
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Trygve Tollefsbol,
University of Alabama at Birmingham,
United States

REVIEWED BY

Demetrius Albanes,
National Institutes of Health (NIH),
United States
Bo Li,
Sun Yat-sen University, China

*CORRESPONDENCE

Boxin Xue

xbxurol@163.com

Lijun Wan

perfectwlj2022@163.com

†These authors have contributed equally to
this work

RECEIVED 03 June 2024
ACCEPTED 22 October 2024

PUBLISHED 12 November 2024

CITATION

Pan R, Liu J, Xiao M, Sun C, Zhu J, Wan L and
Xue B (2024) Causal links of human serum
metabolites on the risk of prostate cancer:
insights from genome-wide Mendelian
randomization, single-cell RNA sequencing,
and metabolic pathway analysis.
Front. Endocrinol. 15:1443330.
doi: 10.3389/fendo.2024.1443330

COPYRIGHT

© 2024 Pan, Liu, Xiao, Sun, Zhu, Wan and Xue.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 12 November 2024

DOI 10.3389/fendo.2024.1443330
Causal links of human serum
metabolites on the risk of
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genome-wide Mendelian
randomization, single-cell RNA
sequencing, and metabolic
pathway analysis
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Jiangsu, China, 2Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical
University, Quzhou People’s Hospital, Quzhou, Zhejiang, China, 3The Quzhou Affiliated Hospital of
Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China, 4Department of
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Hospital, Quzhou, Zhejiang, China
Background: Recently, serum metabolites have shown potential in predicting

survival outcomes and may be related to the pathogenesis of prostate cancer.

Nevertheless, the precise impact concerning the genetic effect of metabolites on

prostate cancer risk remains obscure. In this context, we conducted a Mendelian

randomization (MR) study aiming to explore the causality between genetically

determined metabolites and the risk of prostate cancer.

Methods: We conducted a two-sample MR analysis aiming to identify the

underlying metabolites associated with prostate cancer. Exposure information

was obtained from the largest metabolome-based genome-wide association

(GWAS) data containing 7,824 Europeans. Genome-wide association analysis

was utilized to detect instrumental variables (IVs) for metabolites. We applied the

inverse-variance weighted (IVW) approach as the primary method, and to

augment the reliability and robustness of our findings, additional analysis

methods encompassing weighted median, MR-Egger, and leave-one-out

analysis were utilized. MR-Egger intercept test was implemented to explore

the pleiotropy. Cochran’s Q test was utilized to quantify the degree of

heterogeneity. Additionally, we performed metabolic pathway analysis and

single-cell RNA sequencing analysis.

Results: We found that three serum metabolites were causally associated with

prostate cancer after utilizing rigorous screening standards. Utilizing single

nucleotide polymorphisms as IVs, a 1-SD increase in fructose was associated

with 77% higher risk of prostate cancer (OR:1.77, 95%CI: 1.05-2.97, PIVW=0.031), a

1-SD increase in N1-methyl-3-pyridone-4-carboxamide was associated with

29% higher risk of prostate cancer (OR:1.29, 95%CI: 1.05-1.58, PIVW=0.017),

and a 1-SD increase in 12-hydroxyeicosatetraenoate (12-HETE) was associated
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with 18% higher risk of prostate cancer (OR:1.18, 95%CI: 1.07-1.31, PIVW=0.0008).

Metabolites that were causally linked to the risk of prostate cancer were mainly

enriched in the valine, leucine and isoleucine biosynthesis pathway (P=0.026)

and the nicotinate and nicotinamide metabolism pathway (P=0.048).

Conclusions: Our MR analysis provided suggestive evidence supporting the

causal relationships between three identified serum metabolites and prostate

cancer, necessitating further investigation to elucidate the underlying

mechanisms through which these blood metabolites and metabolic pathways

may impact the initiation and progression of prostate cancer.
KEYWORDS

serum metabolites, prostate cancer, Mendelian randomization, single-cell RNA-seq,
metabolic pathways
1 Introduction

Globally, prostate cancer is the second most common

malignancy of male cancer, with an incidence rate second only to

lung cancer, affecting millions of men worldwide (1). In 2020, there

were an estimated 1.4 million newly diagnosed cases of prostate

cancer, resulting in approximately 375,000 fatalities (2). The growth

of prostate cancer cells is dependent on androgen, so androgen

deprivation therapy (ADT) is an effective therapeutic strategy

widely used in clinical practice (3). Additionally, the etiology of

prostate cancer remains largely unknown, although certain risk

factors have been identified, encompassing advanced age, baldness,

genetic mutations, and positive family history (4).

