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Introduction:Non-alcoholic fatty liver disease (NAFLD) represents amajor global

health challenge, often undiagnosed because of suboptimal screening tools.

Advances in machine learning (ML) offer potential improvements in predictive

diagnostics, leveraging complex clinical datasets.

Methods: We utilized a comprehensive dataset from the Dryad database for

model development and training and performed external validation using data

from the National Health and Nutrition Examination Survey (NHANES) 2017–

2020 cycles. Seven distinct ML models were developed and rigorously evaluated.

Additionally, we employed the SHapley Additive exPlanations (SHAP) method to

enhance the interpretability of the models, allowing for a detailed understanding

of how each variable contributes to predictive outcomes.

Results: A total of 14,913 participants were eligible for this study. Among the

seven constructed models, the light gradient boosting machine achieved the

highest performance, with an area under the receiver operating characteristic

curve of 0.90 in the internal validation set and 0.81 in the external NHANES

validation cohort. In detailed performance metrics, it maintained an accuracy of

87%, a sensitivity of 92.9%, and an F1 score of 0.92. Key predictive variables

identified included alanine aminotransferase, gammaglutamyl transpeptidase,

triglyceride glucose–waist circumference, metabolic score for insulin

resistance, and HbA1c, which are strongly associated with metabolic

dysfunctions integral to NAFLD progression.

Conclusions: The integration of ML with SHAP interpretability provides a robust

predictive tool for NAFLD, enhancing the early identification and potential

management of the disease. The model’s high accuracy and generalizability
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across diverse populations highlight its clinical utility, though future

enhancements should include longitudinal data and lifestyle factors to refine

risk assessments further.
KEYWORDS

non-alcoholic fatty liver disease, machine learning, SHAP interpretability, light gradient
boosting machine, predictive model
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is the accumulation

of excessive fat in the liver in the absence of excessive alcohol

consumption. It represents a manifestation of metabolic syndrome

in the liver and is often associated with obesity, type II diabetes, and

hyperlipidemia (1). Clinically, NAFLD may present with elevated

liver enzymes, hepatomegaly, or nonspecific symptoms such as

fatigue and abdominal discomfort. NAFLD ranges from simple

steatosis (fat accumulation in the liver without inflammation or

damage) to non-alcoholic steatohepatitis, which includes liver

inflammation and damage, potentially progressing to cirrhosis or

liver cancer (2). With the changes in globalization and lifestyles,

NAFLD has become one of the most common chronic liver

diseases, affecting approximately 25% of adults worldwide (3).

The global epidemic of obesity is contributing to the rise of

metabolic conditions, which in turn leads to a substantial increase

in the clinical and economic burden of NAFLD (4). Several studies

have demonstrated a significant correlation between the increasing

prevalence and incidence of NAFLD and the mortality rates

associated with liver diseases (5). According to the American

Gastroenterological Association, NAFLD is projected to surpass

all other causes and become the primary reason for liver

transplantation in the United States by 2030 (6). However, a

substantial number of individuals with NAFLD remain

undiagnosed and untreated, primarily due to a lack of efficient

diagnostic tools and effective pharmacological interventions.

Conducting early screenings for effective interventions can

significantly reduce and delay the onset of adverse prognostic

events associated with NAFLD. Therefore, investigating the

related risk factors and effective screening approaches for NAFLD

is essential to reduce its morbidity and mortality rates.

Histopathological examination of liver biopsy has long been

regarded as the gold standard for diagnosing NAFLD. However, this

method has several limitations, including invasiveness, poor

acceptability, and high cost (7). Furthermore, it may not accurately

represent the extent of liver disease owing to the possibility of

sampling error (8). Imaging methods have become increasingly

accepted as noninvasive alternatives to liver biopsy in clinical

practice. Ultrasonography is a widely recognized and cost-effective

imaging method utilized for diagnosing hepatic steatosis, with
02
acceptable sensitivity and specificity in detecting moderate-to-

severe hepatic steatosis (9, 10). However, ultrasonography may not

be suitable for monitoring NAFLD patients after therapeutic

interventions given its limited capacity to accurately identify

moderate steatosis, dependence on the operator’s skills, and

qualitative nature without specialized picture postprocessing (11).

