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Everolimus in pituitary tumor:
a review of preclinical and
clinical evidence
Zihong Yao1,2 and Hui Chen2*

1The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China, 2Department of
Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
Although pituitary tumors (PTs) aremostly benign, some PTs are characterized by

low surgical resection rates, high recurrence rates, and poor response to

conventional treatments and profoundly affect patients’ quality of life.

Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used

for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis.

It has been administered for various neuroendocrine tumors of the digestive

tract, lungs, and pancreas. EVE not only suppresses the growth and proliferation

of APT cells but also enhances their sensitivity to radiotherapy and

chemotherapy. This review introduces the role of the PI3K/AKT/mTOR

pathway in the development of APTs, comprehensively explores the current

status of preclinical and clinical research of EVE in APTs, and discusses the blood-

brain barrier permeability and safety of EVE.
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1 Introduction

Pituitary tumors (PTs) are a group of tumors originating from the adenohypophysis,

neurohypophysis, and remnants of the squamous epithelial cells of the embryonic

craniopharyngeal duct, accounting for nearly 10%-25% of all intracranial tumors (1–4).

Although PTs are mostly benign, some adenomas present with radiological signs of

invasion and progress much faster than typical adenomas. Despite administering

standard treatments, these tumors continue to grow and/or secrete excessive hormones

and are categorized as aggressive pituitary tumors (APTs) (5–7). APTs account for 0.5%-

10% of all PAs, with an incidence rate of approximately 0.1 to 0.2 cases per 100,000

individuals (8–11). They are characterized by aggressive invasion and high recurrence rates

and significantly affect patients’ quality of life, which makes clinical management

challenging (12–14).

Surgery is the primary treatment modality for all PTs except Prolactinoma (PRL-PAs).

Although surgery can ameliorate the compressive effects of the tumor and partly reduce

hormone secretion, the low rate of complete resection and high recurrence rates are often

attributed to the widespread infiltration of critical structures, such as the sole of the saddle,
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slopes, or cavernous sinuses (15, 16). Reports indicated that 77% of

APTs patients underwent at least two surgeries, with 28% requiring

a minimum of four procedures (17). Radiotherapy is recommended

for PTs with postoperative tumor growth and inadequate drug

therapy; however, its effectiveness remains uncertain. The study

showed that 45% of 143 patients had tumor shrinkage after

radiotherapy, however nearly 40% received repeat radiotherapy

after 5.4 years due to tumor progression (18). Radiotherapy may

also lead to hypopituitarism, optic nerve damage, or cognitive

deficits (19–22). The 2018 update of the European Society of

Endocrinology guidelines on APTs and pituitary carcinomas

recommended temozolomide (TMZ), an alkylating agent, as the

first-line chemotherapeutic agent for APTs (23–27). However, one

study indicated that only 9.6% of patients achieved complete

remission with TMZ (18). Moreover, the long-term use of

alkylating agents may increase the risk of malignancies, such as

lymphomas and leukemias (28). Therefore, effective treatment

strategies for APTs are currently lacking.

As a critical regulator of cellular growth (29–32), metabolism

(32–34), and apoptosis (35–38), the mTOR pathway has recently

received much attention in tumorigenesis (39–42). Everolimus

(EVE), the only approved oral mTOR inhibitor can effectively

suppress tumor cell proliferation, ameliorate cellular oxidative

stress, and show anti-angiogenic properties (43–47). The Food and

Drug Administration has approved EVE for treating neuroendocrine

tumors (NETs) originating from the digestive tract, lungs, or

pancreas (48–50). Overactivation of the mTOR pathway is also

evident in PTs, a NETs (51, 52). Compared to normal pituitary

tissue, significantly higher phosphorylation levels of nuclear p-AKT

and cytoplasmic p-S6 and overall phosphorylation of eukaryotic

translation initiation factor 4E-binding protein 1 (4EBP1) have

been observed in PTs (53). The study demonstrated that EVE

inhibited adenoma cell proliferation and concurrently decreased

hormone secretion (54). Several large-scale clinical trials have

shown that EVE has good overall tolerability and leads to a few

severe adverse reactions (55–59). Therefore, EVE may serve as a

potential alternative treatment option for patients with PTs who are

resistant to conventional treatments. This article reviewed the

research progress of EVE in PAs and other NETs, and investigated

its blood-brain barrier (BBB) permeability and drug safety, providing

new options for managing PTs.
2 Molecular mechanisms of function
of EVE in PTs

2.1 Overview of the PI3K/AKT/
mTOR pathway

The PI3K/AKT/mTOR pathway plays a central role in signal

transduction in organisms. It is involved in several biological

processes, such as cellular metabolism, proliferation, and

angiogenesis (60–62). It plays a crucial role in the development

and progression of tumors (Figure 1) (63). PI3K consists of the

regulatory subunit p85a and the catalytic subunit p110a,
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functioning as an intracellular phosphoinositide kinase (64).

Activated PI3K converts phosphatidylinositol-4,5-bisphosphate

(PIP2) into triphosphoinositide (PIP3) in the plasmalemma (65,

66). PIP3, a second messenger, recruits 3-phosphoinositide-

dependent protein kinase 1 (PDK1), Akt, and serum- and

glucocorticoid-regulated kinase to the plasma membrane (67–69).

Akt, a central element of the PI3K/AKT/mTOR pathway, can be

completely activated dependent on two critical phosphorylation

sites (70–73). The phosphorylation of Thr308 by PDK1 partly

activates Akt, whereas mTORC2 phosphorylation of Ser473 fully

activates Akt (74, 75). Once activated, Akt phosphorylates multiple

downstream targets, such as tuberous sclerosis complex (TSC) 2

and forkhead box protein O, thereby directly or indirectly affecting

cell growth and survival (76, 77).

mTOR is another crucial target of Akt. It is a highly conserved

serine/threonine kinase (78), which forms two mTOR complexes,

mTORC1 and mTORC2, by recruiting other proteins and active

factors (79). Activation of mTORC1 relies on the phosphorylation of

intracellular proteins, such as TSC (80). TSC possesses two subunits:

TSC1 (hamartin) and TSC2 (tuberin) (81). Akt phosphorylates TSC2

and inhibits the negative regulatory effect of the TSC1-TSC2 complex

on Ras homologue enriched in the brain, thereby activatingmTORC1

(82). Once activated, mTORC1 also affects the phosphorylation of

ribosomal S6 kinase (S6K1, p70S6k) and 4EBP1, further enhancing

related gene expression and translation (Figure 1A). Besides,

mTORC1 inhibits autophagy (Figure 1B), stimulates genes involved

in lipogenesis (Figure 1C), and regulates apoptosis (Figure 1D),

facilitating the rapid proliferation of cancer cells (83–86). mTORC1

effectively enhances angiogenesis by regulating hypoxia-inducible

factor 1 alpha (87).

