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Serum uric acid and
nonalcoholic fatty liver disease
Jia Fan and Dongxu Wang*

Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
Nonalcoholic fatty liver disease (NAFLD) is characterized by over 5% hepatic fat

accumulation without secondary causes. The prevalence of NAFLD has escalated

in recent years due to shifts in dietary patterns and socioeconomic status, making

it the most prevalent chronic liver disease and a significant public health concern

globally. Serum uric acid (SUA) serves as the end product of purine metabolism in

the body and is intricately linked to metabolic syndrome. Elevated SUA levels

have been identified as an independent risk factor for the incidence and

progression of NAFLD. This paper reviews the relationship between SUA and

NAFLD, the underlying mechanisms of SUA involved in NAFLD, and the potential

benefits of SUA-lowering therapy in treating NAFLD. The aim is to raise

awareness of SUA management in patients with NAFLD, and to encourage

further investigation into pharmacological interventions in this area.
KEYWORDS
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological condition

characterized by over-accumulation of fat in the liver, defined as steatosis in over 5% of

hepatocytes, in the absence of alcohol consumption and other definitive factors causing

liver damage (1, 2). The prevalence of NAFLD has been steadily rising due to changes in

lifestyle and dietary patterns, making it the most common chronic liver ailment globally

(3, 4). The global prevalence of NAFLD is 30.1% (5), with Asian countries reporting a

prevalence of 29.6% (6). NAFLD not only has the potential to progress to cirrhosis and liver

cancer but is also linked to cardiovascular and cerebrovascular diseases, peripheral vascular

diseases, diabetes mellitus, cholelithiasis, and other conditions, as well as an increased risk

of various malignant tumors such as colorectal, breast, and pancreatic cancers (7–9).

NAFLD is a serious threat to the health of human beings, and it has become a major global

concern (10, 11). Given the widespread use of the term NAFLD in existing literature,

despite recent proposals to rename it as metabolic-associated fatty liver disease (MAFLD)

(12), this review will continue to refer to it as NAFLD.
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Uric acid (UA) is the final product of purine compound

breakdown in the liver (13), with xanthine oxidase (XO) playing a

crucial role in its production by catalyzing the oxidation from

hypoxanthine to xanthine and then to UA (14). Abnormalities in

UA metabolism are associated with several chronic systemic diseases

like hypertension, atherosclerosis, diabetes mellitus, and dyslipidemia

(15–17). The relationship between serum uric acid (SUA) levels and

NAFLD severity has gained attention in recent years, with SUA being

a significant factor independently correlated with the severity of

NAFLD independently of other metabolic markers (18). Studies have

reported a 21% increase in NAFLD risk for every 1mg/dL rise in SUA

levels (19), with hyperuricemia further elevating the risk of significant

liver fibrosis in NAFLD patients (20).

In order to gain a deeper comprehension of the correlation

between SUA and NAFLD, this review aims to synthesize current

research findings to aid in the management of SUA levels in

NAFLD patients.
Frontiers in Endocrinology 02
2 Relationship between SUA
and NAFLD

A Meta-analysis has shown a pooled odds ratio of 1.88 in

NAFLD patients with higher SUA levels compared to those with

lower levels, with SUA levels being associated with NAFLD across

various subgroups regardless of study quality, study design, sample

size, age, gender, or country (21). Elevated SUA levels are also

linked to the severity and progression of NAFLD, with studies

indicating a strong correlation between SUA levels and the degree of

steatosis, inflammation of the lobules, cirrhosis development, and

elevated liver enzymes in NAFLD patients (22, 23). While obesity is

a known risk factor for NAFLD (24), increased SUA levels in non-

obese individuals significantly heighten the risk of NAFLD,

surpassing that in obese patients with normal SUA levels (25).

Table 1 provides an overview of relevant studies on the relationship

between SUA on NAFLD (18, 22, 25–61).
TABLE 1 Studies on the relationship between SUA on NAFLD.

Size Types
of studies

Country Main Findings. (Reference) Author,
Year

3,499 cross-
sectional study

China SUA level demonstrated a positive correlation with the prevalence of NAFLD. A regression equation was
developed to predict NAFLD, expressed as follows: The proposed regression formula = 0.032 * WC + 0.303 *
BMI + 0.478 * natural logarithm of glutamyl transpeptidase + 1.301 * natural logarithm of triglyceride +

0.002 * SUA - 18.823. When utilizing a cutoff value of 13.3, the model exhibited a sensitivity of 89.2% and a
specificity of 78.4% (26).

