
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Leandro Ceotto Freitas Lima,
The University of Texas Health Science
Center at San Antonio, United States

REVIEWED BY

Kátia Michelle Freitas,
Minas Gerais State University, Brazil
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Background: Numerous studies have linked mitochondrial dysfunction to the

development of type 2 diabetes (T2D) by affecting glucose-stimulated insulin

secretion in pancreatic beta cells and reducing oxidative phosphorylation in

insulin-responsive tissues. Given the strong genetic underpinnings of T2D,

research has explored the connection between mitochondrial DNA

haplogroups, specific variants, and the risk and comorbidities of T2D. For

example, haplogroups F, D, M9, and N9a have been linked to an elevated risk

of T2D across various populations. Additionally, specific mitochondrial DNA

variants, such as the rare mtDNA 3243 A>G and the more prevalent mtDNA

16189 T>C, have also been implicated in heightened T2D risk. Notably, these

associations vary among different populations. Given the high incidence of T2D

in the Gulf Cooperation Council countries, this study investigates the correlation

between T2D and mitochondrial haplogroups and variants in Arab populations

from the Gulf region.

Methods: This analysis involved mitochondrial haplogroup and variant testing in

a cohort of 1,112 native Kuwaiti and Qatari individuals, comprising 685 T2D

patients and 427 controls. Complete mitochondrial genomes were derived from

whole exome sequencing data to examine the associations between T2D and

haplogroups and mitochondrial DNA variants.

Results: The analysis revealed a significant protective effect of haplogroup H

against T2D (odds ratio [OR] = 0.65; P = 0.022). This protective association

persisted when adjusted for age, sex, body mass index (BMI) and population

group, with an OR of 0.607 (P = 0.021). Furthermore, specific mitochondrial

variants showed significant associations with T2D risk after adjustment for

relevant covariates, and some variants were exclusively found in T2D patients.
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Conclusion: Our findings confirm that the maternal haplogroup H, previously

identified as protective against obesity in Kuwaiti Arabs, also serves as a protective

factor against T2D in Arabs from the Gulf region. The study also identifies

mitochondrial DNA variants that either increase or decrease the risk of T2D,

underscoring their role in cellular energy metabolism.
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Introduction

Type 2 diabetes (T2D) is a chronic adult-onset metabolic

disorder characterized by high blood sugar due to insulin

resistance or inadequate insulin production by pancreatic beta

cells. Major complications of T2D include retinopathy,

nephropathy, and neuropathy, which can lead to blindness, renal

failure, impotence, and foot amputation, respectively (1). The

International Diabetes Federation (IDF) has reported that 73

million people have diabetes in the Middle East and North Africa

region, with this number projected to increase to 95 million by

2030. Kuwait has a high prevalence of 25.5%, and Qatar has a

prevalence of 16.4% among the total adult population (2).

T2D is known to have a heritable component, yet the

interactions between environmental and genetic factors

complicate their identification. The currently known susceptibility

genes for T2D, identified through linkage analysis, candidate gene

approaches, and genome-wide association studies on the nuclear

genome, contribute only a small percentage to the high estimated

genetic heritability of T2D (3–5), suggesting the presence of missing

heritability (6).

Mitochondria play a critical role in generating cellular energy,

primarily through the process of oxidative phosphorylation

(OXPHOS), where adenosine triphosphate (ATP) is synthesized

within the inner mitochondrial membrane. Beyond energy

production, mitochondria are key players in fatty acid

metabolism and the production of reactive oxygen species (ROS),

which are essential for oxidative stress responses and the regulation

of apoptosis (7). Mitochondrial dysfunction, including reduced

oxidative phosphorylation capacity, has been linked to insulin

resistance and T2D in classic target organs such as the liver, fat,

and muscle (8–11).

The mitochondrial genome (mtDNA) is a maternally inherited,

circular, double-stranded molecule that is independent of nuclear

DNA. Each cell contains several thousand mitochondria, each

housing multiple copies of mtDNA (12, 13). A notable feature of

the mtDNA is its proneness to high rates of genetic alteration

compared to nuclear DNA especially the D-loop region which is a

major non-coding region that oversees mitochondrial transcription

and replication (14). Haplogroups, which group individuals based
02
on similar mtDNA variants, provide insight into genetic diversity

and evolutionary history across different populations. These

variations, including single-nucleotide polymorphisms (SNPs)

and insertions or deletions (INDELs), are increasingly recognized

as potential markers for diagnosing and understanding complex

common disorders (15, 16). Some mtDNA mutations are

heteroplasmic, leading to variability in phenotypic expression

because the proportion of mtDNA copies with the pathogenic

variant is higher than that of wild-type mtDNA copies (17).

