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Osteoporosis is a multifactorial bone disease characterised by reduced bone mass

and increased fracture risk. Family studies have made significant contribution in

unravelling the genetics of osteoporosis. Yet, most of the underlying molecular and

biological mechanisms remain unknown prompting the need for further studies. This

review outlines the proper phenotyping and advanced genetic techniques in the form

of high-throughput DNA sequencing used to identify genetic factors underlying

monogenic osteoporosis in a family-based setting. The steps related to variant

filtering prioritisation and curation are also described. From an evolutionary

perspective, deleterious risk variants with higher penetrance tend to be rare as a

result of negative selection. High-throughput sequencing (HTS) can identify rare

variants with large effect sizeswhich are likely to bemissed by candidate gene analysis

or genome-wide association studies (GWAS) wherein common variants with small to

moderate effect sizes are identified. We also describe the importance of replicating

implicated genes, and possibly variants, identified following HTS to confirm their

causality. Replication of the gene in other families, singletons or independent cohorts

confirms that the shortlisted genes and/or variants are indeed causal. Furthermore,

novel genes and/or variants implicated in monogenic osteoporosis require a

thorough validation by means of in vitro and in vivo assessment. Therefore,

analyses of families can continue to elucidate the genetic architecture of

osteoporosis, paving the way for improved diagnostic and therapeutic strategies.
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1 Introduction

Osteoporosis is a progressive skeletal disorder characterised by low bone mass and

degradation of the microarchitecture of bone tissue that subsequently decrease bone strength

and increase susceptibility to fragility fractures, such as those occurring from standing height or

less (1, 2). Osteoporosis is considered a ‘silent disease’ until the first fracture occurs (3). The

most sustained fractures are those of the hip, spine, wrist and humerus, resulting in increased

morbidity, need for hospital care and institutionalisation. Moreover, spine and hip fractures can

also result in death due to secondary complications (4). Consequently, osteoporosis is

associated with a significant burden on the global economy and healthcare system with costs

expected to increase due to a rise in the ageing population. Globally, osteoporosis is estimated to
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affect one in three women and one in five men over the age of 50 years

(5). The prevalence of osteoporosis in the United States in the years

2017-2018 was approximately 12.6% among adults aged 50 years and

over (6). In 2019, 32 million people in the EU27 + 2 (European Union

countries, Switzerland, and the United Kingdom) were reported to

have osteoporosis (7).

Osteoporosis may arise due to an imbalance in the bone

remodelling equilibrium with a bone resorption rate that exceeds

bone formation, failure to reach peak bone mass at the young adult

stage, and/or due to physiological changes occurring in the body with

advancing age such as oestrogen deficiency (6). All three scenarios are

influenced by environmental (such as diet, smoking, alcohol intake

and physical activity) and genetic factors (e.g., gender, low birth

weight, early menopause, and low body mass index) (7). The risk

exerted by these factors varies, with genetic factors imposing one of the

strongest effects. Indeed, twin and family studies have shown that 50-

85% of the changes in the bone mineral density (BMD) are genetically

determined (8, 9). Genome-wide association studies (GWAS) have

identified several gene variants as potential contributors of bone mass

determination and fracture risk, each exerting modest effect sizes. In

contrast, monogenic forms of osteoporosis are caused by a single gene

variant that plays a significant role in skeletal development. Family

studies harbouring multi-generation, affected relatives have aided in

the identification of high-impact disease-causing genes and variants,

some of which replicated at the population level. This brief review

aims to provide an overview of the promising application of a family-

based study approach to uncover the underlying genetic determinants

of osteoporosis following high-throughput sequencing (HTS).
2 Family-based study design

2.1 Benefit of families in genetic
study approaches

Family-based studies have successfully been used to identify

genes underlying a variety of monogenic, highly penetrant disorders
Frontiers in Endocrinology 02
such as Duchenne muscular dystrophy (OMIM: 310200) (10, 11),

Huntington disease (OMIM: 43100) (12), and cystic fibrosis

(OMIM: 219700) (13). Generally, complex traits are differentiated

from monogenic disorders in that: (i) they are more prevalent; (ii)

do not demonstrate clean mendelian segregation patterns

suggesting a polygenic cause whereby multiple gene variants

(possibly involved in different signalling cascades) having

different effect sizes collectively contribute to the phenotype; and

(iii) the marginal effect of any single gene on a relevant clinical end

point is likely to be small (14). The use of family studies having

multiple affected members overcomes such issues. Identifying genes

through family studies serves as a foundation in population-based

research, addressing the various challenges inherent in analysing

the genetic makeup of complex traits (15–18).