Ding
Y, 2023

1,343 cross-
sectional study

Korea SUA levels strongly correlated with fatty liver indices. SUA concentrations in individuals diagnosed with
NAFLD and exhibiting abnormal LFT outcomes were notably elevated compared to those without NAFLD

and abnormal LFT findings (27).

Park
H, 2022

4,554 cross-
sectional study

China SUA thresholds were of ≥478 µmol/L and ≥423.5 µmol/L for severe steatosis in male and female MAFLD
patients. NAFLD patients with higher SUA levels exhibited greater liver fat accumulation compared to those

with lower SUA levels. Even among lean/normal-weight patients with NAFLD, higher SUA levels were
associated with an increased likelihood of severe steatosis (28).

He J, 2022

3,311 cross-
sectional study

China Increased SUA levels were identified as a facilitating factor for the development of NAFLD after accounting
for relevant confounding variables (OR = 2.44). The risk of NAFLD exhibited a linear relationship with rising

SUA levels (29).

Wang
M, 2022

27,009 cohort Study China SUA exhibited a positive correlation with the occurrence of NAFLD, particularly among female and non-
obese individuals, and was also linked to an increased likelihood of potential advancement of newly

diagnosed NAFLD (30).

Tang
Y, 2022

454 cross-
sectional study

Italy There was a significant correlation between hyperuricaemia and NAFLD (31). Catanzaro
R, 2022

2,809 cross-
sectional study

China In patients with type 2 diabetes mellitus, an increased SUA level was identified as a standalone risk factor for
the occurrence of NAFLD following accounting for other relevant variables (32).

Hu Y, 2021

139,170 cross-
sectional study

China Individuals with MAFLD had a notably higher prevalence of hyperuricemia compared to those without
MAFLD (45.0% vs. 16.8%) (33).

Chen
YL, 2021

400 cross-
sectional study

China The levels of SUA exhibit a significant and autonomous correlation with the occurrence of NAFLD. SUA
levels can serve as a valuable indicator for identifying non-obese individuals with type 2 diabetes who are at

an elevated risk for developing NAFLD (34).

Cui
Y, 2021

4,323 cross-
sectional study

China There was a significant positive correlation and dose-response pattern between SUA levels and the incidence
of NAFLD in postmenopausal individuals who were not obese. Elevated SUA levels may serve as a potential

prognostic indicator for NAFLD in non-obese postmenopausal women (35).

Bao
T, 2020

3,822 prospective
cohort study

China Elevated SUA levels that exhibit an increasing trend pose a risk factor for NAFLD. This association
demonstrates a dose-response relationship that remains consistent across different age groups, genders, and

individuals with abdominal obesity (36).

Ma Z, 2020

(Continued)
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TABLE 1 Continued

Size Types
of studies

Country Main Findings. (Reference) Author,
Year

2,832 prospective
cohort study

China NAFLD is directly associated with higher levels of SUA, with elevated SUA concentrations serving as a
potential standalone indicator for the development of NAFLD. The established SUA thresholds indicative of
NAFLD risk are as follows: ≥288.5 mmol/L for the general population, ≥319.5 mmol/L for males, and ≥287.5

mmol/L for females (37).

Wei
F, 2020

113 cross-
sectional study

Indonesia Hyperuricemia was identified as a distinct risk factor associated with the development of substantial liver
fibrosis (OR = 2.501) (38).

Sandra
S, 2019

100 cross-
sectional study

Pakistan NAFLD associated with SUA levels (39). Abbasi
S, 2019

367 cross-
sectional study

Turkey UA serves as an uncomplicated, non-intrusive, cost-effective, and valuable indicator that can potentially
forecast the presence of steatosis in individuals with NAFLD. The identified threshold level for SUA was

determined to be 4.75 mg/dl, exhibiting a sensitivity of 45.8% and a specificity of 80.3% (40).

Oral
A, 2018

856 observational
cohort study

China The likelihood of NAFLD rose in correlation with elevated SUA levels, with SUA level identified as a
standalone risk factor for NAFLD, exhibiting a RR value of 1.654 (41).