Phosphatase and tensin homologue (PTEN)-mediated

hydrolysis of PIP3 to PIP2 and P70S6K-induced phosphorylation

of insulin receptor substrate 1 (IRS1) negatively controls the PI3K/

AKT/mTOR pathway (88, 89).
2.2 The involvement of the PI3K/AKT/
mTOR pathway in the development and
progression of PTs

Extensive research has been conducted on the alterations of the

PI3K/AKT/mTOR pathway components in PTs (90). In a study

involving 53 PAs, growth hormone-secreting pituitary adenomas

(GH-PAs) (10/14, 71%) and non-functional pituitary adenomas

(NFPAs) (11/33, 33%) showed a significant association with the

mTOR pathway, compared to the control group (1/5, 20%) (91).

PIK3CA encodes the PI3K protein p110 subunit, which shows

marked amplification and mutation in PTs. Murat et al. (92) found

that 12.1% of PTs harbor PIK3CA mutations, whereas 21.2% of

cases show gene amplification. Lin et al. (93) reported that PIK3CA

mutations can be found in 9% of APTs, with 20%-40% of PTs

displaying PIK3CA amplification. Another study showed that

compared to normal pituitary tissue, the expression and

phosphorylation levels of AKT and mTOR are elevated in PTs,

whereas the expression level of PTEN is decreased (94).
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The downstream effectors of mTOR, pS6, and eukaryotic

translation initiation factor 4E (eIF4E) have been widely

investigated in PTs. Compared to normal pituitary tissue, the

pS6/eIF4E is more often activated in PTs (33%-71% vs. 20%)

(95). In mice carrying mutations predisposing to PTs, the

unregulated overexpression of p70S6k/S6 in PTs tissues compared

to adjacent brain tissue (96). Dworakowska et al. (97) found no

significant differences in the expression of p-mTOR, total mTOR,

TSC2, and p70S6K between PTs and the control group; However,
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they did find the expression of c-MYC, a target of AKT and an

oncogene, is elevated in PTs.

The mTOR pathway and its regulators are significantly linked

to PTs invasion, staging, and tumor growth, and provide important

predictive and prognostic value for PTs patients (98). Cai et al. (94)

found that invasive PTs exhibit higher levels of AKT and lower

levels of PTEN compared to non-invasive PTs. Further study of 95

PTs revealed that the expression of mTOR regulation-related

proteins was negatively correlated with cavernous sinus invasion
FIGURE 1

Schematic overview of the PI3K/AKT/mTOR signaling pathway. mTORC1 promotes mRNA translation (A), inhibits autophagy (B), promotes lipid
synthesis-related genes and represses expression of apoptosis-related genes (C) through nutrient signals generated by growth factors such as insulin
and insulin-like growth factor (D). IGF, insulin-like growth factor; Ptdlns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; Ptdlns(3,4,5)P3,
triphosphoinositide; IRS1, insulin receptor substrate 1; SGK, serum- and glucocorticoid-regulated kinase; FOXO, forkhead box protein O; RHEB, Ras
homolog enriched in brain; ATG, autophagy-related; ULK1, UNC51-like kinase 1; FIP200, 200 kDa FAK family kinase-interacting protein; eIF,
eukaryotic translation initiation factor; 4E-BP1, eIF4E-binding protein 1; S6K1, ribosomal S6 kinase; SKAR, S6K1 Aly/REF-like target; SREBP, sterol
regulatory element-binding protein; PPARg, peroxisome proliferator-activated receptor-g. [Adapted from Zoncu et al. (139)].
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(98). Zhang et al. (99) discovered that lactate secreted by PTs cells

promotes the polarization of tumor-associated macrophages via the

mTORC2 signaling pathway, thereby enhancing the release of

CCL17. This event promotes the invasion of PTs cells through

the CCL17/CCR4/mTORC1 axis. It is worth noting that another

study assessed the relationship between mTOR activity and PTs

size, volume, Ki-67%, Knosp grade, and expression of somatostatin

receptors, but found no significant correlations (95). This variability

may be attributable to differences in sample size, experimental

methods, and the heterogeneity of study subjects. To better

understand the role of the mTOR pathway in PTs, larger studies

encompassing various stages, degrees of invasion, and molecular

subtypes are required.

Notably, there are variations in the PI3K/AKT/mTOR pathway

activity among different subtypes of PTs. Analysis of 53 pituitary

samples, including GH-PAs, NFPAs, and ACTH-secreting pituitary

adenomas (ACTH-PAs), revealed elevated mTOR activity (estimated

by the pS6/eIF4E ratio). GH-PAs exhibited the highest mTOR

pathway activity, followed by NFPAs, while ACTH-PAs showed

lower mTOR pathway activity (95). In the future, it is necessary to

further explore the differences in mTOR pathway activity among

various PTs subtypes, which is important for the development of

individualized therapeutic regimens. Additionally, further studies on

molecular mechanisms are needed to elucidate the factors

contributing to the low mTOR pathway activity in ACTH-PAs.
2.3 The anti-tumor mechanisms of EVE

There is an intricate mechanism underlying the anti-tumor

effects of EVE. EVE binds to FK506 binding protein 12 in mTORC1

and the FKBP-rapamycin binding domain, thereby inhibiting the

activity of mTORC1 and its downstream molecules, blocking

mRNA translation, leading to cell cycle arrest in the G1 phase,

and enhancing tumor cell apoptosis (100). In addition, EVE induces

the dissociation of raptor from mTORC1, preventing the

phosphorylation of raptor by S6K1 and 4EBP1, thereby inhibiting

protein synthesis and transcription (100). Moreover, EVE

effectively induces the formation of autophagosomes in tumor

cells, thereby increasing the LC3II/I and Beclin 1 expression,

decreasing p62 expression, and potentiating autophagy (101).