To our knowledge, the identification of the risk factors of

prostate cancer plays a pivotal role in disease prevention and the

establishment of early screening protocols. Previous studies have

indicated that several modifying factors, such as smoking, obesity,

and nutritional and metabolic factors, may contribute to an

increased risk of prostate cancer (5). A previous study on

biomarkers conducted by Couzin J et al. revealed that metabolite

in urine may point to high-risk prostate cancer (6). Meanwhile,

Kosti O et al. observed subtle disparities in estrogen metabolite

concentrations between prostate cancer patients and non-cancer

individuals, indicating that estrogen metabolites could serve as

independent biomarkers for assessing the risk of prostate cancer

(7). Currently, accumulating evidence has indicated that diverse

blood metabolites might be related to prostate cancer biological

processes. Previous studies performed by Ostman JR et al. suggested

that alterations in plasma concentrations of metabolites involved in

lipid, aromatic amino acid, and glucose metabolism were correlated

with the risk of developing prostate cancer (8). In addition, another

research conducted by Cardoso HJ et al. demonstrated that the

acceleration of prostate cancer cell survival and growth was mainly

attributed to the sustainability of glucose, lipids, and glutamine (9).

Interestingly, another study showed that blood methionine
02
metabolites were identified as a significant risk factor for the

progression of metastatic prostate cancer (10). In contrast, a

previous study conducted by O’Flaherty JT et al. demonstrated

that the metabolites of docosahexaenoic acid produced by 15-

lipoxygenase inhibit the proliferation and survival of prostate

cancer cells (11). Taken together, considering the susceptibility of

observational studies to underlying control bias and reversed

causality (12), further investigation into the potential causal links

between genetically determined human serum metabolites and

prostate cancer was still required.

Performing randomized controlled trials (RCTs) to explore the

influence of human serum metabolites on the risk of prostate cancer

is impractical due to ethical considerations. In addition, the causal

nature of the associations between blood metabolites and prostate

cancer remains obscure in observational research due to underlying

residual confounders and reverse causality issues. Thus, alternative

approaches that facilitate casual inference can provide valuable

insights into whether specific metabolites represent potentially risky

factors. Mendelian randomization (MR) is a novel epidemiology

technique that leverages genetic effects to evaluate the inference of

a causal relationship between an exposure and an outcome (13).

Conceptually, MR shares similarities with RCTs as genetic variants

are randomly assigned during meiosis, thereby reducing concerns

related to the confounders and reverse causality (14).

A previous meta-analysis of genome-wide association study

(GWAS) was performed by Shin. et al. to explore the genetic basis

for 486 serum metabolites (15), providing a dataset to detect the

underlying causality with some diseases related to metabolic factors.

For instance, a previous MR study showed that genetically

determined levels of specific serum metabolites exhibited causal

effects on the occurrence and progress indicators of chronic kidney

disease (12). Furthermore, another MR study suggested that

targeted interventions of specific blood metabolites could mitigate

the risk of sarcopenia (16). As of now, there is still limited research

on the correlation between blood metabolites and the risk of
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prostate cancer. In addition, the causality between blood

metabolites and prostate cancer has yet to be established through

MR analysis. Thus, in this study, by conducting a two-sample MR

and metabolic pathways analysis, we would systematically evaluate

the potential causal links between serum metabolites and the risk of

prostate cancer. Our findings will provide vital implications for a

better understanding of the correlation between serum metabolites

and the initiation and progression of prostate cancer. Elucidating

these causal links will provide greater biological insight and explain

the mechanism for prostate cancer.
2 Materials and methods

2.1 Study design

The flow diagram and design for this study is displayed in

Figure 1. We performed a two-sample MR analysis to estimate the

causal links between 486 human blood metabolites and prostate

cancer utilizing GWAS summary statistics, with detailed

characteristics and information listed in Supplementary Table S1.

The detailed steps included the following three steps: (1) eligible single

nucleotide polymorphisms (SNPs) associated with 486 blood

metabolites were extracted according to the specified threshold

criteria. (2) the two-sample MR method was utilized to analyze the

relationships between serum metabolites and prostate cancer one by

one. (3) sensitivity analysis was performed on the findings of MR

estimates. To augment the robustness and stability of the MR analysis

results, instrumental variables (IVs) were extracted to satisfy the three

core assumptions. Firstly, the IVs must be strongly associated with

human serum metabolites. Secondly, no confounding factors are
Frontiers in Endocrinology 03
related to the IVs. Thirdly, the IVs affect the outcome only via

exposure and there are no other causal pathways for the IVs to

impact the outcome (17). We selected genetic IVs for each human

serum metabolite to investigate the causal association of each serum

metabolite to prostate cancer. The utilization of publicly attainable

GWAS summary datasets obviated the requirement for ethical

approval. All of the MR analysis and sensitivity analysis programs

were conducted with the R package “Two SampleMR” (version 4.2.3).
2.2 Data sources