Bai
JX, 2018

7,569 cross-
sectional study

China There was a positive correlation between SUA levels and the prevalence of NAFLD, with a slightly stronger
association observed in women compared to men. Furthermore, a significant combined effect of SUA levels
and serum ALT levels on NAFLD prevalence was noted in all participants, with a slightly greater impact

observed in men than in women (42).

Yang
H, 2018

826 retrospective
cohort study

China In contrast to individuals with normal UA levels, those with hyperuricemia exhibited notably elevated levels
of total cholesterol, creatinine, triglycerides, and AST. Furthermore, individuals with hyperuricemia
demonstrated a significantly reduced probability of NAFLD remission compared to those with

normouricemia (RR = 0.535) (43).

Yang
C, 2018

95,924 cross-
sectional study

China Increased SUA concentrations were found to be correlated with a heightened likelihood of lean NAFLD. Lean
individuals with hyperuricemia exhibited an OR of 1.718 for the presence of NAFLD, following adjustments
for additional metabolic disorders. The diagnostic accuracy, as indicated by the AUC, for identifying mild
NAFLD using SUA was 0.70, while the AUC for detecting moderate to severe NAFLD based on SUA was

0.78 (44).

Zheng
X, 2017

1,006 cross-
sectional study

China Elevated SUA levels were linked to a higher risk of NAFLD in both males and females, with OR of 2.645 and
1.962. A notable gender disparity was observed in the association between hyperuricemia and NAFLD, with a

statistically significant difference found in males compared to females (45).

Yu
XL, 2017

2,383 retrospective
cohort study

China The prevalence of NAFLD was found to be higher in individuals with elevated SUA levels compared to those
with normal levels (29.0% vs. 12.9%). Hyperuricemia at baseline was significantly linked to an increased risk
of developing NAFLD in non-obese individuals. Furthermore, the impact of hyperuricemia on NAFLD risk

was more pronounced in females (RR = 2.138) than in males (RR = 1.435) (46).

Yang
C, 2017

4,098 cross-
sectional study

China Non-obese individuals exhibit a greater susceptibility to NAFLD with elevated SUA levels compared to obese
individuals. Furthermore, the advancement of inflammation in NAFLD is linked to elevated SUA levels in

non-obese individuals (25).

Liu J, 2017

841 prospective
cohort study

China SUA levels exhibited an inverse correlation with the remission of NAFLD. Individuals with elevated SUA
concentrations at the outset demonstrated reduced rates of NAFLD remission (47).

Zhou
Z, 2016

158 cross-
sectional study

China SUA level demonstrated a positive correlation with the extent of steatosis, with a correlation coefficient of
0.177. Patients with hyperuricemia exhibited a higher prevalence of severe lobular inflammation (lobular

inflammation score ≥2) compared to those with normal SUA levels (75% vs. 52.7%). Individuals with NAFLD
in the hyperuricemic groups displayed a greater incidence of non-alcoholic steatosis (≥5) in comparison to
those in the normal SUA groups(48.8% vs. 31.1%). Hyperuricemia was identified as an independent factor

associated with advanced lobular inflammation (OR = 2.79) (22).

Huang
Q, 2016

110 cross-
sectional study

Bangladesh Elevated SUA levels have been found to be closely linked with NAFLD, with this relationship appearing to be
influenced by IR in individuals with prediabetes (48).

Hossain
IA, 2016

118 cross-
sectional study

Itady SUA was identified as a significant independent predictor of non-alcoholic steatohepatitis and its specific
histological manifestations, particularly fibrosis (49).

Ballestri
S, 2016

4,305 cross-
sectional study

China LFC accumulation was found to be linked to a rise in the occurrence of hyperuricemia and elevated SUA
levels within a population residing in community settings. An LFC exceeding 10% is correlated with an

increased likelihood of developing hyperuricemia (50).

Lin
H, 2015

60,455 multicenter
Study: cross-
sectional study

China A gender-specific SUA concentration was found to be linked with NAFLD in a manner independent of other
factors. Moreover, the correlation between SUA levels and NAFLD was notably more pronounced in females

compared to males (51).