EVE inhibits tumor angiogenesis by directly targeting the mTOR

in vascular endothelial cells, thereby suppressing their proliferation

(102). Additionally, EVE decreases the synthesis of angiogenesis-

promoting factors induced by hypoxia-inducible factors (102).

Some studies have shown that in addition to the AKT-dependent

pathway, EVE can activate mTOR through non-AKT pathways,

such as Ras/MEK/ERK, thus exhibiting antitumor effects (103).
3 Current research status of EVE
in PTs

After searching databases including pubmed, web of science,

embase, and scopus, we included 12 studies from six countries on
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EVE treatment of PTs. These studies covered cellular, animal and

human levels, with interventions including EVE monotherapy and

combination therapies. Detailed data on EVE treatment for PTs are

presented in Table 1. This paper provides a comprehensive review

and discussion of previous studies across cellular, animal, and

human levels.
3.1 Cellular level

EVE has been extensively studied for its efficacy in treating PTs.

Gorshtein et al. (104) first demonstrated that EVE inhibits the

phosphorylation of p70S6K by blocking the mTOR pathway,

thereby inducing G0/G1 cell cycle arrest and decreasing the

survival of GH3 cells. Another study observed that EVE may

inhibit IGF-1-induced GH3 cell survival and suppress GH

secretion via the PI3K/Akt/mTOR pathway. Zatelli et al. (105)

further support these findings. They applied different

concentrations of EVE (1 nM-1 mM) to the primary cultures of

human NFPAs, revealing that EVE inhibited p70S6K activity

(-20%), reduced cell viability (70%), promoted apoptosis (+30%),

and inhibited the proliferative and anti-apoptotic effects of IGF-1.

Regazzo et al. (106) found that EVE can significantly decrease the

survival of quiescent gonadotroph adenoma cells, further validating

its potential for widespread application in different subtypes of PTs.

To improve the efficacy of EVE monotherapy and mitigate

resistance, researchers have started exploring its combination with

additional drugs or therapeutic strategies. Previous studies have

indicated that the combination of EVE with Torin1 can markedly

decrease the viability of MtT/E pituitary cells and human-derived

NFPAs cells and the expression of cyclin D3 and p21, surpassing the

effects of single-agent therapy (107). Compared to EVE

monotherapy, EVE combined with pasireotide yielded similar

cumulative effects in NFPAs cells (105). EVE combined with

PI3K inhibitors (PI3Ki) exerted synergistic effects on cell and

colony survival in rat GH3 and human GH-PAs cell lines, which

may be attributed to the fact that PI3Ki enhanced the anti-tumor

effect of EVE by modulating the PI3K/Akt/mTOR and MAPK

pathways (108). However, some studies indicate that EVE

combined with cabergoline (CAB) showed only additive effects in

inhibiting PRL secretion, without significant synergistic effects on

tumor cell proliferation (53). Moreover, EVE had been shown to

enhance the sensitivity of GH3 cell lines to radiotherapy (109).

These studies offer new insights into EVE combination therapy for

treating PTs, promising more effective and personalized options.

However, despite its significant anti-tumor effects, the therapy’s

effectiveness depends on factors like drugs choice, cell line

specificity, and treatment stage. Future research should explore

optimal combinations, focusing on the mechanisms of combined

therapy and validating their feasibility and efficacy through

clinical trials.

Recent studies have revealed key findings regarding the role of

EVE combination therapy in overcoming PTs resistance. Studies

have shown that nearly 64% of primary cultured NFPAs cells are

resistant to EVE (90), often associated with a significant increase in
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p-AKT (110) and p-AKT/total-AKT ratio (90). Researchers have

tried EVE in combination with drugs like CAB (90) or Torin1 (107),

which has proven effective in attenuating EVE-induced Akt-Ser473

phosphorylation levels and reversing approximately 78% of the

resistance (90). However, another study presented an alternative

view, showing that EVE combined with Gleevec may further

activate p-AKT and exacerbate drug resistance. These findings

highlight the complexity and challenges in selecting combination

therapy strategies, suggesting that the treatments effectiveness may

vary with patient populations or specific drug combinations.

Further studies on molecular mechanisms are needed to clarify

the underlying biological basis.
Frontiers in Endocrinology 05
3.2 Animal level

There are four main types of animal models used in PTs research:

cell line-derived xenografts (CDX), patient-derived xenografts (PDX),

environmentally induced models, and genetically engineered mouse

(GEM) models (63). Although CDX and in vitro cultured animal-

derived cell lines are commonly used in pituitary research, their

limitations, including the loss of genetic heterogeneity in CDX and

differences from the human tumor microenvironment, limit their

suitability for long-term studies. Conversely, the use of PDX models

is relatively limited. Currently, there are no commercially available

human PTs cell lines, making the cultivation of primary human-
TABLE 1 Overview of research on EVE therapy for pituitary tumors.

Research Group Country
Research
Level

Research Object Intervention Major Contributions & Findings

Gorshtein/2009
(104)

Israel Cellular GH3 cell lines EVE
EVE inhibited the mTOR pathway and decreased the

number of GH3 cells.

Zatelli/2010
(105)

Italy
Cellular,
tissue

Human-derived NFPAs
cells, 40 NFPAs tissues

EVE, IGF-
1, SOM230

Evaluated the effects of EVE on mTOR pathway, cell
viability, and apoptosis in NFPAs cells.

EVE combined with SOM230 exhibited synergistic effects.

Sukumari-Ramesh/
2011 (109)

USA Cellular
GH3 cell lines,
MMQ cell lines

EVE
EVE increased the sensitivity of PAs cell lines

to radiotherapy.

Jouanneau/2012
(112)

France
Human

body, tissue

1 ACTH
adenocarcinoma, 17
ACTH-PAs, and
their tissues

EVE+ Octreotide
The mTOR pathway was mildly activated in all ACTH-PAs.
EVE monotherapy and combination therapies could not

control tumor growth and ACTH secretion.

Donovan 2016
(113)

USA Human body 1 refractory ACTH-PAs EVE
The patient’s condition stabilized after using EVE.
The patient finally died from systemic metastasis.