In recent years, liver ultrasound transient elastography has emerged

as an accurate and noninvasive method for assessing the degree of

steatosis and fibrosis in patients with NAFLD (12). It is based on

controlled attenuation parameter (CAP) and liver stiffness measures,

using vibration-controlled transient elastography. A meta-analysis

study found that using CAP as a tool for assessing hepatic steatosis

demonstrates good diagnostic performance (AUC > 0.8) when

compared with liver biopsy as the reference (13). Recently,

significant efforts have been dedicated to the development of

noninvasive diagnostic approaches for NAFLD. Numerous studies

have developed NAFLD risk prediction models using variables such

as body mass index (BMI), alanine aminotransferase (ALT),

aspartate aminotransferase (AST), triglyceride (TG), total

cholesterol (TC), high-density lipoprotein (HDL), and waist

circumference (WC) (14, 15). Furthermore, the triglyceride glucose

(TyG) index is acknowledged as an effective and simple proxy for

assessing insulin resistance (IR), demonstrating considerable

importance in NAFLD (16, 17). However, most of these studies

used a single measurement of the TyG index to predict NAFLD risk.

With technological advancements, artificial intelligence has

achieved significant breakthroughs in the medical sector. Machine

learning (ML), a burgeoning aspect of artificial intelligence, is

increasingly applied in healthcare data analysis to enhance clinical

decision-making process (18). Despite the robust capabilities of ML

approaches, which are derived from their complex models, these

methods are often constrained by challenges in providing clear

interpretations because of their “black-box” nature (19). Previous

studies have used ML approaches to predict the risk of NAFLD

(20–22). However, these studies had some limitations. Primarily,

these limitations include insufficient sample sizes, which can

influence the generalizability and accuracy of the models. Most

researchers rely on established clinical variables to construct

predictive models, overlooking the inclusion of metabolic-related

indicators such as the metabolic score for IR (METS-IR) index.

Creating a prediction model with a limited number of variables is
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crucial because employing excessive variables in ML models can

deter clinicians from widely accepting the developed model.

The development of NAFLD is well established to be closely

linked to IR, dyslipidemia, and obesity, particularly abdominal

obesity (23, 24). Therefore, this study aims to develop and

validate an interpretable ML model that predicts the probability

of a patient developing NAFLD by combining the TyG index with

common clinical features, elucidating the importance of features,

and explaining the model through the SHapley Additive

exPlanations (SHAP) method.
2 Materials and methods

2.1 Study design and participants

The Dryad database, which is funded by the National Science

Foundation, serves as a repository for high-quality research data. Its

primary objective is to facilitate academic exchange by protecting

and promoting the reuse of research data in scientific publications.

The Dryad Digital Repository website was utilized to obtain data for

this investigation (https://Datadryad.org). This website provides

open access to the raw data of published papers, allowing for

their unrestricted reuse in secondary analysis. In accordance with

the Dryad Terms of Service, we referenced the specific Dryad data
Frontiers in Endocrinology 03
package (Data from Ectopic fat obesity presents the greatest risk for

incident diabetes: a population-based longitudinal study, https://

datadryad.org/stash/dataset/doi:10.5061%2Fdryad.8q0p192) in this

study. The raw data utilized in this study were publicly provided by

Okamura et al. in 2019 (25).

To validate the prediction models generated from the Dryad

database, we used data from the National Health and Nutrition

Examination Survey (NHANES) that spanned the 2017–2020 cycle

as part of an external validation cohort. NHANES is a

comprehensive collection of surveys designed to assess the health

and nutritional status of the noninstitutionalized general

population throughout the United States. The NHANES study

protocol was granted permission by the National Center for

Health Statistics Research Ethics Review Board, and all

participants were thoroughly informed and provided their consent.
2.2 Data collection

The Dryad data contained the results of physical examinations

conducted at Murakami Memorial Hospital between 2004 and

2015. The baseline data excluded participants with alcoholic fatty

liver disease and viral hepatitis. NAFLD was diagnosed on the basis

of the findings of abdominal ultrasonography performed by

trained technicians.
FIGURE 1

Flow diagram of the inclusion and exclusion criteria for the collection of data on NAFLD patients in the Dryad and NHANES cohorts.
NAFLD, non-alcoholic fatty liver disease.
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The clinical information extracted included sex, age, BMI, WC,

history of alcohol consumption, visceral fat obesity (WC≥90 in

men, ≥80 in women), obesity (BMI≥25), TG, TC, HDL, AST, ALT,

gamma-glutamyl transpeptidase (GGT), systolic blood pressure,

diastolic blood pressure, HbA1c, and fasting plasma glucose

(FPG). Among them, 551 cases were excluded because of heavy

alcohol consumption and missing values.