2.2.1 Human serum metabolites
The metabolite database was acquired from one of the most

extensive metabolite studies by Shin et al (15). The human serum

metabolites in the whole genome-wide association study (GWAS)

data were from the Metabolomics GWAS server (https://

metabolomics.helmholtz-muenchen.de/gwas/). Our study

contained a total of 7824 participants of European ancestry,

which included 1768 from the KORA F4 study in Germany and

6056 from the UK Twin Study, and approximately 2.1 million SNPs

for 486 metabolites were tested. Among the 486 serum metabolites,

177 metabolites were defined as unknown. Additionally, another

309 metabolites were categorized chemically and allocated to eight

broad metabolic groups, encompassing amino acids, peptides,

lipids, cofactors and vitamins, carbohydrates, energy, nucleotides,

and xenobiotic metabolism, as documented in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (18). The

detailed information and characteristics of the 486 serum

metabolites are presented in Supplementary Table S2.
FIGURE 1

Study design and detailed flowchart of two-sample Mendelian randomization for 486 human serum metabolites and prostate cancer. IVs,
instrumental variables; mQTL, metabolites quantitative trait loci; SNP, single nucleotide polymorphism.
frontiersin.org

https://metabolomics.helmholtz-muenchen.de/gwas/
https://metabolomics.helmholtz-muenchen.de/gwas/
https://doi.org/10.3389/fendo.2024.1443330
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pan et al. 10.3389/fendo.2024.1443330
2.2.2 Prostate cancer
The summary datasets for prostate cancer were acquired from

the largest GWAS meta-analysis, which included 79,148 cases and

61,106 controls of European ancestry from the PRACTICAL

consortium (19). For each GWAS, the analysis was adjusted for

both specific principal components and relevant covariates, while

the overall meta-analysis took into consideration the influence of

principal components. This meta-analysis datasets contain

20,346,368 single nucleotide polymorphisms (SNPs). In this

consortium, multiple cohort studies relied upon prostate cancer

and mortality registry as well as other data for the endpoints. All

classification schemes incorporated the diagnostic clinical features

PSA, tumor stage, and Gleason score.
2.3 Selection criteria for
instrumental variables

The eligible genetic instrumental variables associated with

human serum metabolites were selected through a series of

control steps. Firstly, given the scarcity of SNPs reaching genome-

wide significance, we broaden the threshold value to P<1e-05 to

extract qualified IVs, consistent with Chang X. et al.’s study (20).

Finally, all 486 serum metabolites were identified under this

criterion. Secondly, the influence of robust linkage disequilibrium

(LD) between SNPs was mitigated by employing an LD cutoff for

the extracted SNPs (r²<0.001, 10,000kb windows), ensuring

independence among IVs for each exposure (21). Thirdly, the

palindromic SNPs with intermediate allele frequency were

excluded from the GWAS of human serum metabolites due to the

absence of provided allele frequencies. Fourthly, to eliminate bias

arising from weak IVs, we calculated the F-statistics for each SNP to

assess statistical strength. The F-statistic was used to assess the

strength of each SNP as an instrumental variable, with a value

exceeding 10 indicating a robust instrument (22). The F-statistic is a

statistic method that captures the magnitude and accuracy of the

genetic effect on the trait. It can be calculated as F=R2(N-2)/(1-R2),

where R2 represents the proportion of variance in the trait

illuminated by the SNP, and N denotes the sample size of GWAS

involving SNPs with the trait (23). Moreover, the outcome-related

SNPs (P-value<1e-05) were excluded. The brief selection standard

of metabolites genetic IVs in this study is presented in Figure 1.
2.4 Statistical analysis

To identify the causal effects of human serum metabolites

linked to the risk of prostate cancer by conjoining various SNPs,

we conducted a two-sample Mendelian randomization analysis

utilizing five analysis models. The dominant approach we

employed was the standard inverse variance weighted (IVW)

estimates, which combined the Wald ratio estimation of each

SNP and demonstrated superior statistical power compared to

other diverse MR methods (24). This approach was regarded as

the primary method of assessing the potential causal relationships

between genetically predicted serum metabolites and prostate
Frontiers in Endocrinology 04
cancer. The analysis we conducted required data on SNPs, alleles,

effect sizes, P-values, and allele frequencies (EAF) (25).