Jalali//2016
(111)

Canada Animal Mouse PAs model EVE

Tumors formed by GH4C1 cell lines carrying different
genotypes exhibited varying levels of mTOR pathway

activation and growth rates.
EVE reduced tumor volume, lowered GH levels, and

inhibited p-S6.

Rubinfeld/2016
(107)

Israel Cellular
MtT/E cell lines,
human-derived
NFPAs cells

EVE+Torin1
EVE combined with Torin1 inhibited cyclin D3 and p21
expression, and reduced Akt-Ser473 phosphorylation, with

superior efficacy compared to monotherapy.

Pivonello/2018
(108)

Italy Cellular
Rat GH3 cell lines,
human-derived GH-

PAs cells
EVE+PI3Ki

EVE combined with PI3Ki synergistically affected cell and
colony survival.

PI3Ki enhanced the effects of EVE by modulating the PI3K/
Akt/mTOR and MAPK pathways.

Di Pasquale/2018
(110)

Italy Cellular
GH3 cell lines,
GH4C1 cell lines

EVE, IGF1

EVE inhibited IGF1-induced GH3 cell survival and GH
secretion through the PI3K/Akt/mTOR pathway.
EVE significantly reduced GH4C1 cell viability and

increased p-Akt levels.

Zhang/2019
(53)

California
Human body,

tissue,
Cellular

1 refractory PRL-PAs,
mice GH3 cell lines

EVE+CAB

Patient’s tumor shrank, and the blood levels of PRL
decreased and remained stable for one year.

EVE combined with CAB had an additive effect in
suppressing PRL secretion but not on PAs cell proliferation.

Mangili/2022
(90)

Italy Cellular
Human NFPAs cells,

MMQ cell lines
EVE+CAB

Nearly 64% of cells exhibited resistance to EVE, which was
reversed by 78% after adding CBA.

The p-Akt/total Akt ratio was significantly increased in
resistant cells.

Lin/2023 (54) USA Human body 4 refractory PRL-PAs EVE
Three of the patients achieved biochemical remission.

All patients experienced clinically significant benefits due to
the inhibition of tumor growth.
PAs, Pituitary Adenoma; NFPAs, Non-Functional Pituitary Adenomas; ACTH-PAs, ACTH-Secreting Pituitary Adenoma; PRL-PAs, Prolactinoma; EVE, Everolimus; CAB, Cabergoline; IGF1,
Insulin-like Growth Factor 1; PI3Ki, PI3K inhibitor; SOM230, Pasireotide; p70S6K, ribosomal S6 kinase; GH, Growth Hormone; ACTH, Adrenocorticotropic Hormone; PRL, Prolactin.
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derived PTs cells challenging and limited to short-term studies.

Additionally, while rodent cell lines are more accessible, their

pathophysiological characteristics differ from those of humans,

posing challenges for developing models that accurately reflect

human biology. Emerging techniques, like pituitary induction using

human induced pluripotent stem cells, show promise for creating

reliable human PTs models. These methods aim to cultivate cell lines

with human PTs characteristics in vitro, potentially overcoming

current model limitations. Future exploration of these approaches

may significantly advance PTs diagnosis and treatment.

Jalali et al. (111) established xenograft mouse models employing

GH4C1 cell lines with different FGFR4 genotypes (wild-type G388,

polymorphic R388, and parental controls) to assess tumor growth rates

and Ki-67 expression. They then analyzed the mTOR pathway

activation (p-S6 and p-4EBP1) and administered EVE to assess its

effect on tumor growth. They observed that tumors with G388 and

R388 genotypes grew faster than parental controls, and showed

increased Ki-67 expression. These findings suggest that the FGFR4

genotype may accelerate tumor growth by enhancing cell proliferation.

Further research revealed significantly increased p-S6 and p-4EBP1

activity in tumors with G388 and R388 genotypes. EVE treatment

reduced p-S6 levels across all genotypes, suggesting that EVE may

effectively inhibit tumor growth by suppressing the mTOR pathway

(111). This study uses animal models to explore the impact of FGFR4

genotypes on PTs growth rates and the involvement of the mTOR

pathway, while also assessing EVE’s potential in slowing intracranial

tumor growth. The findings improve understanding of PTs biology and

support the development of new treatment strategies. Given the effect

of PTs genotypes on EVE efficacy, exploring personalized EVE

treatments for different genotypes could be highly significant.
3.3 Human level

Previous clinical studies on EVE treatment for PTs have mainly

focused on patients with APTs, with most literature being case reports.

Several studies suggest that EVE partially inhibits APTs growth and

improves clinical symptoms. Zhang et al. (53) reported a patient with

PRL-PAs who were resistant to standard treatments, such as CAB. The

addition of EVE to CAB markedly decreased PRL levels and tumor

regression. Additionally, Lin et al. (54) described four patients with

aggressive PRL-PAs, three of whom finally achieved sustained

stabilization of their disease and their PRL levels decreased after

adding EVE to CAB therapy. Of the four patients, two discontinued

TMZ and pasireotide before adding EVE (patients 2 and 3). Jouanneau

et al. (112) found that neither EVE monotherapy nor its combination

with octreotide can effectively reduce tumor growth or ACTH

secretion. This may be attributed to the weak activation of the

mTOR pathway in ACTH-PAs. However, Donovan et al. (113)

found that patients with ACTH-PAs harboring STK11 mutations

respond better to EVE. This suggests that when identifying patients

who may be suitable for treatment with EVE, it is essential to consider

not only the mTOR activity of PTs but also other factors that may affect

patients’ sensitivity to EVE, such as mutations of specific genes, levels of

biological markers (114), and the degree of tumor differentiation (115).
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In summary, although EVE has demonstrated potential

therapeutic effects in the preclinical studies of PTs, data on its

efficacy as a treatment in the clinical management of PTs remain

limited. The exact efficacy of EVE in clinical practice is still unclear and

it is not known whether EVE should be added to ineffective first-line

treatment options (e.g.CAB, pasireotide, etc.) or whether current first-

line treatments should be discontinued before initiating EVE

monotherapy or combination therapy. Future prospective,

multicenter clinical trials are needed to explore these issues.
4 Molecular mechanisms of EVE in
Other NETs

Given the limited data on EVE in PAs, we elucidated its

mechanism of action by investigating its effects in other NETs.