Family studies offer several benefits for gene discovery as

opposed to studies of unrelated individuals (Figure 1). This rests

on the fact that family members are more likely to possess a

homogenous and limited set of causative genes. Therefore, the

statistical power for gene discovery is enhanced and findings can

be replicated across other affected families. Compared to population

studies, unrelated or related but unaffected relatives serve as good

controls, most noticeably since they share common environmental

influences and have a similar socioeconomic status with affected

relatives. In addition, unaffected relatives share a good proportion

of their genes, that can be used to control background genetic

variation shifting the focus to potential causal variants (15, 18).

Despite being unbiased, this approach requires correct and

extensive pedigree information, along with good phenotyping and

a distant relative or control to help in variant filtering.
2.2 Successful use of family-based studies
in bone diseases

Prior to the completion of the human genome project, highly

penetrant variants with large effect sizes were identified using linkage

analysis in families with monogenic bone disorders. This approach is
FIGURE 1

A list of benefits and risks that families offer when pursing genetic studies. Figure created using BioRender.
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based on the principle of identity-by-descent in combination with

phenotypic information to identify the common gene loci shared

amongst affected family members. The biological phenomenon of

linkage analysis is that the closer the genetic marker is to the causative

gene, the less likely it is to be separated by meiotic recombination

between generations (19). Linkage analysis studies have identified a

number of genes responsible for rare monogenic bone disorders

including sclerosteosis (SOST; OMIM: 605740) (20), van Buchem

disease (SOST; OMIM: 605740) (21), osteogenesis imperfecta (OI)

including type I, II, III and IV (COL1A1; OMIM: 120150 and

COL1A2; OMIM: 120160) (22, 23), osteoporosis-pseudoglioma

syndrome (LRP5: OMIM: 603506) (24), and osteopetrosis (CLCN7:

OMIM: 602727) (25). These genes have provided a better

understanding of bone pathophysiology, some of which have paved

the way for the development of targeted osteoanabolic therapy such as

in the case of Romosozumab (26).

The cost effectiveness of HTS, coupled with its faster

turnaround time, increased access, and wealth of data generated

has led to a shift in the type of genetic testing undertaken, with

omics technology favoured over classical linkage analysis and

Sanger sequencing. HTS can be used to investigate genetic

variation within exons (whole exome sequencing; WES), targeted

genes (specific genes forming part of a panel that are known to

contribute to disease) or the entire genome (whole genome

sequencing; WGS). Short-read HTS has been instrumental in

unravelling the genes underlying monogenic osteoporosis,

reviewed in detail elsewhere (27–29). Independent family studies

followed by WES have identified variants in the WNT1 (OMIM:

164820) involved in early-onset osteoporosis (EOOP) and OI type

III (30, 31), and PLS3 (OMIM:30013) in four Dutch families with X-

linked osteoporosis, with a specific PLS3 variant successfully

replicating at the population level (32). Several other causal PLS3

mutations have since been reported in EOOP, including missense,

nonsense and structural variants (SVs) (33–35). HTS has also

identified two novel loss-of-function mutations in LRP5 (OMIM:

603506) that provided further knowledge on the role of this gene in

canonical WNT signalling and its effect in the development of

juvenile-onset primary osteoporosis (OMIM: 619884) (36). Besides

osteoporosis, LRP5 variants have been implicated in high bone mass

disorders and have also achieved genome-wide significance with hip

and spine BMD (37–39). Other studies using a family-based

approach combined with HTS have successfully identified genes

with a clear-cut role in bone physiology including, SGMS2 (OMIM:

611574) (40), ARHGAP25 (OMIM: 610587) (41), WNT11 (OMIM:

603699) (42), RUNX1 (OMIM: 151385) (43), and FGFR2 (OMIM:

176943) (44). Besides osteoporosis, this study design has also been

used to uncover genetic determinants in other diseases such as

Alzheimer’s disease (45), Parkinson’s disease (46), diabetes mellitus

(47–49) and cardiovascular disease (50, 51).
3 Gene discovery using family studies

The following steps are recommended to identify rare, high-risk

DNA variants in individuals with suspected monogenic

osteoporosis (Figure 2): recruitment of family members, rigorous
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deep phenotyping, genetic evaluation of HTS data including variant

filtering and prioritisation, co-segregation of variants in the entire

pedigree, and if possible, detection of the deleterious gene and/or

variant in other families and/or population studies.
3.1 Recruitment of family members

