
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Sellappan Selvaraju,
National Institute of Animal Nutrition and
Physiology (ICAR), India

REVIEWED BY

Zhihua Ju,
Shandong Academy of Agricultural
Sciences, China
Elango Kamaraj,
The University of Texas Health Science
Center at San Antonio, United States

*CORRESPONDENCE

Changfa Wang

wangchangfa@lcu.edu.cn

Muhammad Zahoor Khan

zahoorkhattak91@yahoo.com

Muhammad Zahoor

muhammad.zahoor@medisin.uio.no

RECEIVED 28 June 2024
ACCEPTED 09 September 2024

PUBLISHED 04 October 2024

CITATION

Khan MZ, Chen W, Naz S, Liu X,
Liang H, Chen Y, Kou X, Liu Y,
Ashraf I, Han Y, Peng Y, Wang C and
Zahoor M (2024) Determinant genetic
markers of semen quality in livestock.
Front. Endocrinol. 15:1456305.
doi: 10.3389/fendo.2024.1456305

COPYRIGHT

© 2024 Khan, Chen, Naz, Liu, Liang, Chen,
Kou, Liu, Ashraf, Han, Peng, Wang and Zahoor.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 04 October 2024

DOI 10.3389/fendo.2024.1456305
Determinant genetic markers of
semen quality in livestock
Muhammad Zahoor Khan1*, Wenting Chen1, Saima Naz2,
Xiaotong Liu1, Huili Liang1, Yinghui Chen1, Xiyan Kou1,
Yihong Liu1, Iqra Ashraf2, Ying Han1, Yongdong Peng1,
Changfa Wang1* and Muhammad Zahoor3*

1Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng
University, Liaocheng, China, 2Department of Zoology, Government Sadiq College Women University,
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The reproductive efficiency of livestock is crucial for agricultural productivity and

economic sustainability. One critical factor in successful fertilization and the

viability of offspring is the quality of semen. Poor semen quality, especially in

frozen-thawed semen used in artificial insemination (AI) have been shown to

influence conception outcomes, resulting a negative impact on livestock

production. Recent advancements in genetic research have identified specific

markers linked to semen quality traits in various livestock species, such as cattle,

sheep, goats, pigs, buffalo, and equines. These genetic markers are essential in

screening males for breeding suitability, which in turn enhances selective

breeding programs. Understanding these markers is crucial for improving

reproductive performance and increasing productivity in livestock populations.

This review offers a comprehensive overview of the genetic markers associated

with semen quality in key livestock. It explores the underlying genetic

mechanisms and their practical implications in animal breeding and

management. The review underscores the importance of integrating genetic

insights into breeding strategies to optimize reproductive efficiency and ensure

the sustainable development of livestock industries.
KEYWORDS
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1 Introduction

The reproductive efficiency of livestock is a vital factor that significantly impacts

agricultural productivity and economic sustainability. Semen quality is particularly crucial

in determining successful fertilization and the resulting offspring’s outcomes (1, 2). Sperm

disorders in frozen–thawed semen, widely used in artificial insemination (AI) technology,

confer a risk of impaired fertility in livestock. In addition, poor quality may lead to male

infertility (3, 4). The quality of semen plays a crucial role in the reproductive success of

livestock by directly impacting fertility rates, genetic diversity, and overall herd
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productivity. The efficiency of breeding programs and the

profitability of livestock farming depend on the ability to produce

offspring with desirable traits.

The assessment of semen quality traditionally relies on

conventional methods, which evaluate sperm motility,

morphology, concentration, and ejaculate volume. Over time,

there have been significant improvements in this assessment,

allowing for a more comprehensive evaluation of sperm quality

and fertility parameters (5). However, these methods do not

consider the molecular characteristics of sperm cells, such as

DNA integrity, oxidative status, or the presence of essential sperm

proteins (6). This limitation can hinder the identification of

molecular causes of subfertility. Several tests have been developed

to predict semen quality, but a single, highly reliable test is not yet

available (7, 8). Genetic markers provide valuable information

about the genetic factors that determine semen quality (9, 10).

They enable accurate predictions and early detection of problems

before physical symptoms appear. These markers are crucial for

monitoring how semen quality traits are inherited across

generations, making them extremely valuable for breeding

programs. By using genetic markers, we can make better choices

when selecting individuals with the best traits (8, 11, 12). This also

helps us to understand the genetic basis of semen quality and

reduces the impact of environmental factors. As a result, the

assessment of semen quality becomes more stable and reliable

compared to traditional methods that rely solely on physical

characteristics (9, 13).

Recent advancements in genetic research have enabled the

identification of specific genetic markers associated with semen

quality traits in various domestic livestock species (14–16),

including sheep (17), goats (18), pigs (19), cattle (20), buffalo (21)

and equines (22). In addition, these genetic markers also play a key

role in screening the suitability of male for breeding purposes (23).