Additionally, other MR analysis approaches, encompassing MR-

Egger, weighted median, simple mode, and weighted mode were

implemented as auxiliary analysis methods to IVW by enhancing

the robustness of estimates and expanding their applicability in

various scenarios (26). The MR-Egger method is capable of

detecting violations of the IVs assumption and providing

consistent estimates even when using invalid instruments (27).

We applied additional analyses of MR approaches with diverse

modeling assumptions and strengths (weighted median, simple

mode, and weighted mode) to augment the robustness and

stability of the findings.
2.5 Sensitivity analysis

To validate that IV affects the outcome solely through the

exposure, and to augment the reliability and strength of the

results, various sensitivity analyses were also needed. Thus,

diverse methods including MR-Egger intercept test, Cochran’s Q

test, funnel plot, and leave-one-out (LOO) analysis were employed

to validate the robustness of the significant findings (PIVW<0.05)

(28). Among them, the MR-Egger intercept test was performed to

identify the existence of horizontal pleiotropy, where statistical

significance was determined by P-values for the intercept below

0.05 (29). Moreover, Cochran’s Q test was employed to assess

heterogeneity among SNPs in both IVW and MR-Egger analyses. A

P-value exceeding 0.05 in Cochran’s Q statistics indicated the

absence of heterogeneity among SNPs (30). Finally, we applied

LOO analysis to explore whether results were influenced by

individual SNP (31). In addition, we also conducted the MR

Steiger directionality test to ensure whether our findings

supported our hypothesis (32). Eventually, the Bonferroni

correction was applied to address the issue of multiple

comparisons, and a significance level of P<1.03e-04 (0.05/486)

was adopted (Bonferroni correction with 486 tests) (12). We also

reported metabolites that exhibited a P-value less than 0.05, but

exceeded the Bonferroni-corrected threshold, indicating

suggestively causal associations with prostate cancer. Thus,

underlying eligible candidate metabolites for participation in the

risk of prostate cancer were identified by multiple standards: (1) P-

value for the dominant MR analysis was significant (PIVW<0.05). (2)

There should be at least one other method with a P-value<0.05

except the IVW approach. Furthermore, consistent direction and

magnitude among the five approaches (scatter plots). (3) No

heterogeneity or horizontal pleiotropy was explored. (4) The LOO

analysis did not identify any significant influential points.
2.6 Confounding analysis

Although we assessed the heterogeneity and horizontal

pleiotropy of the Mendelian randomization (MR) results through

multiple sensitivity analysis approaches to explore any SNPs that

violated Assumptions 2 and 3 of MR (Figure 1), there may also be
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little residual confounding IVs. Therefore, to fulfill the second

assumption of the MR study, SNPs related to confounding

factors, encompassing blood pressure, body mass index (BMI),

and smoking, were removed by the PhenoScannerV2 website tool

(http://www.phenoscanner.medschl.cam.ac.uk/) screening. If any

SNP was found to be associated with these confounders (P<1e-

05), MR analysis would be re-conducted after excluding this SNP to

confirm the robustness of the findings. In addition, the

GeneMANIA database was utilized to perform a protein-protein

interactive (PPI) network on gene and protein pathways, co-

localization, co-expression, and functional assays with pinpoint

accuracy of prediction algorithm (33).
2.7 Single-cell RNA sequencing
data analysis

We obtain the single-cell RNA-sequencing (scRNA-seq) data of

prostate tissue from the Panglao DB database (https://panglaodb.se/

), a user-centric single-cell sequencing dataset for the scientific

community that focused on single-cell RNA sequencing tests from

mice and humans (34). We utilized the “Sample”module to retrieve

the datasets. “human” and “tissue” were set as filter protocols. The

“Seurat” R package was employed to analyze the scRNA-seq data

(35). This database encompassed 1368 single-cell RNA-sequencing

dataset samples. The publicly attainable datasets utilized in this

study had acquired the essential ethical approvals.
2.8 Metabolic pathways and
enrichment analysis

The chosen metabolite metabolic pathway and enrichment

analysis were explored using the MetaboAnalyst6.0 platform

(http://dev.metaboanalyst.ca/) (36). Functional enrichment

analysis and the metabolic pathway module were utilized to

identify potential metabolite groups or pathways that may be

related to the occurrence and progression of prostate cancer. The

metabolite databases, encompassing the Small Molecule Pathway

Database (SMPDB) and the KEGG database, were employed in our

study. In particular, only known serum metabolites exceeding the

recommended threshold (PIVW<0.05) were analyzed for

metabolic pathways.
3 Results

3.1 Selection of the instrumental variables

We performed a two-sample MR analysis to estimate the causal

effects of genetically predicted metabolites on the risk of prostate

cancer. Taking account of the limited genetic variance, as well as the

restricted number of SNPs and low statistical powers, the MR

analysis was performed by broadening the cutoff to P-value<1e-

05. The number of identified IVs for 486 metabolites ranged from 3

to 478, with a median number of 15 (Supplementary Table S2).
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Furthermore, the minimum F-statistics of these IVs was 17.84,

indicating that all IVs were sufficiently effective for the MR analysis

and that the weak instrumental bias was improbable to happen (all

F-statistics >10).
3.2 Causal associations of genetically
predicted metabolites on prostate cancer