Maximising the inclusion of both affected and unaffected

individuals in multigenerational pedigrees enhances the likelihood of

identifying causal variants. Affected family members should be directly

related by blood (at least one affected relative in each generation), with

a minimal number of affected spouses. A thorough clinical history for

all recruited individuals is crucial and should involve data concerning

demographic and lifestyle factors such as physical activity, calcium and

Vitamin D intake, alcohol consumption, smoking habits, age at

menopause and medication use. A comprehensive fracture history

should comprise of all fractures sustained from childhood and specify

the age at which each fracture occurred, the site of fracture and the

mechanism of fracture (low, moderate, or high-impact trauma). Family

history of bone disease, osteoporosis and low-trauma fractures is also

essential, irrespective of age.
3.2 Phenotyping of family members

Precise differentiation between affected and unaffected relatives is

crucial, as incorrect phenotyping can hinder the identification of causal

gene variants. Laboratory analyses should include relevant biochemical

parameters of coexisting diseases that may affect bone homeostasis

(52–54). Furthermore, anthropometric measurements should also be

recorded using validated equipment which is calibrated according to

WHO guidelines (55). Dual-energy X-ray absorptiometry (DXA)

remains the gold standard for the non-invasive measurement of

BMD in all age groups, including children and young adults thanks

to its worldwide availability, precision, reproducibility, and availability

of normative data (54). BMD measurements are expressed in T-scores

and Z-scores based on the WHO classification and the International

Society for Clinical Densitometry (ISCD) for ease of interpretation (56).

An affected status may be defined by a T-score of ≤-2.5 in the case of

postmenopausal women and men over the age of 50; and a Z-score

below -2.0 accompanied by a low-trauma fracture history in the case of

premenopausal women and men younger than 50 years (55). In the

case of EOOP, an affected status in children and young adults is further

defined in (29).
3.3 Genetic analysis and bioinformatics

Genomic DNA is typically isolated from peripheral blood

leukocytes using ethylenediaminetetraacetic acid (EDTA) or

citrated blood tubes or harvested buffy coat layers depending on

blood volumes available. Where possible, aliquots of whole blood

(with or without stabilisers), serum and plasma samples should be

banked (at -80°C) for potential future omics studies (i.e.,

transcriptomics, metabolomics, proteomics). If phlebotomy is not
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possible, genomic DNA can be obtained from saliva or buccal

swabs. High-quality genomic DNA is essential for accurate and

comprehensive short-read sequencing, whereas high-molecular

weight DNA is required for long-read sequencing (57). HTS

should be carried out on the most genetically informative

relatives based on the structure of the pedigree. WGS is becoming

an attractive alternative to WES due to its broader coverage and

decreasing costs. Unlike WES, WGS does not require enrichment

and capture steps, leading to a more uniform coverage and

improved detection of variants (58). If no significant variants are

identified in the extended coding regions, non-coding variants can

be further scrutinised. Before analysing variants, sequencing data

must undergo quality control to avoid losing statistical power,

minimising false positives and negative results (59). FastQC can

be utilised to perform quality checks on raw HTS data providing

modular analyses including pre-base analysis of sequencing reads

with the aim of pinpointing sequencing artefacts that may affect

downstream analyses (60). Subsequently, clean raw reads are

aligned to the latest version of the human reference genome, such

as UCSC Genome (61) or NCBI RefSeq (62). The most commonly
Frontiers in Endocrinology 04
used aligners for short read sequencing data are Burrows-Wheeler

Aligner (63), MOSAIK (64), and Bowtie (65). The aligned reads are

run through Picard tools to flag any duplicate reads arising from

enrichment bias during sequencing. Tools such as FastQC (60) and

fastp (66) can be used for duplicate removal. The following step is

variant calling whereby aligned reads are compared to the reference

genome and any nucleotide variations are identified. SNV (single

nucleotide variants) and InDel (Insertions or Deletions) calling can

be performed using specific tools such as Genome Analysis Tool Kit

HaplotypeCaller (GATK-HC) (67), Samtools mpileup (68),

DeepVariant (69), and varScan (70). Calling of SVs can be done

by running the BAM files in either LUMPY (71) or Manta (72), and

in the case of copy number variations also using CNVnator (73) or

CNVkit (74). VEP (Variant Effect Predictor) (75) and SnpEff (76)

