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Lack of membrane sex steroid
receptors for mediating rapid
endocrine responses in
molluscan nervous systems
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and Zsolt Pirger1†

1Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological
Research Institute, Tihany, Hungary, 2Bioorganic Research Institute, Suntory Foundation for Life
Sciences, Kyoto, Japan
Despite the lack of endogenous synthesis and relevant nuclear receptors, several

papers have been published over the decades claiming that the physiology of

mollusks is affected by natural and synthetic sex steroids. With scant evidence for

the existence of functional steroid nuclear receptors in mollusks, some scientists

have speculated that the effects of steroids might be mediated via membrane

receptors (i.e. via non-genomic/non-classical actions) - a mechanism that has

been well-characterized in vertebrates. However, no study has yet investigated

the ligand-binding ability of such receptor candidates in mollusks. The aim of the

present study was to further trace the evolution of the endocrine system by

investigating the presence of functional membrane sex steroid receptors in a

mollusk, the great pond snail (Lymnaea stagnalis). We detected sequences

homologous to the known vertebrate membrane sex steroid receptors in the

Lymnaea transcriptome and genome data: G protein-coupled estrogen

receptor-1 (GPER1); membrane progestin receptors (mPRs); G protein-coupled

receptor family C group 6 member A (GPRC6A); and Zrt- and Irt-like protein 9

(ZIP9). Sequence analyses, including conserved domain analysis, phylogenetics,

and transmembrane domain prediction, indicated that the mPR and ZIP9

candidates appeared to be homologs, while the GPER1 and GPRC6A

candidates seemed to be non-orthologous receptors. All candidates transiently

transfected into HEK293MSR cells were found to be localized at the plasma

membrane, confirming that they function as membrane receptors. However, the

signaling assays revealed that none of the candidates interacted with the main

vertebrate steroid ligands. Our findings strongly suggest that functional

membrane sex steroid receptors which would be homologous to the

vertebrate ones are not present in Lymnaea. Although further experiments are

required on other molluscan model species as well, we propose that both

classical and non-classical sex steroid signaling for endocrine responses are

specific to chordates, confirming that molluscan and vertebrate endocrine

systems are fundamentally different.
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1 Introduction

Despite the lack of endogenous synthesis and relevant nuclear

receptors (1–9), several papers have been published over the past 70

years showing that the physiology of mollusks is affected by natural

and synthetic sex steroids occurring in the environment, though the

robustness of the bioassay data in most of these papers has been

questioned (10). Recent reviews tried to fill in the gaps in steroid

signaling of mollusks and raised the idea that vertebrate sex steroids

affect molluscan species via membrane receptors (i.e. non-genomic/

non-classical actions) (4, 11).

Most efforts to prove this possible mode of action were

performed by the investigation of hemocytes of Mytilus spp.

[reviewed by (4)]. These works demonstrated that estradiol (E2)

rapidly induced lysosomal membrane instability, production of

intracellular reactive oxygen species, lysozyme release and

nitrogen-oxide production in Mytilus hemocytes; the underlying

mechanisms, similar to those identified in mammalian cells,

involved cytosolic Ca2+ increase, activation of MAPKs and PKC,

as well as phosphorylation of signal transducers and transcription

factors (12–15). However, it is unknown whether E2 binds to a

specific membrane receptor in mollusks, if it cross-reacts with a

receptor for other compound(s), or if there is a cognate sex steroid

receptor at all. Furthermore, to our knowledge, no study has

investigated the potential rapid effects of progesterone (P) and

testosterone (T) on mollusks or conducted homology searches for

their known membrane receptors in mollusks. Although recent

studies have revealed sequences homologous to membrane

progestin receptor beta (mPRb) and gamma (mPRg), two of the

five vertebrate mPRs (16), in molluscan species such as the cuttlefish

Sepia japonica (17), owl limpet Lottia gigantea, and Pacific oyster

Crassostrea gigas (18), the ability of these receptor candidates to

bind P has not been examined.

The aim of the present paper was to advance our understanding

of the evolution of the endocrine system and to contribute to the

ongoing debate about the role of vertebrate-type sex steroids in

mollusks, by investigating the great pond snail (Lymnaea stagnalis).