The data for external validation were extracted from the 2017–

2020 cycle released by NHANES. This study consisted of

individuals aged at least 18 years who have undergone liver

ultrasound transient elastography to obtain measurements for

CAP and liver stiffness measurement (LSM). According to the

literature, CAP≥274 dB/m was considered an indicator of liver

steatosis, and LSM≥8 kPa indicated the presence of liver fibrosis

(26, 27). To ensure the integrity and validity of our findings, we

implemented rigorous exclusion criteria. This study excluded

participants with a history of excessive alcohol consumption,
Frontiers in Endocrinology 04
defined as more than 21 standard drinks per week for males or

more than 14 standard drinks per week for females. Individuals

with positive serological markers for the hepatitis B or C virus,

diagnosed cases of hepatitis B or C by a physician, and those with

liver fibrosis were also excluded. Moreover, the analysis excluded

individuals with missing data for essential covariates, such as BMI,

WC, AST, ALT, GGT, HDL, and FPG. Ultimately, we obtained

14,913 and 1,798 participants from the Dryad and NHANES

databases, respectively (Figure 1).
2.3 Definitions of TyG, TyG–WC, TyG-BMI,
TG/HDL, and METS-IR score

TyG, TyG–WC, TyG-BMI, TG/HDL, and METS-IR were

calculated using the following equations (28–32):
FIGURE 2

Machine learning flowchart of this study.
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TyG  =  ln ½(TG (mg=dL) �  FPG (mg=dL))=2�

TyG −WC  =  TyG �  WC

TyG − BMI  =  TyG �  BMI

TG=HDL  =  TG (mg=dL) = HDL (mg=dL)

METS − IR  =  ln ½(2 �  FPG (mg=dL)) +  TG (mg=dL)� 
�  BMI = ln (HDL (mg=dL))
2.4 Model development and comparison

The overall ML workflow chart is illustrated in Figure 2. Data

from the Japanese cohort were divided, with 80% allocated for

training and 20% for internal validation, to prevent the issue of

overfitting. Features from the Japanese dataset were cross-

referenced with those from NHANES, ultimately identifying 21

common features for the development of a predictive model. Seven

ML models, namely, k-nearest neighbor (KNN), logistic regression

(LR), random forest (RF), adaptive boosting (AdaBoost), light

gradient boosting machine (LGBM), decision tree (DT), and

extreme gradient boosting (XGBoost), were employed to predict

NAFLD. Ten-fold cross-validation was performed in the training

queue to validate the prediction model and avoid overfitting. Several

commonly used evaluation metrics, including the area under the

receiver-operating-characteristic (ROC) curve (AUC), sensitivity,

specificity, accuracy, and F1 score, were utilized to assess the

reliability of these models.
2.5 Feature selection and
model explanation

Features for the selected ML models were incrementally added

using the “SequentialFeatureSelector” method until no significant

increase in AUC was observed. Grid search combined with manual

fine-tuning was employed to determine the final hyperparameters

to optimize the predictive model. To ensure the robustness and

independence of the features in our model, we calculated the

variance inflation factor (VIF) for the selected variables in the

final model. This assessment helped us identify potential

multicollinearity issues, ensuring that each feature independently

contributes to the predictive accuracy. A VIF value greater than 10

can be used as a strong indicator of multicollinearity (33).

Interpreting ML models is challenging. SHAP provides global and

local explanations for model interpretation. Global explanations

offer consistent and precise attribution values for each feature in the

model, illustrating the association between input features and the

outcome. Local explanations demonstrate specific predictions for

individual NAFLD patients by inputting specific data.
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2.6 Statistical analysis

Data analyses were conducted using Python version 3.9.0,

accessible at https://www.python.org, with the following packages

and their versions: scikit-learn (v1.2.2), shap (v0.45.1), xgboost

(v1.7.1), imblearn (v0.8.1), and lightgbm (v3.3.3). Given the non-

normal distribution of the data, continuous variables were

expressed as the median and interquartile range. A comparison

between the two groups was conducted using the Wilcoxon rank-

sum test. Categorical variables were presented as frequencies and
TABLE 1 Demographic and clinical characteristics of study population in
the Dryad cohort.

Characteristic
Non-NAFLD
(N = 12,293)

NAFLD
(N = 2,620)

p-value

Sex <0.001

Female 6,548 (53%) 486 (19%)

Male 5,745 (47%) 2,134 (81%)

Age 42 (36, 50) 44 (38, 51) <0.001

BMI(kg/m2) 21.2 (19.5, 23.0) 25.1 (23.4, 27.2) <0.001

WC(cm) 74 (68, 80) 86 (81, 91) <0.001

Visceral fat obesity <0.001

No 11,296 (91.9%) 1674 (64%)

Yes 997 (8.1%) 946 (36%)

Obesity <0.001

No 11,244 (91.5%) 1,275 (49%)

Yes 1,049 (8.5%) 1,345 (51%)

