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Deciphering the role of lipid
metabolism-related genes in
Alzheimer’s disease: a machine
learning approach integrating
Traditional Chinese Medicine
KeShangJing Wu, QingSong Liu, KeYu Long, XueQing Duan,
XianYu Chen, Jing Zhang, Li Li*† and Bin Li*

Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu,
Sichuan, China
Background: Alzheimer’s disease (AD) represents a progressive neurodegenerative

disorder characterized by the accumulation of misfolded amyloid beta protein,

leading to the formation of amyloid plaques and the aggregation of tau protein into

neurofibrillary tangles within the cerebral cortex. The role of carbohydrates,

particularly apolipoprotein E (ApoE), is pivotal in AD pathogenesis due to its

involvement in lipid and cholesterol metabolism, and its status as a genetic

predisposition factor for the disease. Despite its significance, the mechanistic

contributions of Lipid Metabolism-related Genes (LMGs) to AD remain

inadequately elucidated. This research endeavor seeks to bridge this gap by

pinpointing biomarkers indicative of early-stage AD, with an emphasis on those

linked to immune cell infiltration. To this end, advanced machine-learning

algorithms and data derived from the Gene Expression Omnibus (GEO) database

have been employed to facilitate the identification of these biomarkers.

Methods: Differentially expressed genes (DEGs) were identified by comparing

gene expression profiles between healthy individuals and Alzheimer’s disease

(AD) patients, using data from two Gene Expression Omnibus (GEO) datasets:

GSE5281 and GSE138260. Functional enrichment analysis was conducted to

elucidate the biological relevance of the DEGs. To ensure the reliability of the

results, samples were randomly divided into training and validation sets. The

analysis focused on lipid metabolism-related DEGs (LMDEGs) to explore

potential biomarkers for AD. Machine learning algorithms, including Support

Vector Machine-Recursive Feature Elimination (SVM-RFE) and the Least Absolute

Shrinkage and Selection Operator (LASSO) regression model, were applied to

identify a key gene biomarker. Additionally, immune cell infiltration and its

relationship with the gene biomarker were assessed using the CIBERSORT

algorithm. The Integrated Traditional Chinese Medicine (ITCM) database was

also referenced to identify Chinese medicines related to lipid metabolism and

their possible connection to AD. This comprehensive strategy aims to integrate

modern computational methods with traditional medicine to deepen our

understanding of AD and its underlying mechanisms.
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Results: The study identified 137 genes from a pool of 751 lipid metabolism-

related genes (LMGs) significantly associated with autophagy and immune

response mechanisms. Through the application of LASSO and SVM-RFE

machine-learning techniques, four genes—choline acetyl transferase (CHAT),

member RAS oncogene family (RAB4A), acyl-CoA binding domain-containing

protein 6 (ACBD6), and alpha-galactosidase A (GLA)—emerged as potential

biomarkers for Alzheimer’s disease (AD). These genes demonstrated strong

therapeutic potential due to their involvement in critical biological pathways.

Notably, nine Chinese medicine compounds were identified to target these

marker genes, offering a novel treatment approach for AD. Further, ceRNA

network analysis revealed complex regulatory interactions involving these

genes, underscoring their importance in AD pathology. CIBERSORT analysis

highlighted a potential link between changes in the immune microenvironment

and CHAT expression levels in AD patients, providing new insights into the

immunological dimensions of the disease.

Conclusion: The discovery of these gene markers offers substantial promise for

the diagnosis and understanding of Alzheimer’s disease (AD). However, further

investigation is necessary to validate their clinical utility. This study illuminates the

role of Lipid Metabolism-related Genes (LMGs) in AD pathogenesis, offering

potential targets for therapeutic intervention. It enhances our grasp of AD’s

complex mechanisms and paves the way for future research aimed at refining

diagnostic and treatment strategies.
KEYWORDS

bioinformatics, Alzheimer’s disease, lipid metabolism, immune microenvironment,
machine learning, Traditional Chinese Medicine
Introduction

Alzheimer’s disease (AD), termed the most prevalent type of

dementia, affects one new person every three seconds globally. By

2026, there will be 13.8 million people in the US with Alzheimer’s

disease (1). Despite various hypotheses, the underlying mechanisms

of AD remain elusive. AD imposes a tremendous social,

psychological, and economic impact on society, but no effective

treatment is available to stop or reverse its course. Over the course

of several decades of research, intricate connections have been

unveiled between lipid metabolism and crucial pathological

mechanisms of AD. These mechanisms include amyloidogenesis,
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bioenergetic insufficiency, oxidative stress, neuroinflammation, and

myelin degradation (2). These multifaceted interactions provide a

mechanistic understanding of the intricate pathogenesis of AD and

represent promising avenues for therapeutic intervention. However,

how lipid metabolism genes play an identifying role in AD has not

yet been elucidated, and this study aims to fill that gap Some of these

biomarkers may have prognostic or diagnostic significance.