Thus, understanding these genetic markers is essential for enhancing

selective breeding programs, improving reproductive performance,

and ultimately increasing the productivity of livestock populations.

This review study aims to provide a comprehensive review of the

genetic markers linked to semen quality in livestock, exploring the

underlying genetic mechanisms and their practical implications in

animal breeding and management.
2 Methodology

This review provides a comprehensive overview of the genes

associated with semen quality traits across various livestock species,

including buffalo, cattle, equine, pigs, sheep, and goats. Themajority of

the data considered in this review were derived from publications

spanning from 2010 to 2024, with an additional inclusion of data from

ten articles published between 2003 and 2010. The literature search

was conducted using databases such as Google Scholar, X-MOL,

PubMed, and Scopus. Only articles published in English and indexed

in SCI journals were considered. The search employed keywords such

as ‘pigs,’ ‘cattle,’ ‘buffalo,’ ‘horses,’ ‘sheep,’ ‘goats,’ ‘semen quality traits,’

and ‘genetic markers associated with semen quality traits. Notably,
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data from book chapters, conference proceedings, and letters to the

editor were excluded from this review. Finally, the DAVID online tool

(https://david.ncifcrf.gov/tools.jsp) was utilized to identify the

biological processes and signaling pathways of genes associated

with semen quality traits in livestock.
3 Genetic markers associated with
semen quality phenotypic traits in
cattle bulls

Various approaches, such as genome-wide association studies

(GWAS), transcriptomic analysis, and the candidate gene method,

have been utilized to screen genes associated with semen quality

traits in cattle bulls (24, 25). GWAS analysis involves evaluating

genomes from multiple phenotypes to identify genetic markers that

can predict the presence of a trait. Once these markers are

identified, they can be used to understand how genes contribute

to the traits. For example, a study found that DYRK1A, TEC, and

TXK were associated with sperm motility based on GWAS analysis

(10). Another study documented the association of GALNTL6,

HMGB2, ADAM29, PRMT6, SCAPER, EDC3, and LIN28B with

spermatogenesis, ejaculate volume, sperm concentration, and

sperm motility (26). Similarly, GWAS analysis has led to the

discovery of several genes associated with spermatogenesis, total

sperm motility, and progressive sperm motility in Italian Holstein

bulls (27), as shown in Table 1.

Recent studies have documented the association of PRM1,

STK35, and IFT27 (28), FOXO4, FOXP3, GATA1, CYP27B1, EBP,

KDM5C, LRRK2, and PME (29), and MARCH1 (14) with semen

quality traits and bull fertility. Another study reported the

upregulation of SPADH2, TIMP-2, PLA2G7, OAZ3, GPx4, and

GSTM3 in bulls with reduced sperm motility and fertility (30). In

contrast, the levels of caltrin and ADM were low in bulls with high

ejaculate rejection rates, indicating a strong link between these

proteins and sperm motility (30). Furthermore, FBXO39 was found

to be differentially expressed in sperm cells and seminal plasma,

showing a strong correlation with sperm motility in bulls (20).

Recently, research compared the genetic marker profiles of seminal

plasma from breeding bulls producing good and poor-quality

semen (31). Consistently, a study conducted proteomic analysis of

seminal plasma and found that CCL2, UQCRC2, and SAA1 were

upregulated in the seminal plasma of poor-quality semen and

negatively associated with sperm functions (32). Furthermore,

NGF, EEF1A2, COL1A2, IZUMO4, PRSS1, COL1A1, WFDC2,

COL1A1, COL2A1, COL1A2, SPP1, and PDGFA were found to

have a positive effect on sperm function and were downregulated in

the seminal plasma of poor-quality semen.

Interestingly, the association of TPT1, BOLA-DRA, CD74,

RPS17, RPS28, RPS29, RPL14, RPL13, and RPS27A with sperm

functionality, survival, oxidative stress, and bull fertility has been

discovered (33). Furthermore, it has been revealed that POU4F2,

GRIK1, NEDD4, FOXF1, RAD51B, WNT4, WNT5A, RIMS1 and

PPP3CA were key genes associated with sperm head and tail
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disorders in cryopreserved semen of bulls (34). Consistently,

another study found that polymorphisms in FSHR, INHA,

INHAB, TNP2, and SPEF2 genes were significantly correlated

with doublet ejaculate volume, sperm concentration, progressive

motility, and total number of spermatozoa in bulls (35). These genes

were found to be associated with sperm structural integrity, cellular

communication, and DNA repair, all of which are important for

spermatogenesis and sperm function.