The PI3K/Akt/mTOR pathway plays a crucial role in the

development of NETs. French researchers Boilève et al. (116)

conducted a retrospective analysis of real-world data on precision

treatment for patients with NETs, revealing that the mTOR

pathway is the most frequently altered pathway in these patients

(24%). Downregulation of the PTEN and TSC2 genes in the PI3K/

Akt/mTOR pathway is significantly associated with shorter disease-

free survival and overall survival in patients with NETs (117).

EVE exerts its anti-NETeffects through severalmechanisms. Firstly,

EVEexertsaninhibitoryeffectontheproliferationofNETcells(118,119).

Invitroand invivoexperiments,EVE,eitheraloneorincombinationwith

cytotoxic agents, can block the growth and proliferation of NETs cells,

primarilyby inhibitingprotein synthesis (120,121).Zitzmannet al. (118)

treatedBONcells, a humancell line ofpancreaticNETswith constitutive

activation of the PI3K/AKT/mTOR signaling pathway, with various

concentrationsofEVEandfoundthatit inhibitedthegrowthofBONcells

inadose-dependentmanner.Grozinsky-Glasbergetal.(119)investigated

the effects of octreotide, EVE, and their combinationoncell proliferation

andkinaseactivation inNETcell lines (therat insulinomacell line, INS1),

finding that both octreotide and EVE inhibited cell proliferation and

reduced the phosphorylation ofAkt downstream targets (TSC2,mTOR,

and p70S6K).

Secondly, EVE exerts anti-angiogenic effects on NETs. NETs are

among the most vascularized tumors discovered to date. In the

phase III RADIANT-3 clinical trial, Yao et al. (122) analyzed the

levels of vascular endothelial growth factor (VEGF), platelet-derived

growth factor (PGF), basic fibroblast growth factor, soluble vascular

endothelial growth factor receptor-1 (sVEGFR-1), and soluble

vascular endothelial growth factor receptor-2 (sVEGFR-2) in

patients before and after treatment with EVE. They found that

EVE significantly reduced the levels of sVEGFR-2 and PGF

compared to placebo. Furthermore, EVE, in combination with

somatostatin analogs, demonstrated a synergistic anti-angiogenic

effect, whereby EVE reduced the production of VEGF by tumor

cells by inhibiting the mTOR-HIF-1a pathway, while somatostatin

analogs acted directly or indirectly on stromal endothelial cells and

monocytes expressing somatostatin receptors (123).

Additionally, EVE induced cell cycle arrest and apoptosis in NETs

while promoting autophagy. EVE reduced the phosphorylation levels
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of downstream targets of the PI3K/AKT pathway, including TSC2,

mTOR, and p70S6K, leading to cell cycle arrest in the G0/G1 phase and

inducing apoptosis (118). Furthermore, EVE affects autophagy by

downregulating the AKT signaling pathway. mTORC1 inhibits

autophagosome formation and initiation of autophagy by

phosphorylating UNC51-like kinase 1 (ULK1); however, the mTOR

inhibitor EVE can suppress mTORC1 and prevent the

phosphorylation of ULK1, thereby accelerating autophagy (124).

Histopathological studies indicate that the combination of

chloroquine and EVE can significantly inhibit mTOR activity and

the growth of NETs, while simultaneously suppressing the

accumulation of autophagosomes and increasing apoptosis (124).

In summary, EVE exhibits multiple mechanisms of action in

NETs, including inhibition of cell proliferation and angiogenesis,

induction of cell cycle arrest and apoptosis, and promotion of

autophagy. Future studies should investigate the combinatorial

effects of EVE with other therapeutic modalities to improve

treatment outcomes for patients with NETs.
5 Blood-brain barrier permeability
of EVE

Chemotherapeutic agents’ permeability through the BBB directly

affects their efficacy. EVE, a lipophilic compound, shows considerable

BBB permeability and promising therapeutic effects against central

nervous system tumors (125). EVE can modulate efflux mechanisms

mediated by breast cancer resistance protein (BCRP) and P-

glycoprotein (P-gp), improving its passage through BBB (126–128).

Researchers have developed several drug delivery systems, such as

osmotic pumps (129), convection-enhanced delivery (130), and

interstitial therapies (131), to implant EVE directly into the tumor

tissue or surrounding stroma, effectively bypassing the BBB. However,

the effectiveness of these methods can be affected by factors in the

tumor microenvironment, such as the extracellular matrix and brain’s

lymphatic drainage system, which may restrict drug distribution and

retention. To address this challenge, Han et al. (132) optimized drug

distribution and retention in brain tumors using liposomal

formulations. They developed liposomes with varying surface charges,

PEGylation, and transition temperatures, and evaluated them for in

vitro cellular uptake, distribution, and persistence in brain tissue. The

study found that PEGylated liposomes with positive charges and high

transition temperatures, especially EVE liposomes, showed significantly

improved interstitial therapeutic efficacy for intracranial tumors. Future

studies should focus on elucidating the mechanisms underlying EVE

passage through BBB to optimize drug delivery strategies and enhance

its clinical application in intracranial tumors.
6 Safety of EVE

Stomatitis, hyperlipidemia, and hyperglycemia are the most

common adverse events associated with EVE (incidence rate ≥1/

10), whereas severe adverse events (≥grade 3) are relatively rare

(133). The incidence of adverse events associated with EVE is
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closely correlated with its blood concentration. In one study,

when the peak concentration (Cmin) of EVE was <7.8 ng/mL and

≥7.8 ng/mL, 9%, and 14%-19% of patients experienced adverse

reactions (134), respectively. Another study reported that for each

two-fold increase in the Cmin of EVE, the risk of severe adverse

events increased by 1.5, whereas reducing the dose of EVE allowed

patients to recover (135). A meta-analysis indicated that the risk of

pulmonary adverse events significantly increases when the Cmin of

EVE exceeds 30 ng/mL (136). The blood concentration of EVE is

considerably higher in patients experiencing dose-limiting toxicities

(DLTs) than in those without toxicities (137). The cumulative

incidence of DLTs significantly increased (HR: 4.87, 95% CI:

1.53-15.5) (138) . There are s ignificant variat ions in

pharmacokinetic parameters of EVE among different individuals,

such as clearance rates (range: 5.1-21.3 L/h/70 kg, coefficient of

variation: 38.5%) and central distribution volume (range: 9.9-103.6

L/70 kg, coefficient of variation: 57.8%) (137). Therefore, blood drug

concentrations should be monitored in patients receiving EVE

treatment to ensure that their Cmin remains within a safe range,

enabling the early detection of adverse events and appropriate

medical management.
7 Conclusion and prospect

The PI3K/AKT/mTOR pathway is overactivated in PTs. EVE, a

selective kinase inhibitor, directly and durably inhibits mTOR,

demonstrating vigorous anti-PTs effects. Previous studies have

validated the therapeutic efficacy of EVE against PTs across

cellular, animal, and human-level.