Lipids are essential in maintaining the structural and functional

aspects of the body, including their significance in neurodegenerative

diseases such as AD. In the brain, various lipid classes, including

sphingolipids, glycerophospholipids (GPs), and cholesterol, are

present in high concentrations (3). Cholesterol, a major component

of cellular membranes, is crucial in sustaining the structural integrity

of neuronal membranes (4). GPs and sphingolipids perform dual

roles by contributing to neuronal membrane integrity and serving as

precursors for synthesizing bioactive lipid mediators in the brain.

Considering the aforementioned functions, lipid metabolism may be

closely associated with the progression and treatment of AD.

The molecular mechanisms underlying AD remain elusive, but

a hallmark feature of the disease is the increase in b-amyloid (Ab)
and tau protein aggregates in the brain (5). AD is primarily

associated with mutations in three genes, with the amyloid
frontiersin.org

https://doi.org/10.3389/fendo.2024.1448119
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2024.1448119
precursor protein gene (APP) playing a vital role (6). A key genetic

determinant of AD susceptibility is apolipoprotein E (APOE),

which has three common isoforms with distinct impacts on lipid

metabolism and Ab dynamics. Besides APOE, several other genes

implicated in lipid metabolism, such as ATP-binding cassette

subfamily A member 1 (ABCA1), ATP-binding cassette subfamily

A member 7 (ABCA7), and phospholipase D3 (PLD3), have been

associated with AD risk (7).The above shows the complexity of the

pathological development process of AD. Studies have now

concluded that The APOE e4 genotype, a major genetic risk

factor for AD, is involved in lipid transport and metabolism,

influencing the disease’s progression (8). Lipidomic profiles can

distinguish between individuals with and without cognitive

impairment, suggesting potential for early diagnostic biomarkers

(9) Although there are some important intersections between lipid

metabolism genes and the pathological process of AD, the specific

process explaining how lipid metabolism-related genes (LMGs)

affect the production, degradation, transport, and aggregation of

Ab in the brain and thus regulate AD pathogenesis has not been

fully uncovered.

Traditional Chinese herbs can regulate lipid absorption, reduce

lipid synthesis, and enhance lipolysis and lipid transport. It is

important to note that Chinese medical theory has a long history

of using herbal medicine to treat diseases associated with lipid

metabolism, such as Phlegm disease. A study revealed the potential

of certain herbal treatments, such as Areca catechu, Acorus

calamus, and Eclipta alba, among others, in enhancing memory

and cognitive functions in patients with AD (10). BSTSF may

protect against Alzheimer’s disease by restoring metabolic balance

in the brain, potentially benefiting cognitive performance and lipid

metabolism (11). Therefore, exploring chinese medicines that

modulate the targets related to lipid metabolism for the treatment

of AD provides new preventive and therapeutic strategies. Several

studies have shown that the occurrence of AD is related to lipid

metabolism. However, although studies have now revealed the

relationship between some LMGs and Alzheimer’s pathology or

diagnosis, more links between LMGs and their associations need to

be revealed. Alzheimer’s disease (AD) is a multifactorial

neurodegenerative disorder characterized by complex pathological

mechanisms, including amyloid-beta plaque formation, tau protein

tangles, neuroinflammation, and lipid metabolism dysregulation.

Despite decades of research, the intricate nature of AD has made it

difficult to identify reliable biomarkers for early diagnosis and

effective therapeutic targets. Traditional approaches often fall

short in capturing the full spectrum of molecular interactions

underlying disease progression. This complexity underscores the

need for more advanced techniques, such as machine learning. This

research focused on extracting gene expression data related to lipid

metabolism in the context of AD. The process involved utilizing the

LASSO and SVM-RFE approaches to identify AD diagnostic

markers related to lipid metabolism (12). Furthermore, the related

mechanisms of action were assessed by Gene-Set Enrichment

Analysis (GSEA) and Gene-Set Variation Analysis (GSVA).

Additionally, the study identified Chinese Medicine drugs that

specifically target these biomarkers and provided insights into the

regulatory correlation involving these genes in the ceRNA network.
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This study aimed to investigate the potential gene biomarkers along

the AD based on LMGs. Figure 1 illustrates the research approach

employed in this study.
Materials and methods

Data source

The GEO database was searched to obtain the expression data

of the AD-related genes and normal samples. The GSE138260

dataset, comprising a total of 36 samples (17 AD and 19 normal),

was used as the training set. Furthermore, encompassing 74 normal

and 87 AD samples, the GSE5281 was utilized to verify the marker

gene expression. Moreover, the LMGs (n = 751) utilized were

acquired from a referenced source and functioned as the

foundation for subsequent analyses in this research (13). The

detailed genes are summarized in Supplementary Table 1.
Differential expression analysis

Extracting the expression of lipid metabolism genes from the

GSE138260 dataset and performing differential analysis of lipid

metabolism genes by limma package were the steps involved in this

process. To identify the differentially expressed genes (DEGs)

between these two sample groups, R software was utilized. Using

a P-value cutoff lower than 0.05, DEGs were filtered between the AD

and control groups (Supplementary Table 2). These thresholds were

deemed appropriate for screening and selecting genes that were

significantly differentially expressed in AD.
Functional enrichment performed
in Metascape