There are mitochondrial DNA mutations associated with T2D

exhibiting population-wide variation in allele frequencies, for

instance, a rare mutation, mtDNA 3243 A>G in the tRNA(Leu)

(UUR) gene, causes maternally inherited diabetes and deafness

(MIDD); however, its frequency varies across different ethnicities

(18, 19). Another example is a common variant, mtDNA 16189

T>C which is associated with an increased risk of T2D in

populations with a high frequency of this variant, such as Asian

populations (20), but not in European (21) and North African

populations (22), where the frequency is low (23). Additionally, the

mtDNA haplogroup is proposed to be involved in risk prediction of

T2D. Haplogroups F, D, and M9 are associated with an increased

risk of T2D (21, 24, 25). However, these haplogroup associations are

not consistent across populations; for example, haplogroup N9a is

associated with an increased risk of T2D in southern Chinese

populations (26), whereas haplogroup N9a is associated with

protection against T2D in Japanese and Korean populations (24).

Despite extensive research on mitochondrial dysfunction and

diabetes in other regions, there is a significant gap in studies focused

on the Arab Gulf region. Studying mitochondrial variants and

haplogroups in this region is crucial due to the high prevalence of

type 2 diabetes and the unique genetic makeup of these populations.

The primary objective of this study is to fill this gap by analysing

mtDNA variants and haplogroups in Kuwait and Qatar to

understand their impact on diabetes susceptibility. By way of

utilizing whole mitochondrial genome sequences extracted from

whole exome data of 1,112 individuals from Kuwait and Qatar, this

study aims to clarify the relationship of mtDNA haplogroups/

variants and type 2 diabetes, potentially enhancing precision

medicine by improving the identification of individuals at risk

based on their genetic profiles.
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Materials and methods

Ethics declaration

This study received approval from the Institutional Ethical

Review Committee at Dasman Diabetes Institute, following the

ethical principles outlined in the Declaration of Helsinki. While the

Qatari whole-exome sequence data utilized in this research were

previously published in a separate study by Fakhro et al. (27) and

O’Beirne et al. (28), the study adhered to ethical standards, and

written informed consent was obtained from all participants. The

ethical approval for the study, including the use of the previously

collected samples, was granted under the project reference number

RA HM 2019-025.
Whole exome data

This secondary analysis involved a cohort of 1,112 unrelated

participants from Kuwait and Qatar, collected through national

genome sequencing programs designed to investigate genomic

variants at the population level. DNA from whole blood of 348

Kuwaiti individuals was sequenced using the Illumina HiSeq

platform with TruSeq and Nextera capture kits, as previously

described by John et al. (29) (SRA accession: https://

www.ncbi.nlm.nih.gov/bioproject/PRJNA1162699). DNA from

whole blood of 764 Qatari participants with available clinical data

(Supplementary Table S1) was sequenced using the Illumina HiSeq

platform with the SureSelect Agilent V5 kit, which captures the

entire mitochondrial genome (27, 28) (SRA accession: https://

www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA290484).

Participants were diagnosed with Type 2 Diabetes based on the

American Diabetes Association (ADA) criteria, including fasting

blood glucose ≥126 mg/dL and/or HbA1C ≥6.5%. The study

included individuals of Arab ethnicity with confirmed ancestry up

to three generations. For detailed inclusion criteria, please refer to

Hebbar et al. (30) for the Kuwaiti cohort and O’Beirne et al. (28) for

the Qatari cohort.
mtDNA sequences, variant calling,
and annotation

The FASTQ paired-end Illumina reads were aligned to the

human reference assembly GRCh37 with the default setting of

Burrows-Wheeler Aligner (BWA-MEM) version v07-17 (31). After

alignment, duplicate reads were removed, and the mtDNA sequence

(NC_012920.1) was extracted utilizing Picard tool version 2.20.2

(http://broadinstitute.github.io/picard) and SAMtools version 0.1.19

(32). Subsequently, the mtDNA coverage and Genomic Variant Call

Format (GVCF) files were generated for each sample with the

Genome Analysis Tool Kit (GATK) version v3.8-1-0 (33). Using

GATK HaploCaller, the combined 1,112 GVCF files were

genotyped, producing a Variant Calling Format (VCF) file that

contained the identified mtDNA variants. Finally, mtDNA

annotations were performed using the Ensembl Variant Effect
Frontiers in Endocrinology 03
Predictor (VEP) (34), the Mitomap (https://www.mitomap.org/)

database (35), and Varsome website (https://varsome.com).
mtDNA haplogroup assignment