Lymnaea has long-served as a multipurpose molluscan model in

neuroscience and neuroendocrinology [reviewed by (19–24)], as

well as in ecotoxicological studies related to endocrine disruption

(25–28). To accomplish our aim, we searched for sequences in the

Lymnaea transcriptome and genome data that show homology with

the known vertebrate membrane sex steroid receptors that are not

related to nuclear receptors: G protein-coupled estrogen receptor-1

(GPER1), five mPRs, G protein-coupled receptor family C group 6

member A (GPRC6A), and Zrt- and Irt-like protein 9 (ZIP9). We

cloned the coding sequence of selected candidates and transiently

expressed them in Human Embryonic Kidney (HEK) cells to assess

their membrane expression and ability to bind vertebrate sex

steroids. Our findings represent the first evidence indicating the

absence of specific, evolutionarily conserved membrane receptor-

mediated sex steroid signaling in a mollusk.
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2 Materials and methods

2.1 Experimental animals

5-month-old adult, mature specimens of Lymnaea were

obtained from our laboratory-bred stocks. Snails were maintained

in large plastic tanks containing 10 L oxygenated artificial snail

water (composition in mM: 0.1309 NaHCO3, 0.0378 K2SO4, 0.4013

CaCl2.2H2O, 0.0390 Mg(NO3)2.6H2O; pH=7.6) at 20°C (± 1°C) on

a 12:12 h light:dark regime with natural wavelength light.

Specimens were fed on lettuce ad libitum three times a week.
2.2 In silico searches and
bioinformatic analysis

The neural transcriptome data obtained in our previous study

(29) were used to search for sequences homologous to vertebrate

membrane sex steroid receptors. For homology-searching, the

relevant molluscan and vertebrate sequences were used as search

queries (Supplementary Table 1). We also compared the obtained

sequences with the public Lymnaea CNS transcriptome shotgun

assembly (sequence read archive: #DRR002012 (30);) and genome

data (31). Conserved domain search using NCBI CDD/SPARCLE

(32, 33) was first performed to check if the key regions were present

in the deduced protein sequence. Phylogenetic analysis was made in

the Molecular Evolutionary Genetics Analysis v7 software (34).

Transmembrane domain prediction was performed with the

TMHMM 2.0 and DeepTMHMM tools (35).
2.3 Plasmid constructions and transfection

Plasmid construction and transfection was according to the

description of our previous study (36). The complete coding

sequence of GPER1, mPR, and ZIP9 candidates was amplified

with PrimeStar HS DNA Polymerase (#R010A, TaKaRa Bio,

Japan). The applied gene-specific primers (designed with the

SnapGene Viewer software (GSL Biotech)) with extensions to

vector ends were as follows: 1) GPER1 candidate: AAT GCG

GCC GCA TGG AGA CCA CAG TCG GGG (forward) and GCC

TCT AGA CAG ATG GAC TGG TGG TTT CAG AAA GCC AT

(reverse); 2) mPR candidate: AAT GCG GCC GCA TGT TGT TAC

TGC CAG CAA CAT TGA G (forward) and GCC TCT AGA ATG

GAT GAC CCC ATT TCT GTG ATG AA (reverse); 3) ZIP9

candidate: AAT GCG GCC GCA TGG ATG ATA TCT TGA

CTC TCC TTT CTC TGT (forward) and GCC TCT AGA GTG

CTT ATG ACC CAC AGC TAA AAA AAC A (reverse) (Integrated

DNA Technologies, Belgium).

The amplicons were checked by gel electrophoresis, restricted

with NotI – XbaI enzymes, purified by gel electrophoresis, and

subcloned into the linearized pcDNA6-His-G16 plasmid [described
frontiersin.org
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in (37)] using T4 DNA ligase (#LGK-201, Toyobo, Japan). Since the

coding sequence of GPRC6A candidate was too long to effectively

amplify it, it was synthetized and ordered in pcDNA6-His-G16

plasmid as a ready-to-use vector (Eurofins Genomics). Codon usage

optimized mPR and ZIP9 candidates in pcDNA6-His-G16 plasmids

were synthesized by FASMAC (Kanagawa, Japan). After

transformation and amplification in JM109 competent cells,

colony PCR was carried out. Next, the plasmids were purified

from the appropriate colonies with the QIAGEN Plasmid Midi

Kit (#12143, Qiagen) and sequence verification by nucleotide

sequencing was performed.