ALT(U/L) 15 (12, 20) 27 (20, 39) <0.001

AST(U/L) 17.0 (14.0, 20.0) 21.0 (17.0, 26.0) <0.001

GGT(U/L) 14 (11, 19) 23 (17, 34) <0.001

HDL(mmol/L) 1.48 (1.24, 1.76) 1.14 (0.99, 1.34) <0.001

TC(mmol/L) 4.99 (4.45, 5.59) 5.43 (4.86, 6.00) <0.001

TG(mmol/L) 0.65 (0.45, 0.96) 1.25 (0.87, 1.80) <0.001

TyG 7.88 (7.50, 8.29) 8.59 (8.22, 8.95) <0.001

TyG–BMI 167 (149, 187) 216 (197, 238) <0.001

TyG–WC 582 (519, 650) 737 (678, 793) <0.001

TG/HDL 1.00 (0.62, 1.65) 2.47 (1.57, 3.89) <0.001

METS-IR 29 (26, 33) 38 (34, 43) <0.001

HbA1c(%) 5.10 (4.90, 5.40) 5.30 (5.10, 5.50) <0.001

FPG(mmol/L) 5.11 (4.83, 5.38) 5.38 (5.16, 5.66) <0.001

SBP(mmHg) 111 (102, 121) 123 (113, 133) <0.001

DBP(mmHg) 70 (63, 76) 77 (71, 84) <0.001
fr
BMI, body mass index; WC, waist circumference; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; GGT, gamma-glutamyl transpeptidase; HDL, high-density
lipoprotein; TC, total cholesterol; TG, triglyceride; FPG, fasting plasma glucose; SBP,
systolic blood pressure; DBP, diastolic blood pressure.
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percentages, and between-group comparisons were performed

using the chi-square test. Decision curve analysis (DCA) and

precision–recall curve analysis were performed using R version

4.1.3 (https://www.r-project.org). A two-tailed P value of less than

0.05 was considered statistically significant.
3 Results

3.1 Baseline characteristics of the
study population

A total of 14,913 study participants, aged 18–79 years, were

included in this study. Of these participants, 7,879 (52.8%) were

males, and 7,034 (47.2%) were females. The remaining characteristics

are presented in Table 1. Statistically significant differences in all

variables were observed between the NAFLD and non-NAFLD groups

(P < 0.05). A comparison of demographic and clinical variables among

the NHANES cohort is provided in Supplementary Table 1.
Frontiers in Endocrinology 06
3.2 Model development and
performance comparison

In this study, 21 clinical variables were utilized to develop 7 ML

models for predicting the risk of NAFLD. Among the seven models,

the RF, LGBM, and XGBoost models achieved an AUC greater than

0.95 in the training set (Figure 3A). In the internal test set, the LR,

LGBM, RF, and XGBoost models all recorded an AUC of

0.90 (Figure 3B).

The discriminative performance of these seven models is

presented in Tables 2 and 3. The results indicated that the LGBM

and XGBoost models achieved the highest overall performance,

with high accuracy, precision, recall, F1 scores, and AUC values, in

the training and test sets. The RF model also performed well,

especially in terms of recall and AUC. The KNN model showed

high recall but low precision and F1 scores in the test set. The LR,

AdaBoost, and DT models showed moderate performance across

different metrics. The Matthews correlation coefficient and kappa

values supported these observations, highlighting the robustness of
FIGURE 3

Comparison of machine learning models on training and test datasets using ROC curves. (A) ROC curves of seven machine learning models in the
training set. (B) ROC curves of seven machine learning models in the test set.
TABLE 2 Performance of the machine learning models for NAFLD prediction in the training set.

Model Accuracy Precision Recall F1 Kappa MCC AUC

KNN 0.867 0.796 0.997 0.885 0.733 0.759 0.943

LR 0.780 0.780 0.794 0.787 0.559 0.559 0.858

RF 0.921 0.887 0.968 0.926 0.841 0.844 0.975

AdaBoost 0.836 0.813 0.883 0.847 0.671 0.674 0.919

LightGBM 0.922 0.923 0.924 0.924 0.844 0.844 0.980

DT 0.864 0.859 0.879 0.869 0.728 0.728 0.864

XGboost 0.925 0.928 0.926 0.927 0.851 0.851 0.982
NAFLD, non-alcoholic fatty liver disease; AUC, area under the receiver-operating-characteristic curve; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; AdaBoost, adaptive
boosting; LightGBM, light gradient boosting machine; DT, decision tree; XGboost, eXtreme gradient boosting; MCC, Matthews correlation coefficient.
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the LGBM and XGBoost models in predicting NAFLD. These

findings suggest that ensemble methods, particularly LGBM, are

highly effective for predicting NAFLD, providing valuable insights

for clinical decision-making and patient management.
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3.3 Identification of the final model

The final model was determined during the feature addition

process among the top four models. As shown in Figures 4A, B, the
TABLE 3 Performance of the machine learning models for NAFLD prediction in the testing set.