4 Genetic markers associated with
semen quality phenotypic in
buffalo bull

Improving the quality of buffalo semen is a crucial focus in the

fields of livestock genetics and reproductive biotechnology. Recent

advancements have identified genetic markers in buffalo bulls that

show promise in enhancing semen quality. For instance, one study

found that variations in the Leptin gene are linked to higher
Frontiers in Endocrinology 03
progressive motility (PR), increased sperm concentration, total

sperm count, and elevated levels of LH and testosterone

hormones (81). Another research study identified significant

associations between the expressions of MAPK3, RPL36AL, EXT2,

RPS27A, RPS18, and RPS28 with progressive motility, acrosome

integrity, functional membrane integrity, and overall fertility rate

(82). Similarly, GWAS analysis discovered several genes, including

TEKT2, SPEM1, PRM3, EQTN, PLCZ1, SPESP1, SPACA1, TNP1,

and YBX2, that may influence sperm motility as well as the

structural and functional membrane integrities of sperm (83).

Furthermore, the association between RPL10, ZCCHC13, AKAP4,

TSPAN6, RPL10, and RPS4X and sperm motility has been well

established (84). Another study highlighted a positive correlation

between GnRHR and percentages of sperm motility, sperm

concentration, and live sperm count (85). Higher expression

levels of PDZD8, GTF2F2, ZNF397, KIZ, LOH12CR1, ACRBP,

PRSS37, CYP11B2, F13A1 and SPO11 were found in high-fertile

spermatozoa, whereas overexpression of MT1A, ATP5F1, CS,

TCRB, PRODH2, HARS, IDH3A, SRPK3, TUBB2B, GPR4, PMP2,
TABLE 1 Genetic markers associated with semen quality phenotypic traits in cattle bull.

Genes Associated with semen quality phenotypic traits

LPCAT4, CACNB2, IGFBP3, STEAP1, POU6F2, PPP1CB, AQP7 Acrosomal integrity

CDF9, MARCH1, WDR19, SLOICI, ST7, DOP1B, CFAF9, INHBA, ADAMTS1
Sperm motility, semen volume, sperm count, sperm concentration, sperm head,
sperm integrity, sperm tail abnormalities, and percentage of abnormal sperm traits.

GART, ESR1, MAP2K5, ZFYVE26, RAD51B, TTC29, SPADH2, GPR26, FGFR2 Damaged sperm tails and cell necks

OPN, TNP1, TNP2, PSMB5, PRMT5, ACTB, NPC1, FSCN1, NR5A2, IQCG, LHX8,
DMRT1, HIBADH, PCK1, KIT, CDH1, PRM1, PRM2, DAZL, PPIA, INRA, SPAG11,
PRNP, CAPN1

Ejaculate volume and sperm motility

SPATA7, PI4KB, DPY19L2 Spermatogenesis, sperm capacitation and acrosome formation

UBE2D3, CASP3, HSFY2 Percentage progressive motile spermatozoa

PRKCB, CFTR, IGF1R, SRD5A2, CATSPER1 Poor sperm motility

MAP3K1, VIP, SOD2, TCP1, PACRG, SPEF2 Scrotal circumference, sperm motility and male fertility

DCP1A, PRKCD, PHF7, TLR9 Semen volume and total number of sperm

ETNK1, PDE3A, PDGFRB, CSF1R, WT1, DSCAML1, RUNX2, FSHR, INHA, PRL,
PLCz, TSPY

Semen volume per ejaculate, initial sperm motility, sperm concentration per
ejaculate, number of sperm per ejaculate, number of motile sperm per ejaculate

HDAC9, ID2, GSTT1, GSTM1, CDK5, NOS3, PRL, CD9, RAPD Sperm concentration and motility

KAT8, CKB, TDRD9 Sperm development and motility

ORC4, EPC2, MBD5, CFAP58 Sperm head abnormalities

SGMS2, TET2, GSTCD Sperm membrane integrity

DYRK1A, TEC TXK, FHDC1, PARK2, GALNT13, PRM1, PRM2, BM1500,
UMN2008, INHBE, INHBC, HELB, INCENP, Tf, PSMA1, SNCAIP, RPL31, PRKCE,
PAPSS2, PLP1, R1G7, LHR, GnRHR

Sperm motility

SGMS2, TET2, GSTCD Sperm plasma membrane integrity

TUBB2C, HSP10, HXK1, SOD1, AQP7 Sperm viability

GALNTL6, HMGB2, ADAM29, PRMT6, SCAPER, EDC3, LIN28B, ZNF280B,
SLC26A2, DMXL1, OR52A1, MACROD2, REV1, JAKMIP1, PPP1R11, HSPA4,
MORC1, SPATA21, GSTA4, FSCN3, EFHC1, CSNK1G2, EPHA2, FAM9B,
TBL1X, PIH1D3

Spermatogenesis and male fertility

BMP2, NGF Semen mitochondrial membrane potential
The information on genes and their association with semen quality phenotypic traits in bulls has been obtained from previous studies (10, 14, 24, 26, 36–80).
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CTSL1, TPPP2 and EGFL6 were reported in low-fertile spermatozoa

(86). For easy reference, we have summarized the research progress

on genes associated with semen quality traits in buffalo bulls

in Table 2.
5 Genetic markers associated with
semen quality phenotypic traits in
buck and ram

Fertility is essential for the overall reproductive success of sheep

and goats, playing a vital role in the small ruminant industry.