Finally, the constructed vectors were transiently transfected into

genetically engineered HEK293MSR cells using the Lipofectamine 3000

Transfection reagent (#L3000001, Thermo Fisher Scientific) following

the manufacturer’s instructions. Transfection efficiency and expression

for all candidates were evaluated by an immunodetection method as

described below.
2.4 Fluorescence immunocytochemistry

Immunocytochemistry was performed according to the description

of our previous studies (36, 38). Briefly, 5 mg of the constructed

pcDNA6-His-G16 vectors containing the receptor candidates were

transfected into HEK293MSR cells in glass bottom dishes (35 mm

diameter). As method controls, 5 mg of pcDNA6-His-G16 vectors

containing GFP or Ciona galanin-like peptide receptor (GALPR) (37)

were also transfected into HEK293MSR cells. After blocking with 4%

goat serum (#S-1000-20, Vector Laboratories, USA), immunoreactions

were performed using an anti-mouse G16 antibody (1:50; #TA808136,

Origene, USA). The secondary antibody was a goat anti-mouse IgG

antibody conjugated with Alexa488 antibody (1:500; #A-11029,

Thermo Fisher Scientific). Nuclei were stained with Hoechst 33342

(1:1000; #AS-83218, AnaSpec, USA). The immunostaining was

analyzed with a Fluoview FV3000 confocal laser microscope

(Olympus, Tokyo, Japan) equipped with appropriate wavelength-

filter configuration settings and a transmitted light detector. Image

processing was performed by the Fluoview software (Olympus).
2.5 Second messenger assays

Intracellular Ca2+ mobilization was following the description of

our previous studies (36, 38). Briefly, 1 × 106 HEK293MSR cells

were cultured on polystyrene culture dishes (100 mm in diameter).

A day later, 10 mg of pcDNA6-His-G16 vectors containing the

receptor candidates or empty pcDNA6-His-G16 vector (i.e. Mock)

were transfected into the HEK293MSR cells. After incubating for

24 h, 6 × 105 cells were plated in each of a 96-well plate. For the

assays, synthetic P (#5341; Merck), T (#86500; Merck), and E2
(#E8875; Merck) were used. The stock solutions were prepared in

ethanol weekly. In the positive control experiment, Ciona GALP

(PFRGQGGWTLNSVGYNAGLGALRKLFE (39);) was applied.
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The real-time fluorescence assessment of Ca2+ mobilization was

performed using the FLIPR Calcium 5 Kit (#3808451, Molecular

Devices, USA) following the manufacturer’s instructions. All

measurements were performed with a FlexStation III Multi Mode

microplate reader (Molecular Devices). The data were obtained at

least from two independent transfections for Ciona GALPR, all

Lymnaea receptor candidates, and the empty vector. Ciona GALPR

and empty vector samples were applied to the plate in two technical

replicates, while all Lymnaea receptor candidate samples were

applied in three technical replicates.
2.6 Statistical analysis

The data obtained during the second messenger assays were

plotted using four-parameters logistics-based non-linear regression

curve fit feature in the GraphPad Prism5 software (GraphPad, San

Diego, USA). Significant differences at a given data point was

analyzed with the OriginPro 2018 software (OriginLab Corp.,

USA). The normality of the datasets was investigated using the

Shapiro-Wilk test and the homogeneity of variances between

groups was checked with the Levene-test. The data were then

analyzed using the two-sample t-test.
3 Results

Our homology-searching revealed candidate sequences for all

vertebrate membrane sex steroid receptors which are not related to

the nuclear ones (Supplementary Figure 1). After the initial

bioinformatic analysis, including conserved domain analysis

(Supplementary Figure 2), phylogenetics (Supplementary Figures 3-

5), and transmembrane domain prediction (Supplementary Figure 6),

four sequences were investigated further: one GPER1 candidate, one

mPR candidate, one GPRC6A candidate, and one ZIP9 candidate.

Based on the in silico analyses, the mPR and ZIP9 candidates appeared

to be genuine homologs. Although the GPER1 and GPRC6A

candidates were unlikely to be the counterparts of the vertebrate

receptors, we did not exclude the possibility that, during evolution,

these deduced proteins might have acquired the ability of recognizing

steroids as well [as reported in the case of vertebrate ZIP9 (40)].