Model Accuracy Precision Recall F1 Kappa MCC AUC

KNN 0.757 0.399 0.799 0.533 0.392 0.435 0.815

LR 0.776 0.428 0.870 0.574 0.445 0.496 0.899

RF 0.848 0.546 0.731 0.625 0.533 0.541 0.898

AdaBoost 0.782 0.433 0.824 0.568 0.440 0.481 0.883

LightGBM 0.868 0.613 0.650 0.631 0.551 0.551 0.904

DT 0.797 0.436 0.582 0.498 0.374 0.380 0.712

XGboost 0.866 0.619 0.590 0.604 0.523 0.524 0.896
NAFLD, non-alcoholic fatty liver disease; AUC, area under the receiver-operating-characteristic curve; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; AdaBoost, adaptive
boosting; LightGBM, light gradient boosting machine; DT, decision tree; XGboost, eXtreme gradient boosting; MCC, Matthews correlation coefficient.
FIGURE 4

Performance evaluation of machine learning models on feature selection in training and test datasets. (A) Model accuracy and AUC for various
classifiers in the training set. (B) Model accuracy and AUC for various classifiers in the test set.
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changes in accuracy and AUC for the training set and internal test

set across the four models indicated that the LGBM model almost

consistently maintained the best predictive ability among them.

Additionally, when the number of features was around five, no

significant increases in accuracy and AUC occurred, with the

LGBM model performing the best.

On the basis of the results of feature selection, the LGBM model

incorporating five features—ALT, GGT, TyG–WC, METS-IR, and

HbA1c—was selected as the final model for further analysis. Further

validation of the model’s robustness was conducted by calculating the

VIF for these features. All these variables had VIF values less than 10,

specifically: ALT (VIF=1.42), GGT (VIF=1.38), TyG–WC (VIF=5.16),

METS-IR (VIF=4.93), and HbA1c (VIF=1.03). That is, no significant

multicollinearity existed among the variables in the final model,

ensuring the independence of each predictor in our analysis.
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To opt imize the predict ion model , we employed

“RandomizedSearchCV” for random grid search, combined with

manual fine-tuning to determine the final hyperparameters

(“subsample”: 1.0, “n_estimators”: 100, “max_depth”: −1,

“learning_rate”: 0.1, “colsample_bytree”: 1.0). The final LGBM

model achieved an AUC of 0.90 in the internal validation set for

predicting whether patients have NAFLD (Figure 5A). The

calibration curve yielded a Brier score of 0.0946 and a Log loss of

0.3015 (Figure 5B). The confusion matrix revealed the model’s

performance in actual classification, with an accuracy of 0.87, a

sensitivity of 0.929, and a specificity of 0.611 (Figure 5C). In the

internal test cohort, DCA showed that when the threshold

probability exceeded 25%, the average net benefit of using the

LGBM model to predict NAFLD was superior to that of using

strategies for treating all or treating none (Figure 5D).
FIGURE 5

Comprehensive evaluation of the final model’s performance on the training set. (A) ROC curve illustrating the model’s diagnostic ability.
(B) Calibration plot with the Brier score and Log loss. Bars indicate the group with NAFLD (orange) and the control group (blue) per interval of
predicted probability. (C) Confusion matrix detailing actual vs. predicted classifications. (D) Decision curve analysis showing the net benefit across
different threshold probabilities.
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3.4 External validation of the final model

For external validation, the final model achieved an AUC of

0.81, indicating good performance in external validation

(Figure 6A). The calibration curve had a Brier score of 0.2145

and a Log loss of 0.6311 (Figure 6B). The confusion matrix

indicated an accuracy of 0.67, a sensitivity of 0.877, and a

specificity of 0.565 (Figure 6C). In the NHANES external test

cohort, DCA showed that when the threshold probability

exceeded 45%, the average net benefit of using the LGBM model

to predict whether patients have NAFLD was superior to that of

using strategies for treating all or treating none (Figure 6D).
3.5 Model explanation