To determine the mitochondrial haplogroup profiles for all

1,112 individuals, the mtDNA VCF files were analysed using

HaploGrep 2 (36) with the phylotree build PT17-FU1 (accessed

on February 2, 2024).
Statistical analyses

Statistical analyses were performed using R software version

3.6.2 (https://www.R-project.org/). Descriptive statistics were

derived for demographic and anthropometric data, including age,

BMI, and T2D status. Continuous variables were summarized as

mean ± standard deviation (SD) or as median and interquartile

range (IQR). The Chi-square test was used to assess the statistical

significance of associations between categorical variables (sex and

population) and T2D status. The Mann-Whitney U test was used to

examine the associations between age, BMI, and T2D status. A p-

value of less than 0.05 was considered statistically significant.

To identify hidden relationships among the samples due to

potential covariates, principal component analysis (PCA) was

conducted on the complete set of mtDNA variants. PCA was

carried out using the PCAtools package in R, and the results were

visualized on a biplot, highlighting the principal components (PCs)

that captured the most variation in the data.

Fisher’s exact test was employed to test for nominal associations

between T2D and mtDNA haplogroups. The odds ratio (OR) and

95% confidence intervals (CI) were calculated for each haplogroup,

with a p-value <0.05 set as the threshold for statistical significance.

Additionally, logistic regression was implemented using IBM®

SPSS® Statistics Version 25 software to adjust for covariates,

including sex, age, BMI, and population. Finally, PLINK version

1.9 (71) was used to identify mtDNA variants associated with T2D,

with a two-tailed p-value <0.05. In addition, PLINK tool was used

for conditional analysis on the top leading variant with the lowest p-

value. Independence of associated variants was assessed using LD

pruning with the parameters (–indep-pairwise 50 5 0).
Results

Study demographic and clinical profile

The samples in our study, including those referenced from

previous research (27, 29), underwent relatedness assessments

based on nuclear DNA to ensure unrelated samples. Table 1

presents descriptive statistics for the dataset containing 1,112

Kuwaiti and Qatari individuals. The Mann-Whitney U test

displayed significant differences between T2D and control

individuals with regards to age categories and BMI scores.
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Additionally, the Chi-square test showed a significant result for the

distribution of T2D and control individuals with regards to

population (Kuwaiti and Qatari). However, no significant

difference was found for sex distribution between the two groups.
mtDNA variants

A total of 1,850 high-quality variants were identified after

passing filters and quality control steps. These identified mtDNA

variants include SNPs and INDELs, with an average coverage of

75X across the entire mtDNA. The genomic-control inflation factor

(l) was 1 in tests that accounted for all the covariates. Since this

value is close to 1.0, it indicates that there is no need to adjust the

association statistics for genomic-control inflation.
mtDNA haplogroups

The average haplogroup quality score was above 92%, obtained

using HaploGrep 2.4.0, which identified 15 mitochondrial

haplogroups (B, E, H, HV, I, J, K, L, M, N, R, T, U, W, X). PCA

was performed on the mitochondrial DNA variants from both

cohorts to explore potential hidden relationships among the

samples. The PCA results revealed that the 1,112 samples

clustered primarily according to their mitochondrial haplogroups

(Figure 1A), reflecting the rich ancestral information encoded in the

mtDNA. Notably, the samples did not cluster based on population

groups (Kuwaiti or Qatari), indicating that the primary genetic

variation is driven by haplogroup differences rather than
Frontiers in Endocrinology 04
geographical origin. In Figure 1B, the PCA plot shows no distinct

clustering based on gender or diabetes status, further emphasizing

that mitochondrial haplogroups are the dominant factor

influencing the genetic structure observed in this analysis.
mtDNA haplogroups associated with T2D

Figure 2 presents the frequencies of mitochondrial haplogroups

in the Gulf region Arabs of Kuwaiti and Qatari population based on

diabetes phenotype. The frequency of the H haplogroup was higher

in the control groups compared to the diabetes groups in both the

Kuwaiti (17.5% vs. 11%) and the Qatari (12.3% vs. 9.3%) cohorts

(Figure 2). The most common haplogroups were J followed by U

haplogroup. Haplogroups with frequencies below 3% were

categorized as “others”.