Similar to other livestock, semen quality is also crucial in sheep and

goats for successful conception. Significant research has been

conducted on the screening of genes and their association with

semen quality traits in bucks and rams, including volume, gross

motility, concentration, percent post-thaw motility, number of

spermatozoa, and sperm abnormalities (100, 101). Previous

GWAS studies consistently identified several candidate genes

related to semen quality traits in sheep (102, 103) and goats

(104). In order to improve clarity and facilitate understanding, we

have provided a summary of studies on genes associated with semen

quality traits in Table 3.
6 Genetic markers associated with
semen quality phenotypic traits
in boars

The use of AI in swine production allows for the selection of

boars based on their desirable production traits. However, AI

heightens the importance of each boar ’s reproductive

performance, necessitating the evaluation of semen samples for

their fertilization potential at boar stations (117). The pig industry

aims to maximize the number of insemination doses produced from

each boar ejaculate, which requires boars to produce high-quality

semen characterized by high motility, progressive motility, and low

levels of morphological defects, in large quantities (a high number

of sperm cells per ejaculate) (118).

Spermatogenesis and fertilization are complex processes

regulated by numerous genes. For instance, ACTN1 and ACTG2

significantly impact semen volume per ejaculate and sperm motility

(117). Lin et al. identified several candidate genes, including

gonadotropin-releasing hormone receptor (GNRHR), prolactin

(PRL), prolactin receptor (PRLR), follicle-stimulating hormone

beta (FSHB), luteinizing hormone beta (LHB), follistatin (FST),

inhibin alpha (INHA), inhibin beta A (INHBA), retinol-binding

protein 4 (RBP4), androgen receptor (AR), relaxin (RLN), acrosin

(ACR), osteopontin (OPN), and b-actin (ACTB) that were

associated with sperm quality traits such as sperm concentration,

motility, semen volume per ejaculate, plasma droplets rate, and

abnormal sperm rate (119–121). Further studies have highlighted

the roles of phospholipase C zeta (PLCz), cyclooxygenase

isoenzyme type 2 (COX-2) (122), and cluster-of-differentiation
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antigen 9 (CD9) (123), along with estrogen receptor 1 (ESR1) and

ESR2, in spermatogenesis and semen quality traits like sperm

concentration, motility, semen volume, plasma droplet rate, and

abnormal spermatozoa rate (124, 125). TEX14 has been associated

with spermatogenic arrest and subsequent infertility in boars (126).

Similarly, TK17b and HECW2 are linked to severe defects in sperm

acrosome and chromatin, causing infertility (127). Genes such as

EGF, PTGS2, and PRLR have been positively correlated with semen

volume per ejaculate, sperm motility, percentage of normal sperm,

percentage of sperm with proximal plasma droplets, and total

sperm count per ejaculate (128). The DAZL gene has been

associated with lower sperm motility and concentration in boars

(129). Polymorphisms in genes like CD9 (g.358A>T), ESR1

(g.35756T>C), and PLCz (g.158T>C) have been linked to sperm

motility (130–132). Additionally, RAMP2 and GIMAP6 were

identified through RNA-seq analysis and found to be associated

with sperm DNA fragmentation in boars (133). Similarly, another

study revealed through RNA-analysis that genes such as FOS,

NFATC3, EAF2, BAMBI, PTPRU, PTPN2, ND6, ACADM, and

FGF-14 were associated with spermatogenesis, energy metabolism

and poor semen freezability (134).

Genome-wide association studies (GWAS) have been used to

identify genetic markers associated with semen quality traits in

boars. A study reported the link of mitochondrial methionyl-tRNA

formyltransferase (MTFMT) is associated with sperm motility

(135). Similarly, another research identified PLA2G4A, PTGS2,

and HPGDS as markers associated with motility, progressive

motility, the number of sperm cells per ejaculate, and total
TABLE 2 Genetic markers associated with semen quality phenotypic
traits in buffalo bull.

Genes
Associated with semen
quality phenotypic traits

GnRHR
Sperm concentration, post-thaw sperm
motility, sperm abnormality and
sperm ejaculate volume

LHb
Sperm concentration (million/mL),
percent mass motility, acrosome and
membrane integrity

SFRP1, STXBP4, BCR, PSMG4, ARSG,
ATP11A, RXRA

Spermatogenesis

SPINK2, NEDD8, YBX2 Spermatogenesis and sperm motility

PRM1, AKAP3 Sperm motility

R2T11, OR10S1 Spermatogenesis

YBX1, ORAI3, TFAP2C Sperm motility and spermatogenesis

VAMP4, APOC3 Sperm maturation and capacitation

PHB, CAPZB, TEKT2 Sperm motility

OPN
Sperm concentration, sperm motility
and the lowest total number of
sperm pathologies