Wu
SJ, 2015
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3 Underlying mechanisms of SUA
involved in NAFLD

The pathogenesis of NAFLD has transitioned from the “two-

hit” theory to the “multiple hit” hypothesis, which suggests that

various factors collectively contribute to the development of

NAFLD in genetically susceptible individuals (63, 64). These

factors include steatosis, inflammation, oxidative stress (OS),

metabolic dysfunction, and insulin resistance (IR) (63, 64). The

precise mechanisms through which SUA is involved in NAFLD

remain incompletely understood. SUA plays a role in the onset and
Frontiers in Endocrinology 04
progression of NAFLD through processes such as OS, inflammatory

responses, disturbances in lipid metabolism, and IR, as shown

in Figure 1.
3.1 Oxidative stress

OS is an important etiopathogenesis of NAFLD (65). Elevated

levels of reactive oxygen species (ROS) under OS can lead to

dysfunction in mitochondria and endoplasmic reticulum, as well

as reduced antioxidant defenses in liver cells, resulting in

inflammation, cell death, and fibrosis during NAFLD progression
TABLE 1 Continued

Size Types
of studies

Country Main Findings. (Reference) Author,
Year

and
prospective

study

6,967 cross-
sectional study

USA The incidence of NAFLD was notably greater among individuals with hyperuricemia in comparison to those
without (33.8% vs. 14.7%). Those with hyperuricemia exhibited a higher occurrence of elevated liver enzymes

in contrast to those without (AST 8.9% vs. 3.0%; ALT 9.6% vs. 4.7%) (52).

Shih
MH, 2015

21,798 cross-
sectional study

China The risk of NAFLD was notably higher in individuals with elevated SUA levels. Moreover, a significant
correlation was observed between SUA levels and prehypertension in terms of the risk of NAFLD (53).

Liang
J, 2015

528 cross-
sectional study

China Elevated SUA levels, even when falling within the normal range, were positively and independently correlated
with the occurrence of hepatic steatosis in postmenopausal Chinese women with a normal BMI (54).

Liu
PJ, 2014

242 cross-
sectional study

Turkey Hyperuricemia was frequently observed in individuals with NAFLD and was linked to the presence of initial
histological manifestations, such as hepatocellular ballooning, in this significant clinical context (55).

Sertoglu
E, 2014

1,440 epidemiological
cohort study

China In Chinese males, there is a notable correlation between elevated SUA levels and NAFLD. Moreover, within
individuals diagnosed with NAFLD, indicators of liver impairment, such as heightened ALT levels in

conjunction with a genetic predisposition (specifically the Met196Arg variant in TNFRSF1B (rs1061622)), are
linked to elevated SUA concentrations associated with inflammatory processes (56).

Xie Y, 2013

10,605 comparative
Study

China The incidence of NAFLD was found to be higher with elevated SUA levels, with a more notable correlation
observed in Uyghur individuals compared to Han individuals (OR = 3.279 and 3.230, respectively) (57).

Cai
W, 2013

10,732 cross-
sectional study

USA An increased serum uric acid (SUA) level was found to be linked with non-alcoholic fatty liver disease
(NAFLD) diagnosed through ultrasound in a sample of nondiabetic adults representative of the United States
population. Furthermore, a positive correlation was observed between rising uric acid levels and the severity

of NAFLD as determined by ultrasonography (18).

Sirota
JC, 2013

9,019 cross-
sectional study

Korean Elevated SUA levels, even when falling within the normal range, were found to be independently linked to
the occurrence of NAFLD (58).

Hwang
IC, 2011

5,741 cohort study Korean Elevated SUA levels were identified as a significant independent risk factor for the development of NAFLD as
determined by ultrasonography. After adjusting for relevant variables, the hazard ratio for individuals with

hyperuricemia compared to those with normouricemia was 1.29 (59).

Ryu
S, 2011

6,890 prospective
study

China The rise in SUA levels was a significant independent predictor of heightened risk for developing NAFLD,
with the likelihood of NAFLD occurrence rising in correlation with escalating baseline SUA levels (60).

Xu C, 2010

54,325 cross-
sectional study

China There was a significant correlation between gout and the risk of NAFLD. Furthermore, a proportional
connection was observed between SUA levels and NAFLD risk in individuals both with and without

gout (61).