are commonly employed to annotate variants based on the genomic

location, and to predict the functional effect on a gene. Additionally,

variant calling tools incorporate information related to: (i)

alternative allele frequency from public databases such as the

1000 Genomes Project (77), the Single Nucleotide Polymorphism

Database (dbSNP) (78), and Genome Aggregation Database
FIGURE 2

Proposed flowchart for identifying the genetic variants contributing to osteoporosis in a family study. Affected proband and relatives are recruited
and subjected to deep phenotyping followed by genetic evaluation using HTS. A stepwise filtering scheme is applied with the aim of filtering out
common, benign, and low-penetrance variants that are unlikely to be causal, retaining high-impact variants possibly residing in genes having a role
in bone biology. Segregation of the variants in the entire pedigree is confirmed by Sanger sequencing. The shortlisted variants are tested in other
independent families and/or population studies, and functionally validated using cells or animal models to confirm their role in bone metabolism and
osteoporosis pathogenesis. ACTH, adrenocorticotropic hormone; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase;
DGP, deamidated gliadin peptide; E2, oestradiol; ESR, erythrocyte sedimentation rate; FSH, follicle-stimulating hormone; FT3, free T3; FT4, free T4;
GGT, gamma-glutamyltransferase; HbA1c, glycosylated haemoglobin; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LH, luteinising
hormone; LDL, low-density lipoprotein; PTH, parathyroid hormone; SHBG, sex hormone-binding globulin; TSH, thyroid-stimulating hormone; tTG,
tissue transglutaminase; 25-OH Vitamin D, 25-hydroxy vitamin D. Figure created using BioRender.
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(gnomAD) (79); (ii) conservation scores according to PhyloP (80)

and the Genomic Evolutionary Rate Profiling (GERP) score (81);

and (iii) in silico predictions of variant pathogenicity according to

Polymorphism Phenotyping (PolyPhen-2) (82), Sorting Intolerant

From Tolerant (SIFT) (83), The Likelihood Ratio Test (LRT) (84),

Variant Effect Scoring tool (VEST3) (85), MutationTaster (86),

MutationAssessor (87), MetaLR (88), Functional Analysis through

Hidden Markov Models (FATHMM) (89), and Meta-analytic

support vector machine (MetaSVM) (90), amongst others.
3.4 Variant filtering, prioritisation
and curation

Based on a thorough literature review, the following filtering

pipeline is recommended to narrow down the extensive list of gene

variants, leaving a shortlist of potentially causal variants as

described below.
Fron
i. Phenotype filtering following an inheritance pattern as

observed for the studied family can help remove the

shared benign genetic variants shifting the focus on

causal gene variants.

ii. Removal of low impact variants including synonymous, as

well as deep intronic and intergenic variants, in favour of

nonsense (stopgain) and stoploss variants, missense,

frameshift (including those in splicing regions or

resulting in start/stop loss), and variants affecting splice

sites (within 20 nucleotides upstream or downstream of

exon-intron boundaries).

iii. Retaining of variants with an observed alternative allele

frequency (AAF) of ≤1% in all population-based allele

frequency databases, particularly gnomAD for SNVs,

InDels and more recently also SVs, assuming the

presence of rare and penetrant variants.

iv. Removal of recurrent false positive variants (also known as

‘frequent hitters’) resulting from assembly misalignment,

variants falling in highly polymorphic areas and

mislabelled variants due to misleading reference genome

data (91, 92).

v. Prioritisation of variants based on in silico pathogenicity,

Combined Annotation–Dependent Depletion (CADD)

score (93), conservation scores, and classification by the

American College of Medical Genetics and Genomics/

Association for Molecular Pathology (ACMG/AMP)

guidelines (94). Various in silico tools, particularly those

for coding variants, exhibit different thresholds and cut-

offs for variant scoring and have variable concordance with

each other. Consequently, it is advised to utilise multiple in

silico tools concurrently for variant interpretation, and a

scoring criterion to ensure consistency. Variants predicted

to be ‘deleterious’/’pathogenic’/’damaging’ by most of the

tools will be given priority over variants predicted to be

‘benign’/’neutral’/’tolerated’ (95). VarSome (96) should
tiers in Endocrinology 05
also be used to further assess the impact of variants on

protein structure and function. This tool is based on an

accurate analysis of HTS data from numerous databases

such as MetaRNN (97), DANN SNVs (98), UniProt (99),

dbscSNV (100), gnomAD and ClinVar (101). Moreover,

VarSome automatically performs the classification of

genetic variants according to the ACMG/AMP guidelines.