IGF-1 Spermatozoa motility
The data on genes and their association with phenotypic traits of semen quality in buffalo bulls
has been collected from previous studies (85–99).
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morphological defects, all using GWAS (136). Accordingly, the

association of PRMT6, Sox5, PEX10, SIRPA, and SIRPG with

oligozoospermia in Han Chinese Population has been explored

(137). Furthermore, a GWAS analysis revealed several key genes

and their association with semen quality traits and spermiogenesis

including TDRD5, QSOX1, BLK, TIMP3, THRA, CSF3, and ZPBP1

with number of sperm cells, PPP2R2B, NEK2, NDRG, ADAM7,

SKP2, and RNASET2 with sperm motility; SH2B1, BLK, LAMB1,

VPS4A, SPAG9, LCN2, and DNM1 with sperm progressive motility,

GHR, SELENOP, SLC16A5, SLC9A3R1, and DNAI2 with total

morphological abnormalities (138). Interestingly, genetic markers

have also been identified through GWAS analysis that were

associated sperm morphology, deformities and semen qualities

(139). Several other genes such CHD2, KATNAL2, SLC14A2,

ABCA1, PRM1, OAZ3, DNAJB8, TPPP2, IQCJ, ACTR2, HARS

and TNP have been found to be correlated with percentage of

head and neck abnormalities, abnormal acrosomes and motile

spermatozoa (140). To facilitate understanding, a summary of

studies on genes associated with semen quality traits is provided

in the accompanying Table 4.
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7 Genetic markers associated with
semen quality phenotypic traits
in equine

Genetic factors are a major contributor to the wide range of

semen quality observed in different horse populations (159–161).

This variability has a significant impact on breeding success and

reproductive efficacy in horses. Genetic traits influence important

parameters like sperm motility, morphology, and overall viability,
TABLE 3 Genetic markers associated with semen quality phenotypic
traits in buck and ram.

Genes
Associated with semen
quality phenotypic traits

ARHGEF38, TIGD2, PCDH7 SCAPER,
PSMA4, CABLES1

Ejaculate volume

CCSER1, KCNIP4, GBA3 STIM2,
OCIAD1, HOPX, LOC101110593

Sperm motility and
membrane integrity

IL7R, CFB
Sperm motility, cell growth,
homeostasis of number of cells,
regulation of the immune reaction

DOCK2, CPLANE1, SLC9C1, GRM8,
PAQR3, BMP2K, NCALD, CMIP,
SORD, SH2B1, NT5E, PARM1, FSHb,
CUL9, DSCAML1, FSHb, LHb

Sperm motility and spermatogenesis

MTNR1A and CYP19, SMAD2,
BMP1R, PPP3CA

Sperm volume, sperm concentration,
total spermatozoa per ejaculate, sperm
motility, and testicular sizes

ITGA4/6/9, TGFB2, TGFBR1, TGFBR2,
JAM3, SMAD3, NDRG1, FSCN3,
CYP26B1, Leptin, RAI14

Spermatogenesis

SREBP1, ELOVL2
Spermatogenesis and remodeling of
the membranes of developing
germ cells

SOX9, BCL2, HDC, GGT5, ZNF280BY
Spermatogenesis and
testicular development

DPY19L2, RNF17, TDRD5, SUN5,
MEIOC, KLHL10, PLD6, TNP1, TSS6,
SPAG6, CAPZA3, SPAG11

Spermatogenesis, spermatid
development, and flagellated
sperm motility

ODF3, ZPBP1, INSL3, AMH, INHBA,
COL1A1, COL1A2, INHA, PDGFA,
IGF1, DNAH17, SPATA4, CIB4

Spermatogenesis, sperm motility,
structural integrity of sperm tails,
testis development, size and
male fertility
The data on genes and their correlation with phenotypic traits of semen quality in bucks and
rams has been collected from previous sources (17, 18, 99–116).
TABLE 4 Genetic markers associated with semen quality phenotypic
traits in boar.