Although EVE shows potential in treating PTs, several issues

remain. First, while low mTOR pathway activity has been observed

in ACTH-PAs, the precise molecular mechanisms are unclear.

Further research is required to identify specific mutations or

regulatory mechanisms within this pathway in ACTH-PAs and

their impact on EVE’s efficacy. Additionally, since EVE was recently

approved, existing studies mainly address short-term outcomes and

lack long-term follow-up data. Future efforts should involve large-

scale, multi-center studies to evaluate EVE’s long-term efficacy and

safety. Furthermore, no definitive biomarkers for treatment-

resistant PTs have been identified, complicating early detection of

APTs. Research should focus on discovering early predictive

biomarkers and treatment response indicators for resistant PTs,

as well as defining optimal treatment duration, sequencing, and

combinations for personalized strategies. Given the rarity and

heterogeneity of APTs, clinical management experience has

accumulated slowly. Establishing national and international

registries could improve understanding and management of APTs

in the future.
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Fernández L, Vivanco B, et al. Signaling pathways mtor and erk as therapeutic targets in
sinonasal intestinal-type adenocarcinoma. Int J Mol Sci. (2023) 24(20):15110.
doi: 10.3390/ijms242015110

104. Gorshtein A, Rubinfeld H, Kendler E, Theodoropoulou M, Cerovac V, Stalla
GK, et al. Mammalian target of rapamycin inhibitors rapamycin and rad001
(Everolimus) induce anti-proliferative effects in Gh-secreting pituitary tumor cells in
vitro. Endocr Relat Cancer. (2009) 16:1017–27. doi: 10.1677/erc-08-0269

105. Zatelli MC, Minoia M, Filieri C, Tagliati F, Buratto M, Ambrosio MR, et al.
Effect of everolimus on cell viability in nonfunctioning pituitary adenomas. J Clin
Endocrinol Metab. (2010) 95:968–76. doi: 10.1210/jc.2009-1641
Frontiers in Endocrinology 10
106. Regazzo D, Gardiman MP, Theodoropoulou M, Scaroni C, Occhi G, Ceccato F.
Silent gonadotroph pituitary neuroendocrine tumor in a patient with tuberous sclerosis
complex: evaluation of a possible molecular link. Endocrinol Diabetes Metab Case Rep.
(2018) 1:17–0092. doi: 10.1530/edm-18-0086

107. Rubinfeld H, Cohen O, Kammer A, Yang G, Cohen ZR, Hadani M, et al.
Combination of mtor inhibitors augments potency while activating pi3k signaling in
pituitary tumors. Neuroendocrinology. (2016) 103:592–604. doi: 10.1159/000442205

108. Pivonello C, Patalano R, Solari D, Auriemma RS, Frio F, Vitulli F, et al. Effect of
combined treatment with a pan-pi3k inhibitor or an isoform-specific pi3k inhibitor and
everolimus on cell proliferation in gh-secreting pituitary tumour in an experimental
setting. Endocrine. (2018) 62:663–80. doi: 10.1007/s12020-018-1677-2

109. Sukumari-Ramesh S, Singh N, Dhandapani KM, Vender JR. Mtor inhibition
reduces cellular proliferation and sensitizes pituitary adenoma cells to ionizing
radiation. Surg Neurol Int. (2011) 2:22. doi: 10.4103/2152-7806.77029

110. Di Pasquale C, Gentilin E, Falletta S, Bellio M, Buratto M, Degli Uberti E, et al.
Pi3k/Akt/Mtor pathway involvement in regulating growth hormone secretion in a rat
pituitary adenoma cell line. Endocrine. (2018) 60:308–16. doi: 10.1007/s12020-017-
1432-0

111. Jalali S, Monsalves E, Tateno T, Zadeh G. Role of mtor inhibitors in growth
hormone-producing pituitary adenomas harboring different Fgfr4 genotypes.
Endocrinology. (2016) 157:3577–87. doi: 10.1210/en.2016-1028

112. Jouanneau E, Wierinckx A, Ducray F, Favrel V, Borson-Chazot F, Honnorat J,
et al. New targeted therapies in pituitary carcinoma resistant to temozolomide.
Pituitary. (2012) 15:37–43. doi: 10.1007/s11102-011-0341-0

113. Donovan LE, Arnal AV, Wang SH, Odia Y. Widely metastatic atypical pituitary
adenoma with Mtor pathway Stk11(F298l) mutation treated with everolimus therapy.
CNS Oncol. (2016) 5:203–9. doi: 10.2217/cns-2016-0011

114. Yao JC, Pavel M, Phan AT, Kulke MH, Hoosen S, St Peter J, et al.
Chromogranin a and neuron-specific enolase as prognostic markers in patients with
advanced pnet treated with everolimus. J Clin Endocrinol Metab. (2011) 96:3741–9.
doi: 10.1210/jc.2011-0666

115. Yao JC, ShahMH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus
for advanced pancreatic neuroendocrine tumors. N Engl J Med. (2011) 364:514–23.
doi: 10.1056/NEJMoa1009290

116. Boilève A, Faron M, Fodil-Cherif S, Bayle A, Lamartina L, Planchard D, et al.
Molecular profiling and target actionability for precision medicine in neuroendocrine
neoplasms: real-world data. Eur J Cancer. (2023) 186:122–32. doi: 10.1016/
j.ejca.2023.03.024

117. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, et al.
Pancreatic endocrine tumors: expression profiling evidences a role for Akt-Mtor
pathway. J Clin Oncol. (2010) 28:245–55. doi: 10.1200/jco.2008.21.5988