vi. To further curate the variant list, those residing in genes

involved directly or indirectly in bone physiology or

expressed in bone tissue can be prioritised. Some

examples of resources and online databases which can be

utilised include: Mouse Genome Informatics (http://www.

informatics.jax.org) (102), the Musculoskeletal Knowledge

Portal (http://mskkp.org/) (103), International Mouse

Phenotyping Consortium (https://www.mousephenotype.

org/) (104), Gene Ontology (http://www.geneontology.

org) (105), Online Mendelian Inheritance in Man (http://

omim.org) (106), HumanBase network (https://hb.

flatironinstitute.org/) (107), Kyoto Encyclopaedia of

Genes and Genomes (KEGG) Pathway (available at

http://www.genome.jp/kegg/) (108), and QIAGEN’s

Ingenuity Pathway Analysis® (109).
3.5 Confirmation of shortlisted variants and
co-segregation studies

All remaining shortlisted variants should be analysed in the

IGV software (Integrative Genomics Viewer, Broad Institute and

the Regents of the University of California, USA) (110) for the

distinction between true variants and false-positive hits caused by

misalignments or inaccurate bioinformatics processing results.

Moreover, IGV is used to compute the read coverage in the

viewed region and allele ratios for the observed genotypes. Sanger

sequencing can be used as a secondary approach to further verify

the shortlisted variants. Furthermore, this method should also be

used to determine the variants’ segregation across the non-

sequenced relatives in the pedigree. Ideally, the shortlisted causal

variant should only be present in the affected relatives. However, the

consideration of unaffected carriers should not be excluded due to

factors such as incomplete penetrance or the late onset of the

disease (Figure 1). Oligogenic inheritance, characterised by the

segregation of multiple variants within a pedigree, is also a

plausible scenario.
3.6 Replication and validation of the
shortlisted variants

The shortlisted variants can be tested in other affected families

to provide further proof of disease gene causation. A genetic variant

within the same potentially causal gene should be identified in at

least two independent, unrelated probands or families having the
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same disease (or phenotype). This criterion helps establish a more

robust association between the gene and the phenotype, reducing

the likelihood that the association is coincidental. GeneMatcher

(111) was specifically set up to enable clinicians and researchers to

make such connections. Additionally, the shortlisted variant(s) or

others residing within the identified deleterious gene should be

sought in large collections of unrelated individuals to determine

whether they associate with BMD and other musculoskeletal

phenotypes at the population level. Finally, functional assessment

using in vitro cells and in vivo (e.g., mice or zebrafish) models

(Figure 2), as well as expression studies, are warranted to

understand the gene and/or variant’s biological role in bone and

osteoporosis pathogenesis. The identification of a high impact, loss-

of-function variant can be considered analogous to a “human

knockout” for that gene. The shortlisted variant, the mode of

inheritance of the disease, gene expression levels, and the

functional characteristics of the associated protein should all be

taken into consideration when designing a functional study,

described further elsewhere (28, 112).
4 Discussion: limitations and
future work

While family-based studies are a powerful tool in genetic research,

there are several pitfalls that one must consider, including the

presence of phenocopies and incomplete penetrance (Figure 1).

Integrating additional methodologies, such as long-read sequencing

(that is better suited to capture large SVs), multi-omics studies, and

advanced computational models (e.g., machine-learning tools) (113),

can help overcome some challenges leading to a more comprehensive

understanding of the genetic and phenotypic relationships. In fact, the

integration of genomic and metabolomic data provided further proof

of the role of SGMS2 in osteoporosis and skeletal dysplasia (40). A

multi-omics approach can provide a holistic integrated view from a

system biology perspective, capturing the complexity of the

underlying pathological mechanisms, and presenting opportunities

for biomarker discovery. Furthermore, the importance of a

multidisciplinary team involving clinical, basic and translational

researchers, and bioinformaticians is becoming more evident for

improved patient care with timely diagnosis and optimal treatment

options. Active collaboration in international scientific consortia (e.g.,

GEFOS and GENOMOS), European Reference Networks (e.g.,

European Network for Rare Bone Conditions, ERN BOND),

disease registries and patient organisations is the way forward.
5 Conclusion

As highlighted in this review, family-based studies have been

instrumental in identifying genetic determinants governing bone
Frontiers in Endocrinology 06
metabolism and disease processes giving rise to osteoporosis and