Genes Associated with semen
quality phenotypic traits

FOXL3, GPER1, PDGFA, PPP1CC,
CSNK1G2, PSMF1, PRKAR1B, SUN1,
TSPO, SPAG6, H2AFZ, RNF4, NR4A1

Spermatogenesis, sperm motility and
ejaculate volume

CEP78, DNAAF5, KCNA, GPER1,
CRISP3, Kiss1, C7H15orf39, NOS2,
PTBP2, STRA8

Sperm motility

PTGES, SFRP1, SPP1, PLA2G4E,
KCNJ5, PTGS2, HCN1, DAZL, BCAS2

Spermatogenesis and
testicular development

ZSWIM7, TEKT3, UBB, EIF2B2,
MLH3, CCDC70

Sperm rate and count

TXNRD1, HSPA4L, ATP1B1
Spermatogenesis, sperm integrity
and motility

ESR, FSHB, PRLR, STK35,
IFT27, HSPD1

Sperm ejaculate volume, sperm
motility and sperm concentration

B9D2, PAFAH1B3, TMEM145, CIC Sperm concentration

WWC2, CDKN2AIP, ING2,
TRAPPC11, STOX2, PELO

Semen volume

SMAD1, NF-1, FOXMI, RXRA,
STAT4, BAMBI, RAB33B, CKS2,
LARS2, SLC25A16, ACADM, CPT2

Sperm motility and membrane
integrity and spermatogenesis

SCLT1, MAP3K20, MS4A2, ROBO1
APPL1, PLBD1, FBXO16, EML5,
RAB3C, OXSR1, PRICKLE1

Sperm motility and plasma membrane
integrity of spermatozoa

HOOK1, ARSA, SYCE3, SOD3,
GMNN, RBPJ, STIL, FGF1

Sperm coiled tail and
sperm deformities

FGF1, ADIPOR1, ARPC5, FGFR3,
PANX1, IZUMO1R, ANKRD49, GAL

Sperm bent tail

NSF, WNT3, WNT9B, LYZL6,
FGFR1OP, RNASET2, FYN, LRRC6,
EPC1, DICER1, FNDC3A, PFN1

Sperm proximal droplet

OMA1, PFN1, PELP1, BMP2, GPR18,
TM9SF2, SPIN1

Distal midpiece reflex

ARSA, SYCE3, MOV10L1, CBR1,
KDM6B, TP53, PTBP2, UBR7,
KIF18A, ADAM15, FAAH,
TEKT3, SRD5A1

Distal droplet

CHD2, KATNAL2, SLC14A2, ABCA1,
PRM1, OAZ3, DNAJB8, TPPP2, TNP1,
IQCJ, ACTR2, HARS

Sperm motility and
sperm morphology
The information on genes and their association with phenotypic traits related to semen quality
in boars has been collected from previous studies (9, 19, 138–158).
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which are essential for successful fertilization. Recent GWAS analysis

have identified specific genes associated with seminal traits, such as

sperm concentration and motility (162, 163). For example, studies

have highlighted the role of cysteine-rich secretory proteins (CRISP1,

CRISP2, CRISP3), as well as other genes like SIRT1, PGK2, CCT8,

SOD1, and GLIPR1L1, which have been linked to important semen

quality traits (164–167). These genes play crucial roles in the structure

and function of sperm cells, influencing their ability to fertilize an egg.

Further GWAS research has discovered associations between

additional genes, such as NME8, OR2AP1, and OR6C4, and sperm

motility in stallions (22). The significance of these findings lies in the

potential use of these genetic markers in selective breeding programs

to improve reproductive outcomes in horses. Marker-based

approaches using microsatellites have also provided insight into the

genetic basis of semen quality. Variants within candidate genes like

SPATA1, PRLR, ACE, FKBP6, SP17, PLCz1, and FSHB have been

linked to sperm motility, which directly impacts the pregnancy rate

per cycle, especially in German Warmblood horses (168–173). These

genes are involved in critical processes such as sperm-egg fusion and

the acrosome reaction, highlighting their importance in reproductive

success. Furthermore, a recent study identified the gene SCN8A,

associated with sperm motility. SCN8A encodes a sodium channel

found in the flagellum and around the neck of mammalian

spermatozoa, suggesting its role in regulating motility (174).

Overall, this suggests that genetic variations in these genes may

influence semen quality by affecting sperm development, survival in

the reproductive tract, or capacitation and acrosome reaction.
8 Identifying key biological functions
processes and pathways in genes
linked to semen quality in livestock

In this review, we used the DAVID online software (175, 176) to

analyze the pathways and functions of genes related to semen quality in

livestock. Among the genes analyzed, we focused on those associated

with hormonal regulation and receptor activity, including GnRHR,

LHR, LHb, FSHb, ESR1, ESR, PRLR, INHBA, INHA, INHBC, INHBE,
MAD2, SMAD3, TGFB2, TGFBR1, TGFBR2, and FSHR. Our analysis

revealed their involvement in several key signaling pathways: the

transforming growth factor-beta (TGF-b) signaling pathway

(bta04350), prolactin signaling pathway (bta04917), cAMP signaling

pathway (bta04024), and Hippo signaling pathway (bta04390).

Consistent with our findings, the literature suggests that

components of the Hippo signaling pathway play a critical role in

spermatogenesis and sexual maturity in male reproductive tracts of

Hu sheep (177). Additionally, disruptions in Hippo signaling have

been linked to sperm morphological abnormalities and infertility in

patients with autosomal dominant polycystic kidney disease (178).