Kuo
CF, 2010

8,925 cross-
sectional study

China The frequency of NAFLD was notably greater among individuals with hyperuricemia compared to those
without hyperuricemia, with rates of 24.75% and 9.54% respectively. Moreover, the prevalence of NAFLD

exhibited an upward trend with escalating SUA levels (62).

Li Y, 2009
fr
NAFLD, nonalcoholic fatty liver disease; SUA, serum uric acid; LFT, liver function test; MAFLD, metabolic-associated fatty liver disease; UA, uric acid; OR, odds ratio; WC, waist circumference;
RR, relative risks; BMI, body mass index; AST, aspartate transaminase; AUC, area under the curve; ALT, alanine aminotransferase; AUC, area under curve; LFC, liver fat content; USA,
United States of America; IR, insulin resistance; BMI, body mass index. *, multiply.
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(66). Hepatocytes exposed to UA has been linked to mitochondrial

OS mediated by the translocation of nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase (67). UA also

enhances fat synthesis in hepatocytes by facilitating the transfer of

NADPH oxidase subunit 4 to mitochondria, thereby increasing

superoxide production (68). Xanthine oxidase (XO), the rate-

limiting enzyme enzyme for UA production, generates ROS

during catalyzing the oxidative hydroxylation of hypoxanthine

and xanthine to produce UA (69). SUA levels can serve as an

indicator of XO activity in NAFLD (70). In addition, 70% of

fructose in the human body is metabolized by the liver, and

fructose-rich diets can exacerbate NAFLD (71). Fructose can

exacerbate NAFLD by promoting hepatic fat accumulation

through both direct triglyceride (TG) synthesis from fructose

metabolism and an uric acid-dependent pathway via

mitochondrial OS (72).
3.2 Inflammatory responses

Inflammation is a fundamental component of NAFLD

pathophysiology and is present throughout the disease

progression (73). UA is a potent inflammatory inducer, capable of

upregulating the expression of various inflammation markers in a

dose-dependent manner (74). It may also trigger the activation of

pro-inflammatory signaling pathways, such as nuclear factor kappa-

B, leading to the expression of inflammatory molecules and

exacerbating the inflammatory response in hepatocytes (74). The
Frontiers in Endocrinology 05
nucleotide-binding oligomerization domain-like receptor family

pyrin domain containing 3 (NLRP3) inflammasome, a

multiprotein complex involved in recognizing pathogens and

molecular patterns, plays a crucial role in obesity, IR, and

NAFLD progression (75–77). UA, as an injury-related molecular

pattern, stimulates macrophage recruitment (78, 79), which then

expresses NLRP3 inflammasome and generate significant quantities

of IL-1b (80, 81), leading to chronic inflammation in hepatocytes.

UA also exacerbate hepatic inflammation by inducing immune

responses through dendritic cells (82).
3.3 Lipid metabolism

The onset of NAFLD is linked to disruptions in lipid

metabolism (83). UA plays a role in regulating fatty acid synthase

(FASN) through the sterol regulatory element binding protein 1

(SREBP1) signaling pathway, resulting in the accumulation of free

fatty acids and compromised energy metabolism in HepG2 cells

(84). Additionally, UA triggers the activation of SREBP-1c via

endoplasmic reticulum stress, promoting lipid synthesis in

hepatocytes, which in turn exacerbates intracellular fat

accumulation and lipid degeneration in hepatocytes (85). UA

exacerbates lipid metabolism disorders in NAFLD by oxidatively

modifying low-density lipoprotein cholesterol and TG synthesis

(86). Furthermore, UA facilitates the conversion of fructose to

fructose 1-phosphate by activating fructokinase in hepatocytes,

leading to fat accumulation through gluconeogenesis (87).
FIGURE 1

Underlying mechanisms of SUA involved in NAFLD. NAFLD, nonalcoholic fatty liver disease; SUA, serum uric acid; ROS, reactive oxygen species; UA,
uric acid; NADPH, nicotinamide adenine dinucleotide phosphate; XO, xanthine oxidase; NF-kB, nuclear factor kappa-B; NLRP3, nucleotide-binding
oligomerization domain-like receptor family pyrin domain containing 3; SREBP1, sterol regulatory element binding protein 1; FASN, fatty acid
synthase; LDL-C, low-density lipoprotein cholesterol; TG, liver fat content; JNK, c-Jun N-terminal kinase; AP-1, activator protein-1; FGF21, fibroblast
growth factors 21; IRS1, insulin receptor substrate 1; Akt, protein kinase B; eNOS, endothelial nitric oxide synthase. Red arrows, up-regulation of
expression or enhanced activity. Green arrows, down-regulation of expression or reduced activity.
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Mitochondrial OS induced by UA inhibits aconitase in the Krebs