other bone mass disorders. To date, around 20% of the underlying

genetic factors are known, emphasising the need for further

research efforts in the field (114). Genes and variants uncovered

in family studies may lead to the development of diagnostic

biomarkers and drug targets based on an individual’s genetic

make-up. This makes personalised medicine more of a reality,

which is the ultimate goal of genomic studies.
Author contributions

MS: Conceptualization, Writing – original draft, Writing –

review & editing. MF: Conceptualization, Funding acquisition,

Supervision, Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. MS and MF

received research funds from Project GRIT (R&I-2022-007L) financed

by Xjenza Malta, for and behalf of the Foundation for Science and

Technology, through the FUSION R&I Technology Development

Programme Lite. MF is also supported by Projects ZeEBRA (R&I-

2019-018T; a FUSION: R&I Technology Development Programme),

DETERMINE (REP-2024-027; a FUSION: R&I Research Excellence

Programme) and STRONG (R&I-2024-007L; a FUSION: R&I

Technology Development Programme Lite) financed by Xjenza

Malta, for and on behalf of the Foundation for Science and

Technology, as well as BioGeMT (101086768), funded by the

European Union.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1455689
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Schembri and Formosa 10.3389/fendo.2024.1455689
References
1. Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. (2010)
31:629–62. doi: 10.1210/er.2009-0044

2. Emkey GR, Epstein S. Secondary osteoporosis: pathophysiology & diagnosis. Best
Pract Res Clin Endocrinol Metab. (2014) 28:911–35. doi: 10.1016/j.beem.2014.07.002

3. Mafi Golchin M, Heidari L, Ghaderian SM, Akhavan-Niaki H. Osteoporosis: A
silent disease with complex genetic contribution. J Genet Genomics. (2016) 43:49–61.
doi: 10.1016/j.jgg.2015.12.001

4. Urano T, Inoue S. Genetics of osteoporosis. Biochem Biophys Res Commun. (2014)
452:287–93. doi: 10.1016/j.bbrc.2014.07.141

5. Cooper C, Ferrari S. IOF Compendium of Osteoporosis, 2nd edition. (Nyon,
Switzerland: International Osteoporosis Foundation (IOF)) (2019). pp. 1–90.

6. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. (2018)
55:308–27. doi: 10.1177/0004563218759371

7. Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and
pathogenesis of primary osteoporosis. Nat Rev Rheumatol. (2015) 11:462–74.
doi: 10.1038/nrrheum.2015.48

8. Boudin E, Fijalkowski I, Hendrickx G, Van Hul W. Genetic control of bone mass.
Mol Cell Endocrinol. (2016) 432:3–13. doi: 10.1016/j.mce.2015.12.021

9. Duncan EL, Brown MA. Clinical review 2: Genetic determinants of bone density
and fracture risk–state of the art and future directions. J Clin Endocrinol Metab. (2010)
95:2576–87. doi: 10.1210/jc.2009-2406

10. Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, et al.
Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front
Physiol. (2023) 14:1183101. doi: 10.3389/fphys.2023.1183101

11. Lee T, Takeshima Y, Kusunoki N, Awano H, Yagi M, Matsuo M, et al.
Differences in carrier frequency between mothers of Duchenne and Becker muscular
dystrophy patients. J Hum Genet. (2014) 59:46–50. doi: 10.1038/jhg.2013.119

12. Sturchio A, Duker AP, Muñoz-Sanjuan I, Espay AJ. Subtyping monogenic
disorders: Huntington disease. Handb Clin Neurol. (2023) 193:171–84. doi: 10.1016/
b978-0-323-85555-6.00003-5

13. Knowles MR, DrummM. The influence of genetics on cystic fibrosis phenotypes.
Cold Spring Harb Perspect Med. (2012) 2:a009548. doi: 10.1101/cshperspect.a009548

14. Cleynen I, Halfvarsson J. How to approach understanding complex trait genetics
- inflammatory bowel disease as a model complex trait. United Eur Gastroenterol J.
(2019) 7:1426–30. doi: 10.1177/2050640619891120

15. Evangelou E, Trikalinos TA, Salanti G, Ioannidis JP. Family-based versus
unrelated case-control designs for genetic associations. PLoS Genet. (2006) 2:e123.
doi: 10.1371/journal.pgen.0020123

16. Almasy L. Family studies in the age of big data. Proc Natl Acad Sci USA. (2022)
119:e2200472119. doi: 10.1073/pnas.2200472119
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