Given that clinicians hardly accept a prediction model that is

not directly explainable and interpretable, the SHAP method is

utilized to interpret the output of the final model by calculating the
Frontiers in Endocrinology 09
contribution of each variable to the prediction. The SHAP summary

plot, SHAP bar plot, feature importance graph (Figures 7A–C), and

dependence plot (Figure 7D) delineated the contributions of the five

predictors within the LGBM model. The SHAP summary plot

revealed the specific contributions of these features to model

predictions, with HbA1c showing the highest mean absolute

SHAP value, indicating its strong influence on the model. SHAP

values above zero indicate a high risk of developing NAFLD,

whereas values below zero indicate a low risk. For example, high

METS-IR (red) typically results in SHAP values greater than zero,

implying a high risk of NAFLD in patients with high METS-IR

scores. Figure 7B portrays the feature rankings based on the average

absolute SHAP value. HbA1c, METS-IR, ALT, and TyG–WC

emerged as the four most influential variables in predictive

power. Elevated levels of HbA1c, METS-IR, ALT, and TyG–WC

indicate an increased likelihood of NAFLD. The dependence plot

revealed a significant effect of HbA1c in the range of 5.0–5.5 on

model predictions. The local explanation analyzed how a specific

prediction was made for an individual by incorporating their
FIGURE 6

Comprehensive evaluation of the final model’s performance on the validation set. (A) ROC curve illustrating the model’s diagnostic ability.
(B) Calibration plot with the Brier score and Log loss. Bars indicate the group with NAFLD (orange) and the control group (blue) per interval of
predicted probability. (C) Confusion matrix detailing actual vs. predicted classifications. (D) Decision curve analysis showing the net benefit across
different threshold probabilities.
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individualized input data. Figure 8 displays the results of an ML

model that used individualized biochemical marker data to predict

NAFLD. According to the prediction model, the result shown in

Figure 8A, f(x) = −5.046, likely indicated a high probability of being

non-NAFLD. Conversely, the result in Figure 8B, f(x) = 1.492,

indicated a relatively high likelihood of NAFLD. Figures 8C, D

further detail the contribution of each feature to the model’s

predictive output, showing how increases or decreases in feature

values specifically affect the prediction results through different

baseline values. The SHAP summary plot (Supplementary Figure 1)

depicts the role of five features in the NHANES external validation

set in predicting NAFLD.
4 Discussion

The increasing prevalence of NAFLD worldwide has prompted

the need for reliable risk prediction models that can aid in the early

identification and prevention of the disease as the most effective

approach to improving its outcomes. In this study, a large-scale
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physical examination population of 14,913 subjects was used to

establish 7 ML predictive models based on 21 clinical variables.

Among these models, the internal and external validation sets

demonstrated that the LGBM model exhibited exceptionally high

predictive accuracy, with an AUC of 0.90 in the internal validation

set and 0.81 in the external validation set.

In this study, LGBM outperformed all other compared ML

models. LGBM, a tree-based gradient boosting framework, is

designed for efficiency and scalability, making it particularly

suitable for handling large-scale and complex datasets (34). One

of LGBM’s advantages is its use of gradient-based one-side

sampling (GOSS) and exclusive feature bundling (EFB), which

optimize the calculation of information gain and reduce model

complexity in high-dimensional data (35).GOSS effectively retains

high-gradient samples while reducing the sampling rate of low-

gradient ones, proving especially effective in addressing the

imbalance issues commonly found in clinical datasets (36). EFB,

by combining mutually exclusive features, reduces the

dimensionality of the model, thereby improving computational

efficiency without significant loss of information (36). Moreover,
FIGURE 7

Analysis of feature importance and relationships in predictive modeling. (A) SHAP summary plot showing the effects of features on model output.
(B) SHAP bar plot illustrating the mean SHAP values for each feature. (C) Feature importance ranking based on total SHAP values. (D) Detailed SHAP
value plots for individual features, demonstrating their contribution to model predictions. SHAP, SHapley Additive explanations.
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LGBM’s high memory use efficiency allows it to maintain high

performance even with limited hardware resources (37). These

features, along with LGBM’s capability to handle sparse data

(common in clinical datasets owing to missing values) and built-

in support for categorical features, likely explain its superior

performance compared with models such as LR, DT, and RF,

which may not handle dimensionality and model complexity as

effectively (38). Therefore, the choice of the LGBM model was not

only based on its high performance but also due to its advantages in

interpretability and operability, providing a powerful tool for

clinical decision-making.

In our study, we identified five key predictive variables: ALT,

GGT, TyG–WC, METS-IR, and HbA1c, all of which are closely

associated with metabolic abnormalities. The liver, a vital organ for

metabolism, regulates the metabolism of lipids and glucose. The

presence of these predictive variables suggests a strong correlation

with metabolic syndrome, a cluster of conditions, including

increased blood pressure, high blood sugar, excess body fat

around the waist, and abnormal cholesterol or TG levels, which

can increase the risk of heart disease, stroke, and diabetes (39, 40).