The TGF-b signaling pathway is crucial for testis development and

spermatogenesis and is implicated in maintaining male tract

homeostasis and function (179). Notably, studies have shown that

the absence of IGF1 in sperm plasma membranes correlates with

infertility (180), and the presence of TGFb1 and TGFb2 in porcine

seminal plasma is associated with semen quality (181). Furthermore,
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TGF-b has been reported to modulate the immune environment of

the female genital tract post-semen delivery during mating or

artificial insemination (182). The cAMP signaling pathway is

identified as a pivotal mechanism in gamete development, sperm

capacitation, and fertilization, and it is targeted in infertility therapies

(183, 184). Its role is further evidenced in regulating spermmotility in

stallions (185) and has been implicated in affecting sperm motility in

dairy goats via the alkaline dilution effect (186). The essential role of

the prolactin signaling pathway is also underscored in our findings.

Further analysis revealed that genes involved in energy

metabolism, mitochondrial function spermatogenesis, sperm

development, sperm motility and structure (TEKT, TNP, PRM1,

TNP, CDH, HSPA, DAZL, STRA, DPY19L2, KIT, MEIOC and

KLHL10 etc.), significantly regulate other signaling pathways,

including MAPK (bta04010), cytoskeleton in muscle cells

(bta04820), and PI3K-Akt signaling pathway (bta04151). The

biological functions of these genes are summarized in Table 5 and

Figure 1. Additionally, genes implicated in apoptosis (CATSPER1,

BCL2, BAX and CASP3) influence pathways such as Apoptosis -

multiple species (bta04215) and p53 signaling pathway (bta04115).

The p53 signaling pathway is noted for its role in maintaining semen
TABLE 5 Gene ontology (GO) analysis of biological processes linked to
semen quality genes.

Biological functions Genes

GO:0007286~spermatid development
PRM2, DPY19L2, KIT, MEIOC,
KLHL10, TNP1, TDRD5

GO:0007283~spermatogenesis
DAZL, STRA8, PRM2, PRM1, KIT,
TNP2, TNP1, TDRD5, SUN5

GO:0035092~sperm
DNA condensation PRM1, TNP2, TNP1

GO:0030317~flagellated
sperm motility TEKT2, TEKT3, TNP1

GO:0010954~positive regulation of
protein processing TNP2, TNP1

GO:0030261~chromosome
condensation PRM2, PRM1

GO:0060294~cilium movement
involved in cell motility TEKT2, TEKT3

GO:0007155~cell adhesion VCAM1, ATP1B1, JAM3, ICAM1

GO:0072659~protein localization to
plasma membrane CDH2, CDH1, ATP1B1

GO:0098609~cell-cell adhesion VCAM1, CDH2, ICAM1

GO:0006298~mismatch repair MSH2, MLH3

GO:0007416~synapse assembly CDH2, CDH1

GO:0044331~cell-cell adhesion
mediated by cadherin CDH2, CDH1

GO:0016339~calcium-dependent cell-
cell adhesion via plasma membrane
cell adhesion molecules CDH2, CDH1

GO:0000902~cell morphogenesis CDH2, CDH1

GO:0006457~protein folding HSPA4, HSPA4L
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quality by ensuring the quantity and quality of mature sperm and

regulating reproductive processes such as genomic integrity and germ

cell pools (187). Moreover, the SPATA18-P53 pathway is crucial for

controlling mitochondrial quality by eliminating oxidative proteins,

as oxidative stress can adversely affect sperm motility and quality by

upregulating p53 expression (188). Lastly, genes related to the

antioxidant response (SOD1, SOD2) significantly regulate the

Peroxisome signaling pathway (bta04146). Peroxisome proliferator-

activated receptor gamma (PPARg) is suggested to link lipid

metabolism with overall reproductive functions, providing essential

energy from glucose and fat metabolism for sperm physiology and

influencing male fertility (189, 190).
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9 Existing gaps and prospective
directions for future research

The integration of genomics, transcriptomics, proteomics, and

metabolomics data is crucial for understanding the complex

regulatory networks that impact semen quality. By considering all of

these factors together, we can uncover interactions between genes,

proteins, and metabolites that are not evident when studying each

omics layer independently. Although this review identifies many genetic

markers associated with semen quality, it is important for future

research to focus on the functional validation of these markers.

Technologies like CRISPR-Cas9 and RNA interference (RNAi) can be
FIGURE 1

Schematic representation of genes involved in important biological processes and their associations with semen quality. This figure illustrates the
relationships between various genes and their roles in biological processes such as sperm maturation, DNA integrity, spermatogenesis, oxidative
stress response, and sperm motility. Please note that this figure is based on speculative information rather than validated data, and the depicted
relationships should be interpreted with caution.
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utilized to confirm the roles of these genes in spermatogenesis and

