. PLA2G4A (cPLA2-Alpha) is a member of the cytosolic

phospholipase A2 group IV family that catalyzes the hydrolysis of

membrane phospholipids to release arachidonic acid, which is

subsequently metabolized into eicosanoids, mainly prostaglandins

(73). Previous studies have shown that a lack of PLA2G4A leads to

deferred implantation; this effect can be reversed by exogenous PG

treatment (74). However, the effect of increased PLA2G4A expression

on pregnancy and labor has not yet been studied. As pregnancy

progresses, the expression of PLA2G4A increases in the mouse

placenta (75). In other mammals, the same phenomenon was

observed in multiple gestational tissues, such as the fetal membrane

(76), decidua and myometrium (77), which facilitated the initiation of

labor. Additionally, the accumulation of the PLA2G4A protein was

confirmed in the human fetal membrane and decidua (78), and the

presence of PLA2G4A in the human placenta has been confirmed

(79). Considering the increased expression of PLA2G4A and
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arachidonic acid metabolism in sPTB patients in our study, we

assumed that PLA2G4A may contribute to sPTB through AA

metabolism and the generation of PGs.

The immune environment at the maternal-fetal interface has

received much attention in recent years. We investigated immune

cells that may promote sPTB in the placenta and found that

macrophages, CD8+ T cells, Th2 cells, and Th17 cells exhibited

strong heterogeneity between the sPTB and TL groups. Macrophages

are considered indispensable for placenta formation and the

maintenance of maternal-fetal tolerance in early pregnancy (80).

Macrophage infiltration and M1-like macrophage polarization are

observed in sPTB patients (81), and these cells release the

inflammatory cytokines NF-kB, TNF, and IL-10 to initiatedelivery

(82). Evidence suggests that enriched activated T cells cause

pathological inflammation at the maternal-fetal interface, leading to

preterm labor (83). At present, there is no precise evidence showing

that Th17 and Th2 cells are involved in the occurrence of sPTB.

However, Th17 cell-mediated local inflammation can directly induce

fetal loss in vivo (84).

There are also several limitations to our study. First, our analysis

included only 40 samples, which may increase the variation in the

estimated correlation coefficient and reduce the repeatability of the

correlation coefficient. Additionally, a small sample size could result

in overfitting or underfitting the target tasks in machine learning with

limited samples. To minimize the impact of this problem, we

combined the results of three ML models (LASSO, SVM-RFE, and

RF) and conducted internal and external validation to increase the

reliability of our results. Second, the differential expression of genes

was only verified in clinical samples at the protein level with IHC.
FIGURE 6

Validation of metabolism-related hub genes by IHC. IHC staining verified the protein expression of the hub genes.
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More relevant experiments should be carried out in the future with

the isolated specific cells in clinical samples. Moreover, the specific

roles of these genes in the occurrence and development of sPTB

should be explored, as well as their upstream molecular regulatory

mechanism, which we will investigate in future studies. Third, the

data we analyzed were derived from bulk RNA-seq, in which the

expression of genes was affected by different types of cells contained

in the sampled tissue. To address the whole-field challenge, single-cell

RNA sequencing and single-cell metabolomics are recommended,

given their ability to provide single-cell resolution and to detect

intercellular communication. Fourth, patients with inherited

metabolic disorders and any clinical diagnosis of metabolic

disorder were excluded in this study. This may limit the

comprehensiveness of the study. Although we’d rather focused on

the placental metabolic disorder appeared in sPTB in this study,

preterm birth associated with maternal and genetic metabolic

abnormalities still deserved attention and research. In addition,

another focus of future research should be sequencing based on the

subtype of preterm birth. Different subtypes of sPTB could have
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disparate origins, and some research has initially confirmed this

hypothesis (14).

Overall, through intensive and comprehensive bioinformatics

analysis, we identified the potential roles of metabolism in sPTB.

Additionally, we identified 3 metabolism-related hub genes that are

involved in the pathological process of sPTB, namely, ANPEP,

CKMT1B and PLA2G4A. Using these hub genes, we constructed a

nomogram and performed ROC curve analysis to confirm the

influence of the hub genes on the occurrence of spontaneous

preterm birth. These findings may offer practical molecular

targets for further study, as well as the development of potential

therapeutic methods for prevention and intervention.
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