Elevated levels of ALT and GGT are indicative of liver stress or

damage, possibly due to lipid accumulation, a common occurrence

in metabolic syndrome (41). The TyG index is a valuable biomarker

used to assess IR, a pivotal component in the pathophysiology of

various metabolic disorders (28). Building on the foundation of the

TyG index, TyG–WC incorporates WC with the TyG index to

enhance the predictive power for metabolic abnormalities,

particularly those related to obesity and central fat distribution.
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Research has shown that elevated TyG–WC values are associated

with an increased prevalence of NAFLD (42). METS-IR is another

key metric for assessing metabolic syndrome and IR. Elevated

METS-IR levels are often found in individuals with NAFLD,

indicating a strong link between IR and liver fat accumulation

(43). HbA1c, as a measure of long-term glucose control, is

particularly relevant in the context of metabolic syndrome and

NAFLD because of its reflection of chronic hyperglycemia, which

can exacerbate IR and contribute to liver fat accumulation (44, 45).

The research findings underscore the critical role of these key

variables in predicting NAFLD, particularly given their strong

links to metabolic abnormalities.

Given the limitations of imaging in the diagnosis of NAFLD,

several studies have explored the possibility of using biomarkers of

steatosis for prediction, including the fatty liver index (FLI), the

hepatic steatosis index (HSI), and the NAFLD-liver fat score

(NAFLD-LFS) (46–48). In the study by Atabaki-Pasdar et al., a

new model for predicting NAFLD was developed using various ML

methods to integrate genetic, transcriptomic, proteomic,

metabolomic, and clinical variables, achieving an AUC of 0.84

with the inclusion of all omics and clinical variables (49). The

study also compared the predictive capabilities of FLI, HSI, and

NAFLD-LFS, revealing that the predictive power of a multiomic

variable model significantly surpasses that of a single steatosis

biomarker. In the study by Kouvari et al., the diagnostic

performance of existing and new noninvasive liver disease indices

was validated via liver biopsy (50). The research results showed that

the index of non-alcoholic steatohepatitis (ION) performed best in
FIGURE 8

Machine learning model analysis using biochemical markers to predict NAFLD. (A) SHAP values for features suggesting a non-NAFLD prediction.
(B) SHAP values for features suggesting an NAFLD prediction. (C) Waterfall plot illustrating the cumulative effect of features on the model’s output
starting from the base value for a non-NAFLD prediction. (D) Waterfall plot showing the cumulative effect of features for an NAFLD prediction. SHAP,
SHapley Additive explanations; NAFLD, non-alcoholic fatty liver disease.
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distinguishing patients with NAFLD from the control group, with

an AUC of 0.894. The FLI, NAFLD-LFS, and ION indices provide

important references for the diagnosis of NAFLD. Compared to

these indices, our model demonstrates superior performance in two

key metrics: sensitivity and AUC. Specifically, our model achieves a

sensitivity of 0.929 and an AUC of 0.902, significantly surpassing

FLI (sensitivity: 0.707, AUC: 0.701), NAFLD-LFS (sensitivity: 0.709,

AUC: 0.871), and ION (sensitivity: 0.710, AUC: 0.894). However, it

is noteworthy that despite its excellent performance in sensitivity

and overall diagnostic capabilities, our model still exhibits lower

specificity compared to NAFLD-LFS and ION (Supplementary

Table 2). This indicates that there is still room for improvement

in reducing false positives in our model.

In 2023, multiple international liver disease associations

released the “Multi-Society Delphi Consensus on the New

Nomenclature for Fatty Liver Disease,” ultimately proposing the

renaming of NAFLD to metabolic dysfunction-associated steatotic

liver disease (MASLD) (51). This evolution of terminology reflects a

deeper understanding of NAFLD, acknowledging its close

association with metabolic syndrome, including diabetes, obesity,

and dyslipidemia. A recent study has shown that nearly 99% of

NAFLD patients also meet the diagnostic criteria for MASLD,

indicating that the natural histories of the two are nearly identical

(52). Additionally, the differences in prevalence and disease

progression between NAFLD and MASLD are minimal. In our

study, we used the term NAFLD, primarily based on the timeframe

of our data collection and analysis. Future research should broadly

adopt the new term MASLD and develop and validate new

noninvasive diagnostic tools that systematically consider the

multifaceted aspects of metabolic dysfunction. This line of

research will aid in accurately differentiating the various stages of

the disease and tailoring diagnostic and treatment strategies to

individual metabolic profiles, fully reflecting the metabolic health

of patients.