Functional analyses of the DEGs from this study were executed

via Metascape, a web-based tool (http://metascape.org/). Analyses

such as Gene Ontology (GO), Reactome pathway enrichment, and

Immunologic Signatures enrichment were conducted to elucidate

the possible functions that these DEGs may be involved in. Notably,

the immunologic signatures enrichment analysis utilized the

database Immunologic Signatures in this research. This database

is constructed by integrating immune-related enrichment analysis

of the target gene from published literature. Reactome, on the other

hand, is a comprehensive database of expert-curated and peer-

reviewed articles covering a wide range of reactions and biological

pathways in humans.
Identification of optimal diagnostic gene
biomarkers for AD

The glmnet package was employed to execute feature selection

using the LASSO algorithm (14, 15). DEGs between individuals

with AD and healthy individuals were utilized to identify gene
frontiersin.org

http://metascape.org/
https://doi.org/10.3389/fendo.2024.1448119
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2024.1448119
biomarkers for AD. Additionally, a SVM-RFE model was developed

with the package SVM, with a comparative assessment of the

average misjudgment rates of their 10-fold cross-validations (16).

The markers acquired from the above-mentioned two approaches

were overlapped to determine the optimal AD gene markers. The

receiver operating characteristic (ROC) curve and the area under

the curve (AUC) were measured to determine the capacity of these

screened markers in diagnosing the disease. Additionally, accuracy,

sensitivity, and specificity were derived to assess the diagnostic

ability. Furthermore, for predicting sample types in GSE138260, a
Frontiers in Endocrinology 04
four-marker gene-based logistic regression model was developed

using the “predic” function of R glm. The diagnostic capacity of the

model was evaluated by assessing the ROC curves.
Single-gene GSEA

The underlying pathways associated with the four marker genes

were examined in-depth through R GSEA (V.4.1.0). The association

of all other genes in GSE138260 with the marker genes was assessed.
FIGURE 1

Illustration of the research approach.
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The resulting gene set was then ranked according to their correlations

from highest to lowest and subsequently tested for enrichment with

the signaling pathway KEGG defined as a predefined set. This was

followed by integrating the enrichment results specific to every

marker gene into the analysis (Supplementary Table 3).
Single-gene GSVA

This research utilized the R GSVA (V.1.38.0) to analyze the

gene set variation (17). The background gene set was considered the

KEGG set, with the analysis executed on every marker gene. The

package limma comparatively assessed the GSVA score of the

samples in the expression groups (high and low) for each marker

gene. The screening criteria for identifying significant differences

were set as |t| >2 and P < 0.05. For cases where t > 0, the pathway

was considered activated in the high-expression group. Conversely,

when t < 0, the pathway was deemed activated in the low-expression

group. This was followed by integrating the enrichment results

specific to every marker gene (Supplementary Table 4).
Prediction of potential Chinese medicines
and ingredients with therapeutic effects

The Integrated Traditional Chinese Medicine (ITCM) (http://

itcm.biotcm.net) was used to find key gene-related Chinese

medicines and linked components. Initially, the components of

Chinese medicines were matched with the related components from

the key genes. Hence, it allowed the screening and determination of

potential therapeutic options by identifying Chinese medicines that

share similar components with the key genes through the

matching process.
Immune infiltration analysis

CIBERSORT is a powerful tool used to decipher the cellular

composition of complex tissues per gene expression profiles (18).

CIBERSORT was employed to predict the abundance of 22 different

types of infiltrating immune cells within the tissue samples obtained

from GSE138260 (Supplementary Table 5). The proportions of each

immune cell type were calculated for every sample, and the sum of

all the fractions of the assessed immune cell types was equal to 1

(19). This analysis facilitated the elucidation of the immune cell

landscape in AD and the identification of potential immune cell

targets for further investigation.
Construction of ceRNA network

Using starBase, the mRNA-miRNA interaction pairings were

predicted based on the four marker genes. The National Center for

Biotechnology Information (NCBI) and miRbase were used to

retrieve the corresponding RNA sequences and miRNA data. The

threshold score for binding was adjusted to 170 (the default was
Frontiers in Endocrinology 05
140) when the mRNA-miRNA nucleic acid binding was predicted

using the Miranda program. The projected miRNA was then

evaluated using starBase, and the relationships between miRNA

and lncRNA were filtered to create the ceRNA network of mRNA-

miRNA-lncRNA.
Statistical analysis

The statistical analyses in this study involved several methods.

The student’s t-test comparatively assessed the variation across the

groups, while Pearson correlation analysis was employed to assess

the relationship among the 137 DEGs. The Venn Diagram package

was employed to create the Venn diagram for visualizing the ceRNA

network. Additionally, Cytoscape was utilized to generate

visualizations of the network. P < 0.05 indicated the statistical

significance level. The software R was utilized to execute

all analyses.
Results

Identification of lipid metabolism-
related DEGs

A total of 137 DEGs were identified from GSE138260,

consisting of 69 upregulated genes and 68 downregulated genes.