When conducting separate mitochondrial haplogroup analysis

using the Fisher exact test on the Kuwaiti population (Supplementary

Table S2) and the Qatari population (Supplementary Table S3), we

did not find significant associations. However, when we combined

the two populations as Arabs in the Gulf region, thereby increasing

the number of samples, we observed a significant association using

the multivariate logistic regression analysis (Table 2). Specifically, the

H haplogroup had a protective effect against obesity (odds ratio [OR]

= 0.65; p = 0.022). This effect remained significant after adjusting for

age, sex, BMI, and population (OR/95% CI = 0.607/0.397-0.929; p =

0.021). Further analysis showed that most individuals with the H

haplogroup belonged to the H14b and H2a subclades (Table 3).
mtDNA variants associated with T2D

The analysis identified 26 mtDNA variants that were nominally

associated with T2D in the Arab Gulf region cohort, as presented in

Table 4. These associations were determined after adjusting for key

covariates including age, sex, mtDNA haplogroup, and population

group. Of these 26 variants, 13 were found to be positively correlated

with an increased risk of T2D, while the remaining 13 exhibited a

negative correlation, suggesting a potential protective effect.

Among the positively associated variants, MT:2352T>C in the

RNR2 gene stands out as a significant non-coding variant, with an

odds ratio (OR) of 5.616 (95%CI = 1.381-22.84; p = 0.016), indicating

a strong association with T2D. Similarly, the MT:8460A>G variant, a

missense mutation in the ATP8 gene, was associated with T2D (OR =

6.762; 95% CI = 1.262-36.23; p = 0.026). This variant affects a key

component of the mitochondrial ATP synthase complex, potentially

leading to impaired ATP production and subsequent disruptions in

insulin secretion and glucose metabolism.

Conversely, several variants were identified as having a

protective association with T2D. Five of these variants, including

MT:16186C>T, MT:4991G>A, MT:4188A>G, MT:709G>A, and

MT:11204T>C, showed a significant negative correlation with

T2D, indicating a protective effect. For example, MT:16186C>T,

located in the non-coding D-loop region, exhibited a protective

effect against T2D (OR = 0.292; 95% CI = 0.109-0.782; p = 0.014).
TABLE 1 Demographic and anthropometric information of the
study participants.

Control T2D Total P-value

Sex

Male 175 (41.08%) 294 (42.92%) 469 (42.21%)
0.5

Female 251 (58.92%) 391 (57.08%) 642 (57.79%)

Population

Kuwaiti 165 (38.73%) 182 (26.57%) 347 (31.23%)
2.83E-05

Qatari 261 (61.27%) 503 (73.43%) 764 (68.77%)

Age (years)

≤ 50 313 (73.47%) 187 (27.30%) 500 (45%)

9.9E-51

> 50 113 (26.53%) 498 (72.70%) 611 (55%)

Mean ± SD 44.43 ± 11.88 56.97 ± 10.47 52.16 ± 12.60

Median
(IQR)

43.0
(35.0-51.0)

57.0 (50-64) 52.0 (43-60.5)

BMI

Mean ± SD 31.89 ± 8.05 33.28 ± 6.90 32.74 ± 7.39

0.0007Median
(IQR)

31.5
(25.4-33.4)

32.5
(27.9-37.9)

31.6
(27.5-37.1)
P-values for age categories and BMI for T2D vs. control were calculated using the Mann–
Whitney U test. P-values for sex and population counts in T2D vs. control were calculated
using the Chi-square test.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1443737
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dashti et al. 10.3389/fendo.2024.1443737
This variant is likely involved in the regulation of mitochondrial

DNA replication and transcription, possibly reducing the risk of

T2D by improving mitochondrial function. Similarly,

MT:4991G>A in the ND2 gene and MT:4188A>G in the ND1

gene, which are both involved in encoding subunits of NADH

dehydrogenase, also demonstrated protective effects, suggesting that

these variants might enhance oxidative phosphorylation efficiency,

thereby mitigating T2D risk. MT:709G>A in the RNR1 gene and

MT:11204T>C in the ND5 gene were additionally found to have

protective associations, further emphasizing the role of

mitochondrial variants in influencing metabolic health and

disease resistance.
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Further conditional analysis, focusing on the top leading variant

MT:16186C>T, identified 20 additional variants that remained

significantly associated with T2D, suggesting that these variants

exert an independent effect on the risk of the disease. However, five

variants from the initial 26 lost their significance after controlling

for MT:16186C>T, indicating that their association with T2D was

likely dependent on this leading variant. This dependency

highlights the complex genetic interactions among mtDNA

variants that contribute to T2D susceptibility.