In this study, the IVW approach was utilized as the dominant

approach in assessing the causal links between 486 serum

metabolites and the risk of prostate cancer. Despite the

Bonferroni correction yielding no significant causal relationships

of serum metabolites with prostate cancer, a total of 30 blood

metabolites, including 16 known metabolites and 14 unknown

metabolites, exhibited suggestive associations with prostate cancer

at the standard significance level of 0.05 (PIVW<0.05). Moreover, the

MR-Egger, weighted mode, simple mode, and weighted median

methods consistently yield causal estimates that are consistent in

terms of both direction and magnitude. To enhance the visual

representation of IVs’ strength and facilitate a more intuitive

understanding of the compiled data, we utilized heatmaps to

present this aspect of the information (Figure 2). The explicit MR

estimates of diverse approaches were presented in Supplementary

Table S3.
3.3 Sensitivity analysis

Due to the susceptibility of IVW approaches to weak

instrumental bias, the implementation of sensitivity analyses was

essential to ensure the robustness and stability of the causal

relationship. Supplementary Table S4 showed the sensitivity

analysis results for evaluating the reliability of our MR estimates.

MR-Egger intercept test manifested no significant pleiotropy except

only X-14632 (P Egger-intercept=0.02). Furthermore, MR-Egger and

IVW Cochran’s Q tests were applied to explore the heterogeneity.

There was no indication of significant heterogeneity among SNPs

for those identified metabolites except deoxycholate, salicylate,

caprylate (8:0), X-03003, X-11438, and X-12851 (Q-PIVW, Q-PMR-

Egger, and P Egger-intercept as shown in Supplementary Table S4).
3.4 Identification of specific serum
metabolites linked to the risk of
prostate cancer

Eventually, after conducting comprehensive complementary

and sensitivity analyses, three known metabolites that have been

extensively screened were identified as significantly eligible

candidates linked to the risk of prostate cancer. Specifically, as

shown in Figure 3, fructose (OR:1.77, 95%CI: 1.05-2.97,

PIVW=0.031), N1-methyl-3-pyridone-4-carboxamide (OR:1.29,

95%CI: 1.05-1.58, PIVW=0.017), and 12-hydroxyeicosatetraenoate

(12-HETE) (OR:1.18, 95%CI: 1.07-1.31, PIVW=0.0008) were

identified as the most significant risk factors for both the
frontiersin.org
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occurrence and progression of prostate cancer. Additionally, scatter

plots across diverse tests of links of three genetically determined

metabolites with the risk of prostate cancer were displayed in

Figures 4A–C. The results of the LOO analysis similarly indicated

that none of the individual SNPs exerted a significant impact on the

robustness of analysis outcomes (Figures 4D–F). To sum up, scatter

plots and LOO analysis showed that the findings were not affected
Frontiers in Endocrinology 06
by outliers. In addition, Table 1 presented the sensitivity analysis

findings, indicating the reliability and stability of our MR analysis

findings (all P-values>0.05). Moreover, as shown in the funnel plots

(Supplementary Figure S1), the distribution of SNPs was

symmetrical, suggesting that estimates were not violated. Lastly,

the findings demonstrated that the P-values of three identified

metabolites were all between 1.03e-04 and 0.05, indicating that
FIGURE 3

Forest plot of the MR estimates for the associations between three identified metabolites and prostate cancer. The inverse variance weighted
method is considered the main method. CI, confidence interval; OR, odds ratio.
FIGURE 2

The heatmaps of five Mendelian randomization analysis methods. Different color blocks represent different odds ratio values. OR, odds ratio.
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these serum metabolites were suggestively associated with prostate

cancer. Further studies are required to validate their correlation in

the future.
3.5 Confounding analysis

For these three identified metabolites, we further manually

explored metabolism-related SNPs for the second most prevalent

traits (alcohol consumption, smoking, blood pressure, BMI, and

diabetes). After closely examining the PhenoScannerV2 online tool,

we discovered that none of the 41 metabolite-related SNPs were

associated with any confounders. The corresponding gene

information of instrumental variables unraveling these three

metabolites’ associations with the risk of prostate cancer,

encompassing effect allele, beta value, SE, R2, F-statistics, P-value,

and closest gene, were demonstrated in Supplementary Table S5.