The patterns exhibited by the DEGs expression among samples are

presented in a clustering heatmap (Figure 2A). Notably, choline

acetyl transferase (CHAT) was negatively associated with member

RAS oncogene family (RAB4A) and acyl-coA binding domain-

containing protein 6 (ACBD6). Meanwhile, a positive association of

RAB4A with CHAT and ACBD6 was observed.
Functional analyses of the DEGs

GO Enrichment and Reactome Pathway analyses were executed

to comprehensively understand the biological roles and pathways of

the DEGs. The resulting data of the analyses (GO and KEGG)

indicated a strong association of the DEGs with multiple functional

categories, including ‘phospholipid metabolic process’, ‘glycerolipid

metabolic process’, and ‘fatty acid metabolic process’ (Figure 2B).

Additionally, a circos graph was employed to depict the association

of the KEGG results of the eight top terms with the associated

differential genes (Figure 2C). These findings indicated the

involvement of DEGs in the pathogenesis of AD and suggested

that they may exert this function by regulating the metabolic

processes of phospholipids, glycerolipids, and fatty acids.
Four DEGs identified as AD
diagnostic genes

The DEGs identified through the comparative assessment of

individuals with AD and healthy individuals were assessed
frontiersin.org
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concerning their diagnosis capacity. The process involved utilizing

LASSO and SVM-RFE in the GSE20680 dataset. Four characteristics

connected to AD were identified using the logistic regression

technique, LASSO with penalty parameter adjustment carried out

by 10-fold cross-validation (Figures 3A, B). Overall 12 such features

(Figures 3C, D) were screened through this approach. SVM-RFE

filtered the DEGs to identify the optimal combination of feature

genes, yielding four marker genes (CHAT, RAB4A, ACBD6, and

alpha-galactosidase A [GLA]) for subsequent analysis (Figure 3E).

Based on these four marker genes (maximal accuracy =0.883,

minimal RMSE =0.117), a logistic regression model was established,

which exhibited excellent performance in distinguishing AD from

normal samples with an AUC of 1 (Figure 3F). ROC curves were

developed for the four marker genes, demonstrating that the

individual genes were also highly accurate in differentiating AD

samples from normal samples, with an AUC greater than 0.8 for

all genes (Figure 3G). These results suggest that this model

outperformed the individual marker genes in terms of accuracy

and specificity when distinguishing between AD and normal samples.
Linkage of marker genes to various
AD-linked pathways

The identifiedmarker geneswere assessed concerning their possible

involvement inAD through a comprehensive single-geneGSEA-KEGG
Frontiers in Endocrinology 06
pathway analysis. Figures 4A–D exhibits the first six enriched pathways

for every marker gene. The resulting data depicted the enrichment of

these genes in various biological pathways, including Spliceosome,

Hematological system (‘Complement and coagulation cascades’ and

‘Hematopoietic cell lineage’) and immune response (‘Hedgehog

signaling pathway’, ‘Cell adhesion molecules [CAMs]’ and ‘Intestinal

immune network for immune globulin antibody production’).

Treatment methods (‘Ubiquitin mediated proteolysis’), and various

disease pathways (‘Huntington’s disease’, ‘Systemic lupus

erythematosus’, and ‘Graft versus host disease’) also depicted such

enrichment. Moreover, the resulting data showed that these marker

geneswere enriched in the ‘Cytokine receptor interaction’. Furthermore,

CHATwas closely related to the ‘Olfactory transduction’ (also enriched

in ACBD6, RABA4, and GLA). In addition, the differentially active

pathways in the two groups (high and low) were evaluated based on the

levels of marker gene expression in association with GSVA. The results

suggested that AD may be promoted by basal transcription factors by

reducing ACBD6 expression in the illness, glycosaminoglycan

biosynthesis, heparan sulfate, and taurine and hypotaurine

metabolism. However, the overexpression of ACBD6 activated

‘PRIMARY IMMUNODEFICIENCY’, ‘GLYCINE SERINE AND

THREONINE METABOLISM’, ‘ECM RECEPTOR INTERACTION’,

and ‘CYTOKINE RECEPTOR INTERACTION’ (Figure 5D). The

upregulation of RAB4A promoted the amino acid pathways

(‘GLYCINE SERINE AND THREONINE METABOLISM’)

(Figure 5A). Moreover, GLA, with inhibited expression in AD tissue,
FIGURE 2

DE-LMGs expression levels, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in AD. (A) Violin plots show expression
patterns of LMGs across samples. (B) Bubble diagram of GO enrichment function analysis. (C) Relationship among the top 8 enriched KEGG pathway
terms and targets is represented in a chord plot.
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was more closely related to various diseases (‘SYSTEMIC LUPUS

ERYTHEMATOSUS’, ‘AUTOIMMUNE THYROID DISEASE’ and

‘GRAFT VERSUS HOST DISEASE ’), ‘REGULATION OF

AUTOPHAGY’ and amino acid metabolism pathway (Figure 5C).