In recent years, numerous studies have developed predictive

models for NAFLD, achieving good predictive performance but also

exhibiting notable limitations. Motamed et al. developed an LR

model for predicting NAFLD, incorporating FLI, with an AUC of

0.866 (53). However, the study did not utilize advanced ML

methods, which are excellent at handling complex data

interactions and nonlinear relationships, potentially limiting the

model’s predictive power. Peng et al. developed and validated five

ML models for predicting NAFLD using variables such as visceral

adiposity index, abdominal circumference, BMI, and ALT (20). The

study showed that the XGBoost model presented the best predictive

performance, with an AUC of 0.938. Although the study used

magnetic resonance imaging-proton density fat fraction for external

validation, which is the gold standard method, one of the main

limitations of the study was its relatively small sample size, which

could affect the extrapolation ability of the model. Cao et al.

conducted a longitudinal cohort study using 22,140 participants

from the Beijing Health Management Cohort to develop MLmodels

for predicting NAFLD (14). Key predictive variables included AST,

cardiometabolic index, BMI, ALT, and TyG index. However, the

study relied on a single cohort, which may affect the generalizability

of the findings. Compared with the models in these studies, our final
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model performed well in internal and external validations.

Although our model demonstrated strong performance with

datasets from Japan and the United States, noticeable differences

in predictive capability between the two datasets remain, potentially

due to genetic and population-specific factors. As highlighted in the

study by Takahashi et al., different genetic backgrounds may

significantly influence the performance of NAFLD diagnostic

models (54). In addition to our research findings, Noureddin

et al. used NHANES data from 2017 to 2018 and applied ML

techniques to predict NAFLD identified through liver ultrasound

transient elastography, demonstrating the efficacy of this method in

improving the accuracy of disease predictions (55).

Our research has several significant advantages. First, our study

utilized data from a large-scale physical examination population of

14,913 subjects, which is much larger than those of most previous

studies. This large sample size not only increased the statistical

power of the model but also improved the reliability and

generalizability of the results. Second, our model included

biochemical and metabolic indicators, with the introduction of

new indicators such as TyG–WC and METS-IR, enhancing the

model’s ability to predict metabolic syndrome and IR. Third, ML

algorithms demonstrated excellent performance in handling

complex data structures and large datasets. Among them, the

LGBM model exhibited exceptionally high predictive accuracy,

indicating its significant advantage in managing complex data and

multivariable relationships compared with other ML methods.

Fourth, we validated the model’s performance not only on

internal datasets but also on external datasets, demonstrating its

robust generalizability. This aspect was often overlooked in many

previous studies, leading to suboptimal performance in practical

applications. Lastly, we used SHAP to visualize the effect of each

predictive variable on the model’s output. This visualization helped

us understand the contribution of each variable to the prediction of

NAFLD, providing valuable insights into the model’s decision-

making process. Overall, our paper presents a highly reliable and

accurate predictive model for NAFLD, with significant

improvements over previous models in terms of sample size,

variable integration, the application of advanced ML techniques,

and comprehensive validation.

This study has several limitations. First, regarding the diagnosis

of NAFLD, ultrasound was used for internal validation, while liver

elastography was used externally. Ultrasound, widely used for

preliminary clinical diagnosis, has low accuracy in quantifying fat,

especially in obese patients (56). By contrast, although liver

ultrasound transient elastography is more sensitive and accurate in

diagnosing hepatic steatosis, it is not considered the gold standard for

diagnosing NAFLD (12). Differences in diagnostic tools may lead to

disparities in model predictive performance, affecting the model’s

applicability and accuracy in different clinical settings. Second,

although the study considered various clinical variables, it did not

include important lifestyle factors that affect NAFLD risk, such as

dietary habits and physical activity levels (57). These factors have a

direct and significant effect on the development of NAFLD, and their

absence may limit the model’s comprehensiveness and precision in

predicting individual risks. Future research should consider including

these variables to enhance the model’s predictive accuracy and
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clinical utility. Third, the study used baseline data to predict the risk

of NAFLD without considering physiological and behavioral changes

over time. The development of NAFLD is influenced by various

factors, including age, weight gain, medication use, and other changes

in health conditions. Although baseline data provide a basis for

assessing initial individual risk, these preliminary assessments may no

longer be accurate as time progresses. Therefore, future studies

should consider using longitudinal data to track changes in

individual health conditions, allowing for the construction of a

more dynamic and real-time risk predictive model.
5 Conclusion

This study conducts a comprehensive analysis of NAFLD risk

prediction using advanced ML algorithms, emphasizing the

exceptional predictive performance of the LGBM model during

testing. Utilizing a large-scale physical examination population in

Japan and the NHANES database for external validation, this

research achieves improvements in statistical power, reliability,

and generalizability compared with previous studies. It identifies

key predictive variables, such as ALT, GGT, TyG–WC, METS-IR,

and HbA1c, highlighting their strong association with metabolic

abnormalities and their crucial role in the prediction model. The use

of SHAP values to interpret the contributions of these variables

enhances the depth of understanding and increases the

transparency and applicability of the model in clinical settings.

Therefore, our research results can provide a reliable reference for

the early identification of NAFLD in clinical practice.
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