Additionally, due to the sample of serum metabolites contained a
Frontiers in Endocrinology 07
total of 7824 participants of European ancestry, such a large sample

size was sufficient to ensure the robustness and validity of all

instrumental variables. Therefore, all the SNPs in this study were

biologically plausible. Furthermore, we employed GeneMANIA

online tool to construct the protein-protein interactive (PPI)

network (Figure 5A), and the Manhattan plot exhibited the

distribution of genetic locus associated with three specific

metabolites and significant genes were labeled in Figure 5B. The

most significant genes were RNASEK, ACMSD, CPEB2,

ARHGAP22, and BRD1.
3.6 Single-cell RNA sequencing localization
analysis results

Single-cell sequencing approach provided cell-specific genetic

information and revealed the explicit function and role of target

genes. We analyzed scRNA-seq data from four samples, including
TABLE 1 Horizontal pleiotropy and heterogeneity analysis for the three identified metabolites.

Metabolite Subcategory

Pleiotropy Heterogeneity

MR-Egger Intercept test MR-Egger IVW

Intercept P-value Q-statistic P-value Q-statistic P-value

Fructose Carbohydrate -0.0127 0.669 0.0002 0.989 0.329 0.849

N1-methyl-3-pyridone-4-carboxamide Nucleotide 0.0011 0.798 25.769 0.262 25.847 0.308

12-hydroxyeicosatetraenoate(12-HETE) Lipid -0.0114 0.232 15.332 0.224 17.361 0.183
FIGURE 4

Scatter plots and LOO sensitivity analysis results of MR analysis between three identified metabolites and prostate cancer. (A, D) fructose, (B, E) N1-
methyl-3-pyridone-4-carboxamide, (C, F) 12-hydroxyeicosatetraenoate (12-HETE). SNP, single nucleotide polymorphism.
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SRS3565197, SRS3565208, SRS3565199, and SRS3565196 from the

Panglao DB database along with cell clustering results and cell type

information. After performing rigorous quality control procedures

on the data, we employed the t-SNE technique to visualize the high-

dimensional scRNA-seq data. As shown in Figure 6, data

downloaded from Panglao DB demonstrated that RNASEK

(Figure 6A1-B1), CPEB2 (Figure 6A2–B2), ARHGAP22

(Figure 6A3-B3), and BRD1 (Figure 6A4–B4) were expressed in

prostate tissue to varying degrees. Specifically, RNASEK was highly

expressed in basal cells, fibroblasts, and keratinocytes. CPEB2 was

highly expressed in ductal cells and ARHGAP22 was low expressed

in both basal cells and keratinocytes. Moreover, BRD1 was

expressed in basal cells and myoepithelial cells to varying degrees.

To sum up, prostate tissue cells were segregated into distinct cellular

clusters, and RNASEK was designated as the significant gene

expression marker. Therefore, we might infer that RNASEK

played a significant role in the carcinogenesis of prostate cancer,

which aligned with the results of the Manhattan plot

exhibition (Figure 5B).
3.7 Metabolic pathway and
enrichment analysis

We further conducted the metabolic pathway and enrichment

analysis utilizing all known metabolites identified through the IVW

method (PIVW<0.05). The findings of the functional enrichment

analysis and the metabolic pathway analysis were exhibited in

Figures 7A, B. Notably, our study identified two prominent

metabolic pathways that played a crucial role in the initiation and

progression of prostate cancer (Supplementary Table S6)

encompassing the valine, leucine and isoleucine biosynthesis

pathway (P=0.026) and the nicotinate and nicotinamide

metabolism pathway (P=0.048). The significant metabolite N1-

methyl-3-pyridone-4-carboxamide was involved in the nicotinate

and nicotinamide metabolism pathway.
Frontiers in Endocrinology 08
4 Discussion

In this study, we elucidated the causal associations between 486

genetically determined blood metabolites and the risk of prostate

cancer by utilizing genetic variation as IVs in a two-sample

Mendelian randomization analysis. Through strict screening criteria

and extensive sensitivity analysis, three known metabolites (fructose,

N1-methyl-3-pyridone-4-carboxamide, 12-hydroxyeicosatetraenoate

(12-HETE)) were identified as the significantly eligible candidates,

which were causally linked to the risk of prostate cancer. Additionally,

we performed the single-cell RNA sequencing analysis utilizing the

Panglao DB database and found significant genes, including

RNASEK, CPEB2, ARHGAP22, and BRD1, were enriched in the

different cell clusters of prostate tissue. Furthermore, multiple

metabolic pathways, especially the valine, leucine and isoleucine

biosynthesis pathway and the nicotinate and nicotinamide

metabolism pathway, have been found to be involved in the

biological process related to the initiation and development of

prostate cancer.