cycle, causing citric acid buildup and stimulating enzymes involved

in fatty acid synthesis, ultimately promoting de novo lipogenesis

(72). UA significantly up-regulates the expression of miR-149-5p in

hepatocytes, and FGF21, a downstream target of miR-149-5p and

closely related to lipid metabolism, whose deficiency can lead to

hepatic steatosis, so that uric acid aggravated hepatic fat

accumulation through the miR-149-5p/FGF21 axis (67). UA

upregulates the expression of lipogenic genes in hepatocytes via

the ROS/JNK//AP-1 pathway, increasing triglyceride levels in

HepG2 cells and leading to the accumulation of intracellular fat

in hepatocytes (88).
3.4 Insulin resistance

NAFLD is closely linked to IR, with some considering NAFLD

as a hepatic manifestation of IR (89, 90). Obesity is associated with

the development of chronic low-grade inflammation, a condition

exacerbated by the expansion of adipose tissue (91, 92). The

inflammatory characteristics of adipose tissue enhance cytokine

production, which in turn contributes to the development of IR

(93, 94). In the state of IR, there is an upregulation of lipolysis in

adipose tissue, resulting in an increased influx of free fatty acids to

the liver (95). Concurrently, hyperinsulinemia stimulates

lipogenesis in hepatocytes (96). These metabolic alterations

culminate in lipid accumulation within the liver, leading to an

increase in intracellular lipid peroxidation products and cytotoxic

agents (97). Ultimately, these processes contribute to the onset and

progression of NAFLD.The concentration of SUA was found to be

independently related with IR (98). UA can inhibit insulin signaling

pathways and induce IR by various mechanisms, including

activation of the NLRP3 inflammasome and inhibition of IRS1/

Akt pathway (72, 99). Elevated SUA levels cause the deposition of

urate crystals in pancreatic islets, impairing pancreatic b-cell
function and worsening IR (100). Reduced activity of endothelial

nitric oxide synthase is also implicated in increased IR in

individuals with hyperuricemia (17). Through the aforementioned

mechanisms, UA intensifies the level of IR within the body and

facilitates the advancement of NAFLD.
4 Potential benefits of SUA-lowering
therapy in treating NAFLD

Despite the increasing global prevalence of NAFLD, there

remain no FDA-approved pharmacological treatments specifically

designed to address this condition, largely due to its intricate

pathogenesis and multifactorial nature (101). Currently, lifestyle

modifications, including substantial weight loss achieved through a

low-calorie diet and increased physical activity, are regarded as the

primary interventions for both the prevention and management of

NAFLD, as weight reduction is correlated with a decrease in liver fat

and may facilitate the reversal of disease progression (102). Bariatric

surgery has the potential to decrease hepatic steatosis in obese

patients with NAFLD (103). Nevertheless, it is important to note
Frontiers in Endocrinology 06
that NAFLD is not considered a valid indication for bariatric

surgery (104). In terms of pharmacotherapy, the European and

American Association for the Study of the Liver recommends the

administration of vitamin E and pioglitazone exclusively for select

patients diagnosed with NAFLD (105). More current research

hotspots regarding therapeutic agents for NAFLD are mainly

focused on drug selection against different metabolic targets

(106). Given the significant relationship between SUA levels and

NAFLD development, researchers have now recognized that SUA-

lowering therapy may have a valuable contribution for improving

NAFLD outcomes. XO inhibitors like febuxostat and allopurinol are

commonly used to lower SUA levels and have shown promise in

improving NAFLD in various studies.