118. Zitzmann K, De Toni EN, Brand S, Göke B, Meinecke J, Spöttl G, et al. The
novel mtor inhibitor rad001 (Everolimus) induces antiproliferative effects in human
pancreatic neuroendocrine tumor cells. Neuroendocrinology. (2007) 85:54–60.
doi: 10.1159/000100057

119. Grozinsky-Glasberg S, Franchi G, Teng M, Leontiou CA, Ribeiro de Oliveira A
Jr., Dalino P, et al. Octreotide and the mtor inhibitor rad001 (Everolimus) block
proliferation and interact with the akt-mtor-P70s6k pathway in a neuro-endocrine
tumour cell line. Neuroendocrinology. (2008) 87:168–81. doi: 10.1159/000111501

120. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mtor signaling
network for cancer therapy. J Clin Oncol. (2009) 27:2278–87. doi: 10.1200/
jco.2008.20.0766

121. O'Reilly T, McSheehy PM, Wartmann M, Lassota P, Brandt R, Lane HA.
Evaluation of the mtor inhibitor, everolimus, in combination with cytotoxic antitumor
agents using human tumor models in vitro and in vivo. Anticancer Drugs. (2011) 22:58–
78. doi: 10.1097/CAD.0b013e3283400a20

122. Yao J, Tsuchihashi Z, Panneerselvam A, Winkler R, Bugarini R, Pavel M. Poster
effect of everolimus treatment on markers of angiogenesis in patients with advanced
pancreatic neuroendocrine tumours (Pnet) – results from the phase iii radiant3 study.
Eur J Cancer - Eur J Cancer. (2011) 47:463. doi: 10.1016/S0959-8049(11)71884-6

123. Villaume K, Blanc M, Gouysse G, Walter T, Couderc C, Nejjari M, et al. Vegf
secretion by neuroendocrine tumor cells is inhibited by octreotide and by inhibitors of
the Pi3k/Akt/Mtor pathway. Neuroendocrinology. (2010) 91:268–78. doi: 10.1159/
000289569

124. Avniel-Polak S, Leibowitz G, Doviner V, Gross DJ, Grozinsky-Glasberg S.
Combining chloroquine with Rad001 inhibits tumor growth in a nen mouse model.
Endocr Relat Cancer. (2018) 25:677–86. doi: 10.1530/erc-18-0121

125. Poore B, Yuan M, Arnold A, Price A, Alt J, Rubens JA, et al. Inhibition of
mtorc1 in pediatric low-grade glioma depletes glutathione and therapeutically
synergizes with carboplatin. Neuro Oncol. (2019) 21:252–63. doi: 10.1093/neuonc/
noy150

126. Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Co-administration strategy to
enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-Gp/
Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with M-
tor inhibitors. Int J Pharm. (2012) 434:306–14. doi: 10.1016/j.ijpharm.2012.05.028

127. Subbiah V, Berry J, Roxas M, Guha-Thakurta N, Subbiah IM, Ali SM, et al.
Systemic and cns activity of the ret inhibitor vandetanib combined with the mtor
inhibitor everolimus in Kif5b-ret re-arranged non-small cell lung cancer with brain
metastases. Lung Cancer. (2015) 89:76–9. doi: 10.1016/j.lungcan.2015.04.004
frontiersin.org

https://doi.org/10.1186/s13045-019-0754-1
https://doi.org/10.1038/s42255-022-00706-6
https://doi.org/10.1038/s41467-023-41757-x
https://doi.org/10.1016/j.molmet.2021.101309
https://doi.org/10.2147/ijn.S338937
https://doi.org/10.1158/0008-5472.Can-22-3023
https://doi.org/10.1080/15548627.2020.1821548
https://doi.org/10.3389/fendo.2022.867822
https://doi.org/10.5603/EP.a2020.0090
https://doi.org/10.1590/s0100-879x2012007500115
https://doi.org/10.1590/s0100-879x2012007500115
https://doi.org/10.1677/erc-08-0167
https://doi.org/10.1007/s11596-022-2568-6
https://doi.org/10.1007/s12022-012-9230-y
https://doi.org/10.1007/s12022-012-9230-y
https://doi.org/10.1210/en.2007-1696
https://doi.org/10.1677/erc-09-0101
https://doi.org/10.1677/erc-09-0101
https://doi.org/10.7150/thno.53749
https://doi.org/10.1158/1078-0432.Ccr-09-1314
https://doi.org/10.1158/1078-0432.Ccr-09-1314
https://doi.org/10.1002/ddr.22140
https://doi.org/10.1111/cas.13169
https://doi.org/10.3390/ijms242015110
https://doi.org/10.1677/erc-08-0269
https://doi.org/10.1210/jc.2009-1641
https://doi.org/10.1530/edm-18-0086
https://doi.org/10.1159/000442205
https://doi.org/10.1007/s12020-018-1677-2
https://doi.org/10.4103/2152-7806.77029
https://doi.org/10.1007/s12020-017-1432-0
https://doi.org/10.1007/s12020-017-1432-0
https://doi.org/10.1210/en.2016-1028
https://doi.org/10.1007/s11102-011-0341-0
https://doi.org/10.2217/cns-2016-0011
https://doi.org/10.1210/jc.2011-0666
https://doi.org/10.1056/NEJMoa1009290
https://doi.org/10.1016/j.ejca.2023.03.024
https://doi.org/10.1016/j.ejca.2023.03.024
https://doi.org/10.1200/jco.2008.21.5988
https://doi.org/10.1159/000100057
https://doi.org/10.1159/000111501
https://doi.org/10.1200/jco.2008.20.0766
https://doi.org/10.1200/jco.2008.20.0766
https://doi.org/10.1097/CAD.0b013e3283400a20
https://doi.org/10.1016/S0959-8049(11)71884-6
https://doi.org/10.1159/000289569
https://doi.org/10.1159/000289569
https://doi.org/10.1530/erc-18-0121
https://doi.org/10.1093/neuonc/noy150
https://doi.org/10.1093/neuonc/noy150
https://doi.org/10.1016/j.ijpharm.2012.05.028
https://doi.org/10.1016/j.lungcan.2015.04.004
https://doi.org/10.3389/fendo.2024.1456922
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yao and Chen 10.3389/fendo.2024.1456922
128. Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, Lavarino C,
Molinari V, et al. Repurposing vandetanib plus everolimus for the treatment of
acvr1-mutant diffuse intrinsic pontine glioma. Cancer Discovery. (2022) 12:416–31.
doi: 10.1158/2159-8290.Cd-20-1201