Our study demonstrated that genetically determined fructose

levels were causally positively associated with the risk of prostate

cancer. By coincidence, a previous experimental study conducted by

D. V. Carreno et al. showed that dietary fructose promoted prostate

cancer growth, which aligns with our findings (37). This research

manifested that the expression of fructose transporters was

significantly higher in prostate cancer cells compared to benign

cells, while there was no significant difference in the expression of

glucose transporters (37). Interestingly, they also found that the

expression levels of fructose transporters, Glut5 and Glut9, were

significantly elevated in clinical specimens of prostate cancer

compared to their benign counterparts (37). The serum fructose

levels in patients with prostate cancer were significantly elevated

compared to those of healthy subjects. Moreover, the consumption

of dietary fructose was found to enhance the growth of xenograft

tumors derived from prostate cancer cell lines and stimulate the

proliferation of prostate cancer cells in patient-derived xenografts.

The gene set enrichment analysis of GO and KEGG confirmed that
FIGURE 5

Protein-protein interactive (PPI) network by using GeneMANIA platform (A). Manhattan plot exhibited the traits of genetic instrumental variables
associated with three specific metabolites and significant genes were labelled (B). Chr, chromosome.
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fructose stimulation significantly enriched pathways associated with

cell proliferation in prostate cancer cells, thereby promoting their in

vitro proliferation and invasion (37). Meanwhile, another

experimental study conducted by D. Carreno et al. manifested

that prostate cancer cells exhibited an enhanced capacity for

fructose transportation and metabolism both in vitro and in vivo

(38). Furthermore, recently a review reported by C. E. Echeverria

et al. suggested that the role of fructose as a metabolic substrate in

promoting the growth and progression of prostate cancer has been

gradually recognized, suggesting that restriction of fructose from the

diet could be a useful therapeutic strategy for individuals with

prostate cancer (39). To sum up, these studies suggested that
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fructose promoted prostate cancer cell growth and aggressiveness

both in laboratory settings and in living organisms and might

represent an alternative energy source for prostate cancer cells,

indicating that fructose may be recognized as a crucial metabolic

substrate supporting prostate cancer cells and promising

therapeutic targets and biomarkers. Nevertheless, another

research performed by E. Giovannucci et al. revealed that the

elevated consumption of fructose and the increased intake of

calcium may potentially lower the likelihood of developing

advanced prostate cancer (40). In particular, our findings

demonstrated that fructose (OR:1.77, 95%CI:1.05-2.97,

PIVW=0.031) was the most significant risk factor for prostate
FIGURE 7

KEGG functional enrichment analysis (A) and metabolic pathway analysis (B) of identified metabolites by MetaboAnalyst6.0.
FIGURE 6

Single-cell RNA sequencing localization analysis of significant genes. (A1-A4) Spectral t-SNE plots of all cells analyzed from diverse human prostate
tissue samples. (B1-B4) The RNASEK, CPEB2, ARHGAP22, and BRD1 expressed levels and distribution in prostate tissue samples.
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cancer. Thus, given the inconsistency and ambiguity of these

findings, further studies were essential to detect the precise

potential biological mechanism and validate whether fructose

could be treated as a promising biomarker in clinical stage

stratification and prognosis of prostate cancer.

12-Hydroxyeicosatetraenoic acid (12-HETE) is a metabolite of

arachidonic acid (AA) (41). 12-HETE is mainly produced by the

release of AA by activated phospholipase A2 (PLA2) and then

catalyzed by 12-lipoxygenase (LOX). 12-HETE plays a vital role in

various diseases such as cancer, diabetes mellitus, and hypertension,

and participates in the occurrence and development of pathological

processes such as inflammation and oxidative stress (42, 43). A

previous study performed by Q. Liu et al. revealed that the

activation of the ILK/NF-kB pathway by 12-HETE was found to

participate in the inhibition of cell apoptosis, suggesting a crucial

potential mechanism that enhances the survival of ovarian cancer

cells (44). Another study conducted by A. Kulkarni et al.

demonstrated that 12-lipoxygenases and their eicosanoid

metabolites, specifically 12-hydroxyeicosatetraenoate(12-HETE),

held significant pathological implications in the context of

inflammatory diseases (45). For instance, Nakamura T et al.