In total, 514 mtDNA variants were identified exclusively in

individuals with T2D, as detailed in Supplementary Table S4.

Table 5 highlights several significant variants that are uniquely
FIGURE 1

PCA of 1,112 Samples of Gulf Region Arabs Based on Their mtDNA Variants. The PCA was conducted on all mitochondrial DNA variants identified in
the two cohorts. PC1 (Principal Component 1) and PC2 (Principal Component 2) on the x- and y-axes represent the first two principal components,
which capture the largest proportion of genetic variance in the dataset. The percentage of variance explained by each component is indicated on
the axes. (A) The samples are colour-coded based on their mitochondrial haplogroups, reflecting the rich ancestral information contained in the
mtDNA, and different shapes describe the population groups. (B) The same PCA plot is overlaid with gender represented by different colours and
diabetes status represented by different shapes.
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present in the T2D group, including MT:15530T>C in the CYB

gene and MT:6587C>T in the CO1 gene. These variants have been

implicated in previous studies of metabolic disorders, further

supporting their relevance in T2D within the Arab Gulf population.
Discussion

In this study, we explored the association between

mitochondrial haplogroups and T2D by combining data from

Kuwaiti and Qatari cohorts, which individually might not have

shown significant associations, possibly due to limited sample sizes.
Frontiers in Endocrinology 06
Given the environmental and genetic similarities of these

populations (42), we combined the cohorts to increase the

statistical power and offer a comprehensive view of the genetic

landscape of Arabs in the Gulf region. The PCA analysis of

mitochondrial haplogroups confirmed the ethnic homogeneity

between the two populations. This integrated approach enhanced

the reliability of our findings, enabling us to identify genetic

markers and risk factors with greater confidence, thus providing

valuable insights into the genetic factors associated with T2D.

In the current study, the mitochondrial H haplogroup was

found to have a protective effect against obesity in the combined

populations (OR/95% CI = 0.607/0.397-0.929; p = 0.021) after
FIGURE 2

Distribution of mtDNA Haplogroups of gulf region arabs based on their diabetes status. Allocation of major mtDNA haplogroup prevalence in T2D
and control groups within the Kuwaiti and Qatari populations.
TABLE 2 mtDNA Haplogroups association of gulf region arabs for diabetes.

Haplogroup
Kuwait Qatar Total T2D Control

OR P-value
OR (95%CI)* after

covariates
adjustment

P-value* after
covariates
adjustmentN (348) N (764) N (1,112) N (685) N (427)

H
49

(14.1%)
78

(10.2%)
127

(11.4%)
67 (9.8%) 61 (14.3%) 0.65 0.022

0.607 (0.397-0.929) 0.021

HV
14
(4%)

40
(5.2%)

54
(4.9%)

32 (4.7%) 22 (5.2%) 0.9 0.717 0.803 (0.427-1.511) 0.497

J
62

(17.8%)
109

(14.3%)
171

(15.4%)
103 (15%) 68 (15.9%) 0.93 0.690 0.928 (0.634-1.359) 0.702

L
49

(14.1%)
89

(11.6%)
138

(12.4%)
90 (13.1%) 48 (11.2%) 1.19 0.351 1.320 (0.861-2.024) 0.203

M
18

(5.2%)
57

(7.5%)
75

(6.7%)
50 (7.3%) 25 (5.8%) 1.27 0.350 1.148 (0.656-2.009) 0.629

N
23

(6.6%)
30

(3.8%)
53

(4.8%)
34
(5%)

19
(4.4%)

1.12 0.696 1.048 (0.547-2.008) 0.888

R
42

(12.1%)
96

(12.6%)
138

(12.4%)
86 (12.6%) 52 (12.2%) 1.04 0.853 1.023 (0.670-1.561) 0.917

T
24

(6.9%)
83

(10.9%)
107

(9.6%)
72 (10.5%) 35 (8.2%) 1.32 0.203 1.213 (0.752-1.958) 0.428

U
40

(11.5%)
107
(14%)

147
(13.2%)

89
(13%)