However, the highly expressed CHAT stimulated the pathways, for

instance, ‘TAURINE AND HYPOTAURINE METABOLISM’,

‘BUTANOATE METABOLISM’, ‘DILATED CARDIOMYOPATHY’,

‘CITRATE CYCLE TCA CYCLE’ and ‘CARDIAC MUSCLE

CONTRACTION’ that may induce AD (Figure 5B).
Frontiers in Endocrinology 07
Immune landscape analysis

In order to examine the association of the marker genes with the

immune microenvironment in AD, the CIBERSORT algorithm was

employed to explore the variance in immune cell populations

between individuals with AD and normal samples. The results

showed that the B-cell naïve fraction was lower in AD samples in

comparison with normal samples (Figure 6A). In contrast,

monocytes and T-cell follicular helper were more abundant in
FIGURE 3

7 LMDEGs were identified as diagnostic genes for AD. (A, B) By LASSO logistic regression algorithm, with penalty parameter tuning conducted by
10-fold cross-validation, was used to select 12 AD-related features. (C, D) SVM-RFE algorithm to filter the 137 DE-LMGs to identify the optimal
combination of feature genes. Finally, 4 genes ((maximal accuracy =0.883, minimal RMSE =0.117)) were identified as the optimal feature genes.
(E) The marker genes obtained from the LASSO and SVM-RFE models. (F) Logistic regression model to identify the AUC of disease samples. (G) ROC
curves for the 4 marker genes.
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AD samples. Importantly, Pearson correlation analysis exhibited a

strong positive association of CHAT with monocytes and a negative

association with plasma cells. The resulting data imply that CHAT

could be associated with the alterations in the immune

microenvironment of individuals with AD (Figure 6B).
Prediction of marker gene-targeted
Chinese Medicine drugs

To identify potential therapeutic options for AD, the Integrated

Traditional Chinese Medicine (ITCM) database was employed to

identify drugs that targeted the marker genes. The results are shown

in Figure 6C. A total of 9 Chinese Medicine were targeted. Among

them, Aristolochic acid A, Oroxylin A7-O-beta-D-Glucuronide,

Cephaelin Hydrochloride, Vitexin-2-O-Rhamnoside, Succinic

Acid, Ainsliadimer A, Sesamin, Gypsogenin3-O-beta-D-

glucuronide 6’-methyl ester, and Ecliptasaponin A were

considered relevant. These findings suggest that drugs targeting

the marker genes could be a promising therapeutic strategy for AD

using Chinese Medicine.
Marker genes-based ceRNA network

To explore the potential ceRNA network related to AD, starBase

and miranda were assessed to develop the ceRNA network based on

four marker genes. This network comprised 88 nodes, including two

marker genes, 29 miRNAs, and 57 lncRNAs, connected by 86 edges

(Figure 6D). The analysis indicated competitive binding of the 43

lncRNAs to various miRNAs and their involvement in regulating
Frontiers in Endocrinology 08
RAB4A. Of these, hsa-miR-766-3p and hsa-miR-508-5p were

determined to be shared by 21 lncRNAs. Moreover, 22 shared

lncRNAs could target hsa-miR-576-5p, hsa-miR-93-3p, hsa-miR-

20a-3p, hsa-miR-335-3p, hsa-miR-1227-3p, and hsa-miR-101-3p,

respectively. Concerning ACBD6, 13 lncRNAs were determined that

could regulate its expression through binding competitively with hsa-

miR-363-5p, hsa-miR-483-5p, hsa-miR-323b-3p, and hsa-miR-671-5p.

Notably, hsa-miR-363-5p was found to bind to 4 lncRNAs to regulate

ACBD6, with LINC01067 and LINC00689 targeting hsa-miR-483-5p

and hsa-miR-671-5p simultaneously. ceRNA network characteristics

are explored in Supplementary Table 6.
Expression of the marker gene in the
validation set

Finally, the levels of marker genes were assessed in GSE5281. The

results showed that the CHAT, GLA, and ACBD6 expression patterns

were congruent with the data acquired from the GSE138260 dataset.

Specifically, CHAT (P = 0.51) was expressed more in AD patients with

notably heightened levels than normal samples. In contrast, the

expression of GLA (P = 0.027) and ACBD6 (P = 6.2e-10) was

significantly lower in AD samples (Figures 6E–G). These findings

provide further evidence that CHAT, GLA, and ACBD6 may hold

promise as biomarkers for AD diagnosis and treatment.
Discussion

AD, being a form of dementia, still lacks a clear understanding

of its precise mechanisms, despite significant advancements in
FIGURE 4

Single-gene GSEA-KEGG pathway analysis in RAB4A (A), CHAT (B), GLA (C), ACBD6 (D).
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recent years. There has been some research into the disease, such as

generational genetic studies. The research has implicated several

pathways to be essential to the pathogenesis of AD, usually in

cellular and animal models. Nonetheless, additional research is

required to reach conclusive results. The diagnosis of the

spectrum of AD at the clinical level involves three sets of criteria,

including the National Institute on Aging-Alzheimer’s Association

(NIA-AA) definition, the Diagnostic and Statistical Manual of

Mental Disorders (DSM-5), and the International Working

Group criteria, each of them including development disability and

suspected dementia symptoms (20). The downside is that without

significant cognitive impairment, neurological findings will

generally appear normal in the initial stages.Consequently,

distinguishing the disease from other conditions, including other

causes of dementia, can be difficult (21). Indeed, the identification

of a reliable diagnostic biomarker for AD is of great significance.