revealed that 12-HETE promoted late-phase responses in a

murine model of al lergic rhinitis (46). However, the

epidemiological evidence supporting the correlation between 12-

HETE and prostate cancer was limited due to its reliance on a case-

control study design and constrained by small sample sizes. In this

study, we discovered that genetically determined serum 12-HETE

level was causally associated with an elevated risk of prostate cancer

(OR:1.18, 95%CI: 1.07-1.31, PIVW=0.0008), indicating that further

investigation may be necessary to validate the findings of

observational studies and detect the accurate biological

mechanism for 12-HETE on prostate cancer in the future. Finally,

the epidemiological evidence of observational studies for the

correlation between N1-methyl-3-pyridone-4-carboxamide and

prostate cancer was few. In the present study, we observed that a

high genetically determined serum level of N1-methyl-3-pyridone-

4-carboxamide was found to be causally associated with an elevated

risk of prostate cancer (OR:1.29, 95%CI: 1.05-1.58, PIVW=0.017).

One possible explanation is that, in our study, the sample size of

prostate cancer individuals was limited, and underlying

confounders were inevitable. Moreover, these results variations

may be ascribed to the different choices of IVs and GWAS

summary data.

In the present study, the valine, leucine and isoleucine

biosynthesis pathway and the nicotinate and nicotinamide

metabolism pathway were identified to be associated with the

biological process of initiation and progression of prostate cancer

by metabolic pathway analysis. Additionally, we discovered that

N1-methyl-3-pyridone-4-carboxamide, which participated in the

nicotinate and nicotinamide metabolism pathway, may play a

crucial role in prostate cancer biological process (metabolism

pathway analysis: P-value=0.048). These results indicated that

N1-methyl-3-pyridone-4-carboxamide may serve as a potential

therapeutic target in the occurrence and development of prostate

cancer. Hence, further clinical and experimental studies were
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warranted to elucidate the mechanisms between these identified

metabolic pathways and prostate cancer. In the future, it is expected

that molecular docking technology will be used in clinical practice

to design corresponding drugs for diverse blood metabolites and

therapeutic targets. What’s more, our research demonstrated that

specific genes, encompassing RNASEK, CPEB2, ARHGAP22, and

BRD1, were enriched in the different cell clusters of prostate cancer

tissues through the single-cell RNA sequencing localization

analysis. Therefore, it is expected to further validate our findings

with bulk RNA analysis in the future.

Our study possessed several merits. Firstly, to the best of our

knowledge, this is the first MR study to combine metabolomics and

single-cell RNA sequencing analysis to systematically evaluate the

causal links of human serum metabolites on the risk of prostate

cancer. This MR design can mitigate confounding biases often

presented in observational studies and provide more strong

evidence of causal relationship between exposure and outcome.

Secondly, by using the most extensive and current GWAS available

as instrumental variables for serum metabolites, we were able to

address underlying horizontal pleiotropy and ensure the reliability

and robustness of MR results. Thirdly, we identified eligible

candidate metabolites causally associated with elevated risk of

prostate cancer by multiple criteria and rigorous control process,

including pleiotropy, heterogeneity, and LOO analysis.

Furthermore, we performed the metabolic pathways analysis for

the eligible metabolites and identified the quantitative trait locus of

these metabolites from genetic insights.

Nevertheless, the completion of this study required the

acknowledgement of multiple limitations. Initially, the selection of

IVs was conducted utilizing a widened cutoff (P<1e-05), and this

might cause consequence bias and false-positive variants. Similarly,

a previous study has also utilized the identical threshold when

exploring the causal links between 486 serum metabolites and oral

cancer (47). Secondly, the individuals of GWAS included in our

research were restricted to European ancestry, necessitating further

validation in various populations, and larger sample sizes are

essential to verify our findings. Thirdly, despite performing

diverse sensitivity analyses to validate MR assumptions, we

cannot eliminate the impact of horizontal pleiotropy and reverse

causality. Fourthly, due to the effects of various serum metabolites

on the body being complex and interactive, to fulfill the

independent assumption of MR, performing a phenome-wide

association study of the instrumental variables may be reasonable.

Finally, the precision of our study is intrinsically linked to the size of

the sample, underscoring the necessity to enhance the sample for

findings validation. Additionally, our MR analysis is limited to

public databases and lacks real-world clinical research, indicating

that these underlying associations need to be validated through

conducting in-depth clinical and experimental studies.
5 Conclusions

In conclusion, we conducted a comprehensive MR study to

identify three known serum metabolites causally associated with the
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increased risk of prostate cancer, Additionally, the metabolites

causally linked to the risk of prostate cancer were mainly

enriched in the valine, leucine and isoleucine biosynthesis

pathway and the nicotinate and nicotinamide metabolism

pathway. These findings might benefit the comprehension of the

biological mechanisms of prostate cancer and facilitate the

development of targeted drugs for its treatment.
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