58 (13.6%) 0.95 0.777 1.039 (0.691-1.563) 0.855

X
12

(3.4%)
27

(3.5%)
39

(3.5%)
27 (3.9%) 12 (2.8%) 1.42 0.319 1.348 (0.609-2.984) 0.461

Others (B,E,
W,K,I)

15
(4.3%)

48
(6.3%)

63
(5.7%)

35 (5.1%)
13
(3%)

1.71 0.099 1.019 (0.557-1.865) 0.951
*Values after adjustment for age, sex, BMI and population. N, number of individuals; OR, odds ratio; CI, confidence intervals for OR as calculated using logistic regression model using PLIN.
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adjusting for age, sex, BMI, and population. Furthermore, the

prevalence of individuals with the H haplogroup was higher in

the control groups than in the T2D groups in both populations,

although this difference was not statistically significant. Additional

analysis revealed that most individuals with the H haplogroup

belonged to the H14b and H2a subclades. Haplogroup H,

although most prevalent in Europe, has a notable presence in the

Arabian Peninsula. Studies have shown mean frequencies of around

9.4% in the region, with variations across different countries and

regions (43). This distribution supports the relevance of our

findings within the Gulf Arab populations. Furthermore, this

haplogroup has been previously associated with a protective effect

against obesity in Arabs living in Kuwait (44). Given that obesity is a

significant risk factor for T2D, this protective effect might

contribute to a reduced risk of T2D in individuals with

haplogroup H. Furthermore, the H2a maternal lineage, common

in the Saudi Arabian population, is associated with lean individuals

in the Arab population living in Kuwait (44), likely contributing to

the reduced T2D risk observed in the H2a subclade.

However, studies on Chinese Uyghur (45) and Bangladeshi

populations (46) reported that haplogroup H was associated with an

increased risk of T2D. This inconsistency with our results may be

due to several factors. First, genetic background effects can differ

significantly across populations, leading to inconsistent haplogroup

associations. The different frequencies of H subclades across
TABLE 3 Sub-clade classification of individuals with mtDNA haplogroup
H n> 1.

Sub-clade Number of individuals

H 24

H14b 14

H2a 12

H6b 11

H13a 10

H13c 9

H14 9

H15a 5

H1 4

H29a 3

H2b 2

H4b 2

H5’36 2

H5c 2

H6 2

H6a 2
TABLE 4 mtDNA variants association of gulf region arabs for diabetes.

mtDNA
variants

Gene Consequence
Frequency
in T2D

Frequency
in Control

Frequency in
H haplogroup

OR (95% CI)* P-value*

MT:16186C>T TP upstream 0.019 0.026 0.024 0.292 (0.109-0.782) 0.014

MT:2352T>C RNR2 non-coding 0.025 0.007 0.018 5.616 (1.381-22.84) 0.016

MT:4640C>A ND2 missense 0.003 0.012 0.007 0.096 (0.013-0.683) 0.019

MT:14212T>C ND6 synonymous 0.019 0.009 0.018 4.946 (1.27-19.26) 0.021

MT:4991G>A ND2 synonymous 0.020 0.033 0.025 0.362 (0.152-0.862) 0.022

MT:709G>A RNR1 non-coding 0.142 0.172 0.154 0.638 (0.431-0.945) 0.025

MT:8460A>G ATP8 missense 0.019 0.005 0.018 6.762 (1.262-36.23) 0.026

MT:8419T>C ATP8 synonymous 0.001 0.002 0.001 0.04 (0.002-0.712) 0.028

MT:9300G>A CO3 missense 0.012 0.002 0.008 12.54 (1.296-121.4) 0.029

MT:10667T>C ND4L synonymous 0.010 0.002 0.007 14.21 (1.309-154.1) 0.029

MT:12007G>A ND4 synonymous 0.055 0.033 0.047 2.156 (1.079-4.305) 0.030

MT:15670T>C CYP synonymous 0.016 0.002 0.011 13.81 (1.26-151.5) 0.032

MT:13101A>C CYB synonymous 0.009 0.002 0.006 13.7 (1.219-154.1) 0.034

MT:11204T>C ND5 synonymous 0.006 0.014 0.009 0.225 (0.056-0.897) 0.035

MT:16304T>C TP upstream 0.046 0.019 0.038 2.537 (1.067-6.036) 0.035

MT:10816A>G ND4 synonymous 0.009 0.002 0.006 13.34 (1.19-149.5) 0.036

MT:2000C>T RNR2 non-coding 0.009 0.002 0.006 13.25 (1.182-148.5) 0.036

MT:13780A>G ND5 missense 0.060 0.040 0.053 2.072 (1.044-4.113) 0.037

(Continued)
frontiersin.org

https://doi.org/10.3389/fendo.2024.1443737
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dashti et al. 10.3389/fendo.2024.1443737
populations further complicate this, as our study identified specific