129. Cassano T, Magini A, Giovagnoli S, Polchi A, Calcagnini S, Pace L, et al. Early
intrathecal infusion of everolimus restores cognitive function andmood in amurinemodel of
Alzheimer's disease. Exp Neurol. (2019) 311:88–105. doi: 10.1016/j.expneurol.2018.09.011

130. Faraji AH, Rajendran S, Jaquins-Gerstl AS, Hayes HJ, Richardson RM.
Convection-enhanced delivery and principles of extracellular transport in the brain.
World Neurosurg. (2021) 151:163–71. doi: 10.1016/j.wneu.2021.05.050

131. Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM,
Ainslie KM. Synergistic drug combinations for a precision medicine approach to
interstitial glioblastoma therapy. J Control Release. (2020) 323:282–92. doi: 10.1016/
j.jconrel.2020.04.028

132. Han Y, Park JH. Convection-enhanced delivery of liposomal drugs for effective
treatment of glioblastoma multiforme. Drug Delivery Transl Res. (2020) 10:1876–87.
doi: 10.1007/s13346-020-00773-w

133. Gau SY, Chen SL, Chang CS, Tsao TF, Tsai JD. Adverse events of everolimus in
patients with tuberous sclerosis complex treated for renal angiomyolipoma/subependymal
giant cell astrocytoma. Int J Med Sci. (2023) 20:1358–62. doi: 10.7150/ijms.88022
Frontiers in Endocrinology 11
134. van Gelder T, Fischer L, Shihab F, Shipkova M. Optimizing everolimus
exposure when combined with calcineurin inhibitors in solid organ transplantation.
Transplant Rev (Orlando). (2017) 31:151–7. doi: 10.1016/j.trre.2017.02.007

135. Takasaki S, Kawasaki Y, Kikuchi M, Ito A, Yamaguchi H, Mano N. Clinical
importance of plasma drug concentration of oral molecular targeted drugs for
renal cell carcinoma. J Pharm Pharm Sci. (2021) 24:127–36. doi: 10.18433/
jpps31816

136. Noguchi S, Shinohara N, Ito T, Ohtsu A, Ravaud A, Jerusalem G, et al.
Relationship between pulmonary adverse events and everolimus exposure in
Japanese and non-Japanese patients: A meta-analysis of oncology trials. Oncology.
(2017) 92:243–54. doi: 10.1159/000457904

137. Hirabatake M, Mizuno T, Kato H, Hashida T. Everolimus pharmacokinetics
and exposure-response relationship in Japanese patients with advanced breast cancer.
Front Pharmacol. (2022) 13:984002. doi: 10.3389/fphar.2022.984002

138. Fukudo M, Ishibashi K, Kitada M. Real-world pharmacokinetics and
pharmacodynamics of everolimus in metastatic breast cancer. Invest New Drugs.
(2021) 39:1707–15. doi: 10.1007/s10637-021-01131-4

139. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to
cancer, diabetes, and ageing. Nat Rev Mol Cell Biol. (2011) 12(1):21–35. doi: 10.1038/
nrm3025
frontiersin.org

https://doi.org/10.1158/2159-8290.Cd-20-1201
https://doi.org/10.1016/j.expneurol.2018.09.011
https://doi.org/10.1016/j.wneu.2021.05.050
https://doi.org/10.1016/j.jconrel.2020.04.028
https://doi.org/10.1016/j.jconrel.2020.04.028
https://doi.org/10.1007/s13346-020-00773-w
https://doi.org/10.7150/ijms.88022
https://doi.org/10.1016/j.trre.2017.02.007
https://doi.org/10.18433/jpps31816
https://doi.org/10.18433/jpps31816
https://doi.org/10.1159/000457904
https://doi.org/10.3389/fphar.2022.984002
https://doi.org/10.1007/s10637-021-01131-4
https://doi.org/10.1038/nrm3025
https://doi.org/10.1038/nrm3025
https://doi.org/10.3389/fendo.2024.1456922
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yao and Chen 10.3389/fendo.2024.1456922
Glossary

ACTH Adrenocorticotropic hormone
Frontiers in Endocrino
ACTH-PAs ACTH-secreting pituitary adenoma
ATG Autophagy-related
APTs Aggressive Pituitary Tumors
BBB Blood-Brain Barrier
BCRP Breast Cancer Resistance Protein
CAB Cabergoline
CDX Cell line-Derived Xenografts
Cmin Peak concentration
DLTs Dose-limiting toxicities
eIF Eukaryotic translation initiation factor
EVE Everolimus
FDA Food and Drug Administration
FIP200 200 kDa FAK family kinase-interacting protein
FOXO Forkhead box protein O
FPAs Functional pituitary adenomas
GEM Genetically Engineered Mouse
GH Growth Hormone
GH-Pas Growth Hormone-Secreting Pituitary Adenomas
IGF1 Insulin-like growth factor 1
IRS1 Insulin receptor substrate 1
NETs Neuroendocrine Tumors
NFPAs Non-functional pituitary adenomas
PTs Pituitary Tumors
logy 12
PDK1 3-phosphoinositide-dependent protein kinase 1
PDX Patient-Derived Xenografts
PGF Platelet-derived Growth Factor
P-gp P-glycoprotein
PI3Ki PI3K inhibitor
PIP2 Phosphatidylinositol-4,5-bisphosphate
PIP3 Triphosphoinositide
PPARg Peroxisome proliferator-activated receptor-g
PRL Prolactin
PRL-Pas Prolactinomas
PTEN Phosphatase and tensin homologue
RHEB Ras homologue enriched in the brain
S6K1/p70S6K Ribosomal S6 kinase
SKAR S6K1 Aly/REF-like target
SOM230 Pasireotide
SREBP Sterol regulatory element-binding protein
sVEGFR-1 soluble Vascular Endothelial Growth Factor Receptor-1
sVEGFR-2 soluble Vascular Endothelial Growth Factor Receptor-2
TMZ Temozolomide
TSC Tuberous Sclerosis Complex
4EBP1 Eukaryotic translation initiation factor 4E-binding protein 1
ULK1 UNC51-like kinase 1
VEGF Vascular Endothelial Growth Factor
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