Early and accurate diagnosis of AD facilitates timely interventions

and treatments, maximizing the potential benefits for patients.

The normal individuals and individuals with AD based on GEO

datasets were utilized to determine the 137 DEGs, with notable

upregulation and downregulation exhibited by 69 and 68 genes,

respectively. Enrichment was assessed through KEGG with strong

associations exhibited with Spliceosome, Hematological system, and

immune response. Amyloid beta (Ab) is a key component of

amyloid plaques, which are abnormal extracellular deposits

commonly observed in the cerebral tissue of individuals with AD.

Amyloid plaques are primarily composed of aggregated and

misfolded forms of Ab, which are proteolytic fragments derived
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from the larger amyloid precursor protein (APP), with Ab40 and

Ab42 being its two most prevalent types consisting of 40 and 42

amino acids, respectively. These Ab peptides are considered by-

products of APP metabolism (22). The development of Ab plaques

in AD conforms to a characteristic pattern. Initially, these plaques

tend to appear in specific regions of the brain, including the basal,

temporal, and orbitofrontal neocortex. As the disease progresses,

the plaques spread throughout other regions, such as the neocortex,

hippocampus, amygdala, diencephalon, and basal ganglia. Amyloid

pathogenesis is initiated with abnormal cleavage of APP (integral

plasma membrane protein) through b-secretases (BACE1) and g-
secretases. This results in the formation of insoluble Ab fibrils,

which then oligomerize and diffuse into synaptic clefts, thereby

interfering with synaptic signaling (23). Given the notable function

of Ab in AD, it is reasonable to hypothesize that the DEGs identified
in this context would be enriched in neurological diseases,

particularly AD.

The pathway enrichment analysis in the current research depicted

that enriched pathways in AD samples include Spliceosome,

Complement and coagulation cascades, Hematopoietic cell lineage,

Hedgehog signaling pathway, CAMs, and so on. Among them,

spliceosome influences cancer up to an extent. Research has shown

that certain components of spliceosomes, including U1 snRNA, SF3B1,

and U2AF1, may be related to tumors, which are critically involved in

cancer progression (24, 25). A study indicates that chronic cerebral

hypoperfusion (CCH) can simultaneously trigger the coagulation and

complement cascade in a new Alzheimer’s disease mouse model brain,

potentially expediting AD pathology. These findings shed light on how
FIGURE 5

High and low-expression groups based on the expression levels of each marker gene combined with GSVA in RAB4A (A), CHAT (B), GLA (C), ACBD6 (D).
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blood flow alterations impact the blood-brain barrier (BBB)

dysfunction and amyloid beta clearance, thus providing valuable

insights into the advancement of neurodegenerative disorders such as

AD (26). The Sonic Hedgehog (SHH) signaling pathway is critically

involved in various aspects of neurogenesis and neural patterning

during the development of the central nervous system.

Moreover, it is suggested that SHH pathway dysregulation may

contribute to the pathogenesis of aging-related neurodegenerative

diseases, such as AD (27). CAMs may contribute to AD pathogenesis

by affecting amyloid-bmetabolism, neuroinflammation, and vascular

changes, while also playing a key role in brain plasticity, learning,

memory, and recovery after injury (28, 29). The pathway enrichment

analysis of AD has strongly suggested that the hematological system

and immune responses are integral components of the disease. These

findings are consistent with clinical observations and have piqued

considerable interest in exploring the role of immune cell infiltration

in AD and identifying diagnostic biomarkers associated with the

hematological system.

The filtration and identification of diagnostic biomarkers for AD

involved machine learning algorithms. The identified DEGs were

subjected to LASSO regression and SVM-RFE algorithms, resulting

in the selection of only four overlapping features, CHAT, GLA,

ACBD6, and RAB4A. Among them, the AUC values of CHAT and

ACBD6 rank in the top 2. Cholinergic dysfunction, a key feature of

the cerebral tissues of individuals with AD, is characterized by a

severe decrease in the cholinergic enzyme choline acetyl transferase

(CHAT), which is responsible for the biosynthesis of the cholinergic

neurotransmitter acetylcholine (ACh) (30, 31). The GSAV analysis of

CHAT further supported the activation of the hematopoietic cell

lineage in the low-expression group.

Nonetheless, the exact function of CHAT in AD is yet to be

understood. Research has proposed that CHAT could impact AD

progression by regulating processes such as amyloid-beta production,

neuroinflammation, synaptic plasticity, and neurogenesis (32, 33).