fertility. In addition to genetic markers, epigenetic modifications such as

DNA methylation, histone modification, and non-coding RNAs may

also play significant roles in semen quality. It is essential for future

studies to explore how these epigenetic factors influence gene expression

related to sperm function. By conducting comparative studies across

different livestock species, we may be able to identify conserved genetic

pathways and markers that are crucial for reproductive success. This

would provide insights that can be applied across species. However, it is

important to note that while the review identifies numerous genetic

markers associated with semen quality, many of these markers have not

been functionally validated. This limitation hinders the direct

application of these findings in breeding programs. Furthermore, it is

worth considering that the genetic markers identified are often specific

to certain species, limiting their generalizability across different livestock

species. This poses a challenge for developing universal breeding

strategies. Semen quality is a multifactorial trait influenced by various

genes, environmental factors, and their complex interactions. Due to the

complexity of these interactions, it is difficult to identify single markers

that can reliably predict fertility outcomes. Differences in breed, animal

age, and health status are critical factors that significantly influence

semen quality. These variables should be carefully considered in future

research studies to ensure comprehensive and accurate findings.
10 Conclusion

In conclusion, the identification and understanding of genetic

markers associated with semen quality traits in livestock have the

potential to significantly enhance reproductive efficiency and genetic

improvement in animal breeding programs. Thanks to advancements in

genomic technologies and molecular biology, we can now pinpoint

specific genes and genetic variations that impact semen quality,

including sperm motility, concentration, morphology, and overall

fertility. This knowledge is vital for developing targeted breeding

strategies that aim to improve these traits, ultimately leading to

enhanced reproductive outcomes and increased productivity in

livestock populations. By incorporating genetic markers into selective

breeding programs, livestock producers can achieve higher fertility rates,

improve genetic diversity, and increase economic benefits. Future

research should focus on validating these genetic markers across

different breeds and environments to ensure their practical application

in diverse farming systems. Ultimately, integrating genetic insights into

reproductive management practices will play a crucial role in ensuring

the sustainability and profitability of livestock industries worldwide.

Furthermore, this review is based on data from various studies, but

inconsistencies in study design, sample sizes, and analytical methods

across studies can lead to conflicting results. This variability complicates

the synthesis of findings and the identification of reliable markers.
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Glossary

CAPZA3 Capping actin protein of muscle Z-line subunit alpha 3
Frontiers in Endocrino
CAPZB Capping actin protein of muscle Z-line subunit beta
CASP3 Caspase 3
CATSPER1 Cation channel sperm associated 1
CDH2 Cadherin 2
CDH1 Cadherin 1
TGFB2 Transforming growth factor beta 2
ACTB Actin beta
ACTR2 Actin related protein 2
ADAD1 Adenosine deaminase domain containing 1
ATP1B1 ATPase Na+/K+ transporting subunit beta 1
CFAP58 Cilia and flagella associated protein 58
CRISP3 Cysteine-rich secretory protein 3
CROCC2 Ciliary rootlet coiled-coil, rootletin family member 2
CSNK1G2 Casein kinase 1 gamma 2
DAZL Deleted in azoospermia like
DICER1 Dicer 1, ribonuclease III
DPY19L2 Dpy-19 like 2
ESR1 Estrogen receptor 1
FSHR Follicle stimulating hormone receptor
GNRHR Gonadotropin releasing hormone receptor
HOOK1 Hook microtubule tethering protein 1
FYN FYN proto-oncogene, Src family tyrosine kinase
ICAM1 Intercellular adhesion molecule 1
HSPA4L Heat shock protein family A (HSP70) member 4 like
INHA Inhibin subunit alpha
INHBA inhibin subunit beta A
INHBC Inhibin subunit beta C
INHBE Inhibin subunit beta E
JAM3 Junctional adhesion molecule 3
KIT KIT proto-oncogene, receptor tyrosine kinase
KLHL10 Kelch like family member 10
logy 14
MAP3K1 Mitogen-activated protein kinase 1
MDC1 Mediator of DNA damage checkpoint 1
MEIOC Meiosis specific with coiled-coil domain
TEKT3 Tektin 3
TGFB2 Transforming growth factor beta 2
TGFBR1 Transforming growth factor beta receptor 1
TNF Tumor necrosis factor
TNP1 Transition protein 1
TUBB Tubulin beta class I
VCAM1 Vascular cell adhesion molecule 1
ZSWIM7 Zinc finger SWIM-type containing 7
TNP2 Transition protein 2
MOV10L1 Mov10 like RISC complex RNA helicase 1
MSH2 MutS homolog 2
MTNR1A Melatonin receptor 1A
NOS2 Nitric oxide synthase 2
OAZ3 Ornithine decarboxylase antizyme 3
PPP1CC Protein phosphatase 1 catalytic subunit gamma
PRKAR1B Protein kinase cAMP-dependent type I regulatory

subunit beta
PRLR Prolactin receptor
PRM1 Protamine 1
RAB33B RAB33B, member RAS oncogene family
RAD51B RAD51 paralog B
SMAD3 SMAD family member 3
SPAG6 Sperm associated antigen 6
SRC SRC proto-oncogene, non-receptor tyrosine kinase
STRA8 Stimulated by retinoic acid 8
TDRD5 Tudor domain containing 5
SUN5 Sad1 and UNC84 domain containing 5
SYCE3 Synaptonemal complex central element protein 3
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