subclades of haplogroup H, whereas these studies did not. Second,

the Bangladeshi study only sequenced the D-loop hypervariable

region I in their haplogroup classification (46). We previously

observed a 71% concordance in mitochondrial haplogroup

profiling between variants from the full mitochondrial genome

extracted from whole-exome data and the D-loop region data

from conventional Sanger sequencing. This suggests that using

only the D-loop region could lead to haplogroup misclassification

(47). Additionally, the small sample sizes in these studies may have

contributed to the differing results. Another explanation involves

observations of tightly coupled oxidative phosphorylation

(OXPHOS) haplogroups, such as haplogroup H, which use fewer

calories to produce more ATP. Another tightly coupled haplogroup

has been associated with both elite athletes (48) and obesity (49, 50)

in the Japanese population. Researchers hypothesize that the

“thrifty genotype” could explain this phenomenon: while high

ATP production efficiency benefits athletes, it predisposes

individuals to obesity if they become sedentary later in life (48).

The prevalence of individuals with mitochondrial haplogroup T

is higher in the T2D group compared to the control group in the
Frontiers in Endocrinology 08
Kuwaiti population, the Qatari population, and the combined

population representing Arabs in the Gulf region. However, the

difference in frequency was not significant. However, a significant

association was observed for haplogroup T with an increased risk of

T2D in the white Brazilian population (51). The T haplogroup was

also associated with obesity in the southern Italian population (52)

and in Austrian juveniles and adults (53).

mtDNA variants have been implicated as possible genetic

causes of T2D. The T-to-C change at nucleotide position 16189,

which creates a homopolymeric polycytosine (poly-C) tract

between positions 16184 and 16193 within the D-loop region, has

been linked to T2D in specific ethnic groups (20, 54, 55). This

variant’s diabetogenic effect is thought to be connected to mtDNA

replication issues and influenced (56) by factors such as increased

body weight (57) and oxidative stress (58). However, the association

has been inconsistent across different populations (23).

In our study involving Arabs from the Gulf region, we identified

a significant protective variant: 16186 C>T (OR/95% CI = 0.292/

0.109-0.782) after adjusting for covariates. This variant was the

most significant in our study. Located within the same poly-C tract

in the D-loop region, it replaces a cytosine with thymine, possibly
TABLE 5 Significant associated mtDNA variants that present only in diabetic individuals.

mtDNA variants Gene Consequence Number of individuals P-value

MT:15530T>C CYB synonymous 8 0.027

MT:6587C>T CO1 synonymous 7 0.048
TABLE 4 Continued

mtDNA
variants

Gene Consequence
Frequency
in T2D

Frequency
in Control

Frequency in
H haplogroup

OR (95% CI)* P-value*

MT:9554G>A CO3 synonymous 0.022 0.012 0.018 3.459 (1.069-11.19) 0.038

MT:4188A>G ND1 synonymous 0.003 0.010 0.005 0.114 (0.014-0.916) 0.041

MT:13743T>C ND5 synonymous 0.003 0.009 0.005 0.114 (0.014-0.917) 0.041

MT:9656T>C CO3 synonymous 0.004 0.009 0.006 0.169 (0.031-0.935) 0.042

MT:8994G>A ATP6 synonymous 0.007 0.016 0.011 0.282 (0.082-0.974) 0.045

MT:10685G>A ND4L synonymous 0.012 0.016 0.014 0.292 (0.087-0.975) 0.045

MT:14696A>G TE non-coding 0.001 0.002 0.002 0.053 (0.003-0.948) 0.046

MT:16163A>G TP upstream 0.022 0.024 0.024 0.38 (0.145-0.998) 0.049
mtDNA variants in italics were identified by conditional analysis as having a dependent effect on T2D with respect to the conditioned top SNP (MT:16186C>T) with the lowest p-value.
TABLE 6 Known diabetic associated mtDNA position that were in diabetic individuals only.

mtDNA variants Gene Frequency in T2D Known variants Diabetes Population Reference

MT:3357G>A ND1 0.004 MT:3357G>A T2D, T1D Japan (37)