Recent research has shown that CHAT activity and protein are

present in extracellular fluids, including human plasma and

cerebrospinal fluid (34). A study presented evidence that the

genetic variability of the CHAT locus can affect the levels of CHAT

activity in plasma in individuals with AD. It also proposed that

rivastigmine treatment could be associated with higher variability in

plasma concentrations of both CHAT protein and activity in

comparison to untreated AD patients (35). Apart from this, a

meta-analysis revealed that a particular variant of CHAT is

associated with a lower risk of AD and proposed that future

research should examine the role of these genetic variants in AD

susceptibility, as well as their potential utility as biomarkers for early

diagnosis and prevention of AD (36). Therefore, the level of CHAT in

peripheral blood is useful for the early diagnosis of AD, as well as for

the early treatment and prevention of AD by detecting CHAT levels.

The significance of ACBD6 is highlighted by the association of

its genetic mutations with the development of neurodegenerative

disorders, including cognitive impairment, in humans. These

mutations hinder the production of a functional protein,

emphasizing the vital role of ACBD6 in regular physiological
FIGURE 6

(A) Immune landscape analysis. Implemented the CIBERSORT
algorithm to explore the differences in the immune
microenvironment between AD patients and normal samples.
(B) Pearson correlation analysis revealed that monocytes and
plasma cells had strong positive and negative correlations with
CHAT(*p < 0.05, **p < 0.01). (C) Prediction of marker gene-targeted
chinese medicine. The chinese medicine may target marker genes
through the ITCMDb database and the interaction relationship.
A total of 9 potential chinese medicine were extracted. (D) A ceRNA
networks based on marker genes. The network included 88nodes
(2 marker genes, 29 miRNAs and 57 lncRNAs) and 86 edges.
(E, F, G) Expression of the marker gene in the validation set. The
expression of marker genes in the GSE5281 dataset.
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processes (37). The Acyl-CoA binding domain-containing proteins

(ACBDs) represent a diverse family of proteins consisting of

multiple genes, characterized by the existence of an 80-residue

acyl-CoA binding motif (ACB), which is conserved (38, 39).

Moreover, it has been proposed that ACBD6 is involved in

regulating cellular metabolism through various regulatory

pathways, as indicated by the observation of its invertebrate

homologs. Furthermore, anox expression is localized in both

chemosensory organs and central nervous system neurons and is

necessary for modulating sugar-induced nerve responses and

regulating insulin signaling (40). Homozygous mutations in the

ACBD6 gene have been associated with neurodevelopmental

disorders such as mental retardation, autosomal recessive

microcephaly, etc., leading to intellectual disability as the lack of

myristoylation deficiency affects brain functions (37).

Moreover, ACBD6 is an indispensable participant in acyl-CoA-

dependent modification pathways that regulates the lipid and protein

composition of human cell membranes, specifically by engaging in

myristoylation processes and regulating lysophospholipid

acyltransferase enzymes (LPLAT) (41). Data reports that ACBD6

exhibits adaptive binding properties that prevent its continuous

saturation by highly abundant C 16:0 -CoA and safeguard

membrane systems from the detergent-like effects of free acyl-CoAs

(42). Free acyl-CoAs, consisting of a carboxylic acid group attached to

a coenzyme A (CoA), exert detergent-like properties that can cause

structural disturbance to lipid membranes through regulation of their

release to enzymes that utilize them. In summary, it is known that

CHAT has a strong relationship with AD and even neurological

disorders, and previous studies have shown that early AD can be

diagnosed by measuring CHAT levels in peripheral blood. ACBD6

does not seem to have much association with AD but is highly

associated with human lipid homeostasis and lipid metabolism.

However, it should not be overlooked that ACBD6 can be

associated with many neurological symptoms through its

involvement in cellular metabolism. It proposed that both CHAT

and ACBD6 are related to AD in one way or another.

Inflammation is a key factor in AD progression, and it may

worsen the pathological changes in AD by producing cytokines that

affect the production and clearance of Ab and tau (43). Some immune

factors interact with Ab peptide and may influence AD progressions,

such as risk genes, complement, microglia, monocytes, and

lymphocytes (44). The AD group has a high expression of helper

T-cells and monocytes, while naive B-cell expression is lower than in

the normal group. Notably, monocytes are crucial for Ab clearance.

Their activation state and cytokine secretion determine whether they

have a beneficial or detrimental effect.

Nonetheless, the interaction between Cephaelin Hydrochloride,

Ainsliadimer A, Gypsogenin3-O-beta-D-glucuronide 6’-methyl ester,

Aristolochic acid A, and lipid metabolism remains unknown. Non-

coding RNA (miR-342-3p, miR-146a, miR-195, miR-9, and miR-15) is

involved in the development of Alzheimer’s disease. Notably, these

RNA are linked to A accumulation (45). It is unknown if the expected

gene-targeted medications and non-coding RNA can have a role, and

the particular pathways require more investigation. As a result, the

selected medications and non-coding RNA should be explored in the

future. CHAT might be a potential target for improving peripheral
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blood flow or the brain immunological microenvironment in

Alzheimer’s disease patients.