Allopurinol, when administered at a daily dose of 100 mg to

patients with hyperuricemia, has been found to lead to a significant

reduction in the hepatic controlled attenuation parameter score

after a three-month period (107). This medication has

demonstrated the ability to decrease TG content in HepG2 cells

and in the livers of NAFLD mice by inhibiting XO activity

(108, 109). Moreover, allopurinol has shown efficacy in reducing

histopathological scores and levels of interleukin-1 (IL-1) and IL-2

immunoexpression in the livers of NAFLD rats (110). By inhibiting

NRLP3 inflammasome activation, allopurinol has been observed to

mitigate hepatic steatosis and IR by lowering SUA levels (78). In

diabetic rats, allopurinol has been found to improve hepatic OS and

liver injury through the activation of the Nrf2/p62 pathway (111), as

well as to reduce hepatic inflammation and lipid accumulation by

decreasing hepatic thioredoxin levels (112). Additionally,

allopurinol has been demonstrated to enhance fatty acid beta-

oxidation in mouse livers and alleviate high fructose diet-induced

hepatic steatosis in diabetic rats by modulating inflammation, lipid

metabolism, and endoplasmic reticulum stress pathways (113, 114).

On the other hand, febuxostat has demonstrated a more

favorable hepatic safety profile in gout patients with NAFLD

(115). Treatment with febuxostat for 24 weeks has resulted in

reduced SUA levels, as well as decreased levels of aspartate

aminotransferase and alanine aminotransferase in NAFLD

patients with hyperuricemia (116). In a nonalcoholic

steatohepatitis (NASH) mouse model, febuxostat significantly

lowered hepatic XO activity and UA levels, leading to

improvements in IR, lipid peroxidation, and the accumulation of

classically activated M1-like macrophages in the liver (116).

Furthermore, febuxostat has been shown to reduce fat

accumulation and ROS in HepG2 cells and NASH mice by

downregulating the expression of NLRP3/caspase-1/IL-18/IL-1b
and improving IR (117). Administration of febuxostat has also

been found to normalize fatty acid oxidation-related genes, collagen

deposition, fibrotic changes, lipid peroxidation, and inflammatory

cytokine expressions in NASH mice (118).

While both XO inhibitors demonstrated comparable effects in

lowering UA levels in the bloodstream, febuxostat exhibited a

significant reduction in hepatic UA levels and XO activity in a

NASH model in mice, a response not observed with allopurinol

(116). This decrease in hepatic UA levels and XO activity was

associated with a more pronounced prevention of specific NASH

characteristics, including IR, lipid peroxidation, the aggregation of
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classically activated M1-like macrophages, and hepatic

inflammation (116). These findings suggest that febuxostat may

possess greater potential for ameliorating NAFLD in patients

suffering from hyperuricemia.
5 Limitations

Currently, although advancements have been made in

understanding the relationship between SUA levels and NAFLD

and proposed a new direction and goal for solving the multifactorial

problem of fatty liver, this area of research still faces several

limitations. There is a pressing need for more fundamental

experimental studies to elucidate the mechanisms through which

SUA influences the development of NAFLD, particularly those

mechanisms that are directly implicated in the pathogenesis of

NAFLD, and the strengths and potential limitations of SUA and its

direct association with OS. Observational studies investigating the

effects of SUA-lowering therapies on NAFLD have primarily been

conducted in preclinical settings or among specific populations with

hyperuricemia. This is largely attributable to the insufficient

recognition and valuation of SUA-lowering agents in clinical

practice for the management of NAFLD, and SUA-lowering

therapies on NAFLD is necessitated further investigation into

their efficacy and safety, while also focusing on its effects on body

weight, glucose and lipid metabolism, and liver tissue pathology.

Furthermore, there is a notable absence of research conclusions

regarding the use of SUA-lowering therapies for the prevention of

NAFLD, as well as the impact of such treatments on NAFLD

population without hyperuricemia. To address these gaps, more

extensive, long-term, multi-center clinical studies are required to

assess the potential benefits of these interventions.
6 Conclusion

In summary, there is a correlation between SUA and NAFLD,

with SUA potentially exacerbating NAFLD through various

pathways such as OS, inflammatory responses, lipid metabolism
Frontiers in Endocrinology 07
disturbances, and IR. Research has explored the potential benefits of

SUA-lowering interventions in improving NAFLD. Given the

global prevalence of NAFLD and the current limitations in

treatment options, identifying novel therapeutic targets for

NAFLD is imperative. Targeting XO inhibition as a SUA-

lowering therapy may represent a promising avenue for future

NAFLD management.
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