MT:3200T>A RNR2 0.001 MT:3200T>C T2D China (38)

MT:15746A>G CYB 0.004 MT:15746A>G T2D Taiwan (39)

MT:14693A>G TE 0.002 MT:14693A>G T2D, MIDD Taiwan (40)

MT:3399A>G ND1 0.001 MT:3399A>T GDM* Singapore (41)
*GDM, Gestational diabetes mellitus.
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impacting replication or regulation processes differently from the

16189 T>C variant, which was not prioritized in our study.

We found that the variant MT:2352T>C (OR/95% CI = 5.616/

1.381-22.84) is positively correlated with T2D in our study. This

variant was previously associated with decreased mitochondrial inner

membrane potential during oxidative phosphorylation. The minor

allele of this SNP is almost absent in individuals of Caucasian

ancestry but is prevalent in those of African American ancestry,

where it has been linked to an increased risk of fibromyalgia (59).

Given its prevalence in the Arab population, its association with

decreased cellular energy metabolism suggests a potential mechanism

for its link to T2D through mitochondrial dysfunction and impaired

insulin sensitivity (60).

Among the positively associated variants in our study, we

identified a significant missense variant, MT:8460A>G, within the

ATP8 gene. This gene encodes a subunit of ATP synthase in

complex V, which utilizes the proton electrochemical gradient

across the inner membrane during oxidative phosphorylation to

synthesize ATP from adenosine diphosphate (61). Variants within

the ATP8 gene have been shown to impact b-cell function and ROS

generation in animal models (62) and have been associated with

T2D in genetic studies (45).

Additionally, we identified a missense (MT:9300G>A) and a

synonymous (MT:9554G>A) as significant variants in the

cytochrome c oxidase subunit III (CO3) gene. A different variant

in the CO3 gene has been linked to MIDD (63).

Variants in the Cytochrome B gene (CYB) have also been linked

to MIDD (64) and T2D (39). In our study, we identified a significant

synonymous variant (MT:13101A>C) in the CYB gene.

We found several significant variants positively correlated with

T2D located in the nicotinamide adenine dinucleotide (NADH)

dehydrogenase subunit genes (ND4, ND4L, and ND6) of

respiratory complex I. NADH dehydrogenase is essential for energy

generation; thus, variants within its encoding genes could result in

metabolic disorders (65). Variants in these genes have been associated

with MIDD (66) and T2D (67, 68). Similarly, we also found a

significant synonymous variant in the RNR2 gene (MT:2000C>T),

which encodes Humanin, a peptide shown to improve insulin

sensitivity in animal models of diabetes mellitus (69). We also

identified two significant synonymous variants that were found

exclusively in the T2D groups: MT:15530T>C in the CYB gene and

MT:6587C>T in the cytochrome c oxidase subunit I (COI) gene. A

variant in the COI gene has been linked to MIDD (63).

Finally, we examined known mtDNA positions associated with

T2D exclusively in individuals with T2D (70), and we identified five

variants. Three of these are exact known variants from ND1 (37),

CYB (39), and mitochondrially encoded tRNA glutamic acid (TE)

(40) genes, all of which are associated with T2D. The other two

variants share the same positions with known variants in literature

but have different nucleotide changes. One is located within RNR2 at

position MT:3200 (38) with a T>A change, and the other is within

ND1 at position MT:3399 (41) with an A>G change (Table 6).

This study acknowledges several limitations. First, the

associations between mitochondrial haplogroups and T2D, as well
Frontiers in Endocrinology 09
as mitochondrial variants and T2D, did not reach statistical

significance after applying Bonferroni correction, might indicate

that the sample size is not large enough to accommodate multiple

testing’s. Furthermore, diabetes is a multifactorial disorder

influenced by a variety of factors. Including adjustments for

lifestyle variables, dietary habits, and meal frequency could

provide a more comprehensive analysis. Lastly, our results have

not been validated in a larger, independent cohort of Arabs from the

Gulf region, which is necessary to confirm these findings.
Conclusion

In conclusion, this study provides important evidence that

mitochondrial genetics play a significant role in modulating T2D risk

in Arab populations of the Gulf region. The protective effect of

haplogroup H, as well as the identification of specific disease-

associated variants, highlight the value of investigating mitochondrial

markers as part of a precisionmedicine approach to understanding and

managing T2D in this high-risk population. Further research is

warranted to elucidate the functional mechanisms underlying these

genetic associations and to translate these findings into improved

clinical screening and prevention strategies.
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