CircRNA KIAA1586 has been identified as a critical risk factor

in Alzheimer’s Disease (AD), acting as a competing endogenous

RNA (ceRNA) through its binding to AD-associated microRNAs

(miRNAs) (46). Dysregulated circRNA-mediated ceRNA networks

in AD mouse models are implicated in critical biological processes,

such as axonal terminal formation, synaptic regulation, amyloid-

beta (Ab) clearance, and myelin function (47). Comprehensive

analysis of circRNA-associated ceRNA networks in AD models

highlights their significant roles in neuron projection development,

cellular morphogenesis, and cranial development (48). Elucidating

these ceRNA interactions offers deeper insights into the underlying

mechanisms of AD and facilitates the development of innovative

diagnostic and therapeutic approaches.

Finally, the marker gene for gene-targeted Chinese medicine

and the ceRNA network were assessed. Vitexin has shown potential

in regulating neuroinflammation, which is a key factor in AD

progression (49). It may have pharmacoepigenetic properties that

help in reducing neuroinflammation. Sesamin has demonstrated

neuroprotective effects by reducing Ab toxicity and preventing Ab
oligomerization in a Caenorhabditis elegans model (50). Sesamin

also exhibits antioxidative, anti-inflammatory, and antiapoptotic

actions, which contribute to its neuroprotective effects in AD

models (51). Oroxylin A, along with baicalein and wogonin, has

been found to reduce Ab-induced oxidative stress and

inflammation by modulating the NF-kB/MAPK pathway, thereby

protecting neurons from apoptosis (52). These findings suggest that

these compounds could be potential candidates for developing

therapeutic agents for AD. The application for the rest of the six

drugs for AD or neurological diseases had not been reported. In

terms of the relationship with lipid metabolism, Oroxylin,

Ecliptasaponin A, Succinic Acid, and Sesamin can regulate the

turnover of lipid droplets in hepatocytes by regulating the

expression of enzymes involved in lipid metabolism, such as

adipose triglyceride lipase (ATGL) and fatty acid synthase (FAS)

(53–57). Vitexin can also mediate lipid metabolism and attenuate

lipid accumulation in the liver by activating autophagy and

reducing endoplasmic reticulum stress (58).

The interaction between Cephaelin Hydrochloride, Aristolochic

Acid A, Gypsogenin 3-O-beta-D-glucuronide 6’-methyl ester, and

lipid metabolism hasn’t been thoroughly understood, though. MiR-

342-3p, miR-146a, miR-195, miR-9, and miR-15 are non-coding

RNAs that are crucial in the development of AD. Notably, these

RNA have a strong connection to the buildup of AD [62]. It is

uncertain if the projected gene-targeted medications and non-

coding RNA can be involved, and more research into the precise

mechanisms is required. Therefore, prospective studies on the

chosen medicines and non-coding RNA are necessary.
Study strengths and limitations

Insights into prospective treatment strategies for AD were

gained from this study’s identification of potential Chinese

medicine medications that particularly target the discovered
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marker genes. The main flaw in this work is that experimental

validation of the suggested biomarkers was not included; instead, it

was restricted to the examination of publically accessible gene

expression data. While in silico approaches, including machine

learning and bioinformatics analyses, provide powerful tools for

identifying potential biomarkers and therapeutic compounds, they

are inherently limited by the quality and representativeness of the

input data. The findings are based on existing datasets and

predictive models, which may not fully capture the complex

biological interactions in Alzheimer’s disease (AD). Additionally,

the study’s sample size was somewhat limited, which would restrict

how far the results can be applied. However, comparable results

were found using other techniques and cohorts, which increases the

reliability and stability of the findings. However, further research is

required to emphasize the need for further validation of the

identified diagnostic biomarkers (CHAT, RAB4A, ACBD6, GLA)

and TCM compounds through in vitro and in vivo studies. In vitro

studies should focus on verifying the expression and functional

relevance of these genes in AD-related cellular models, particularly

in neuronal or glial cell lines.

Conclusion

This research has identified several genes potentially involved in

lipid metabolism in Alzheimer’s disease, including CHAT, RAB4A,

ACBD6, and GLA. Among these genes, CHAT is of particular interest

as it plays a role in lipid metabolism and may be involved in regulating

the brain immune microenvironment in AD patients. Finding these

prospective biomarkers is an important step toward a better

understanding of the pathophysiology and treatment of Alzheimer’s

disease, even if it should be highlighted that gene expression does not

always exactly equate to protein expression. These biomarkers can

potentially be used in clinical settings to improve early detection and

diagnosis of AD, allowing for timely intervention and treatment. While

the identification of lipid metabolism-related genes (LMGs) and their

association with Alzheimer’s disease (AD) provides valuable insights, it

is crucial to emphasize the need for experimental validation to confirm

these findings.
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