First, we investigated the expression and subcellular localization

of the candidates by transiently transfecting the G16-fused coding

sequences into HEK293MSR cells. In the positive control

experiments (Supplementary Figure 7), the expression level of

GFP indicated an appropriate transfect ion efficiency

(Supplementary Figure 7A). Moreover, the G16-fused Ciona

GALPR showed a high expression and localization at the plasma

membrane (Supplementary Figure 7B). Immunocytochemical

fluorescence confocal microscopic detection confirmed that the

Lymnaea membrane sex steroid receptor candidates were

localized to the cell surface of HEK293MSR cells (Figure 1). The

expression of the GPER1 and GPRC6A candidates was high.
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However, the expression of the mPR1 and ZIP9 candidates was very

low and only a few cells showing immunosignal were detected. To

evaluate the ligand-receptor interaction between the three main

vertebrate sex steroids and the Lymnaea membrane sex steroid

receptor candidates, we assessed the mobilization of intracellular

Ca2+ using G16-fused receptor candidates (41). In the positive

control experiment (Supplementary Figure 7C), the Ciona GALP

specifically induced the elevation of intracellular Ca2+ in a

concentration-dependent manner, as previously reported (37). In

the case of the Lymnaea candidates, however, the assay showed that

the respective ligand-receptor combinations failed to induce the

elevation of intracellular Ca2+ (Figure 2), indicating that these

transmembrane proteins are not bona fide membrane sex steroid

receptors. Both in the case of GPRC6A and ZIP9 candidates, there

was an increase in response at the 10-7 M concentration, but

statistical analysis with two-sample t-test revealed no significant

difference compared to the response of HEK cells expressing the

empty vector.

We did not exclude the possibility that the mPR and ZIP9

homologues were unresponsive due to their low expression. Hence,

we applied codon usage optimization for both sequences

(Supplementary Figure 8) and investigated their expression and

ligand-binding interaction again (Figure 3). Although the

expression of both candidates was improved after the codon
Frontiers in Endocrinology 04
usage optimization (Figure 3A), they were still found to be

unresponsive to vertebrate sex steroids (Figures 3B, C).
4 Discussion

There is a long-standing debate regarding whether vertebrate

sex steroids can affect the physiology of mollusks. Sex steroids are

present in tissues of a wide range of mollusks, and their

concentration sometimes show an association with stages of

gonad development or differences between tissues and sexes

[reviewed by (1)]. However, since the 2000s, it has become

evident that mollusks possess a remarkable ability to absorb and

retain vertebrate sex steroids for extended periods, even months

(42–51). Consequently, their presence in molluscan tissues does not

necessarily indicate an endogenous origin. Given that vertebrate sex

steroids have been present in the aquatic environment - and thus in

molluscan tissues - for a considerable part of molluscan

evolutionary history, the question arises as to whether evolution

has favored the development of signaling systems to recognize

these compounds.

Sex steroid signaling in vertebrates is regulated via three

possible pathways (Figure 4). First, through nuclear receptors

localized in the cytoplasm or nucleus (Figure 4A) (52). Second,
FIGURE 1

Confocal microscopic observation of immunostained HEK293MSR cells expressing the different Lymnaea membrane sex steroid receptor candidates
fused with G16 protein. Expressed candidates stained with an anti-G16 antibody (green; top row), nuclei stained with Hoechst 33342 (blue; middle
row), and merged views (bottom row) of the transfectants. The candidates were localized at the plasma membrane. The expression of the GPER1
and GPRC6A candidates were high, while the expression of the mPR1 and ZIP9 candidates were very low (only a few cells showing immunosignal
were detected). Bars = 50 mm.
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following post-translational modification, the nuclear receptors

relocate to the plasma membrane to facilitate the rapid effects of

sex steroids (Figure 4B) (52, 53). Considering the absence of

relevant functional nuclear receptors in mollusks, the nuclear

receptor-mediation of sex steroids via these pathways can be

excluded. Previous screenings of Lymnaea genome and

transcriptome data did not identify functional nuclear sex steroid

receptors either (2, 31, 54). We are careful to use the word

‘functional’ in this context, as molluscan genomes all contain a

gene that was initially annotated as being a homologue of the

vertebrate nuclear estrogen receptor (nER), although it is actually

orthologous to the common ancestor of vertebrate estrogen and

oxosteroid receptors (55). Moreover, all studies on mollusks to date,

except one (56), have shown that molluscan nERs do not bind to E2
and are, in fact, in an already activated state (57–59). Previously, the

nER of the scallop was reported to be bind to E2 (56). Nevertheless,

the hybrid vector used in that study was made up of fish and scallop

sequences, and the binding evidence was a two-fold increase at one

dose of E2. Hence, we would argue that data are insufficient to refer

to the scallop nER as a ‘functional’ E2 receptor and support the

proposal of (60) that sequences previously termed molluscan nER

should be renamed NR3D. The third possible pathway involves

rapid effects mediated by membrane receptors which are distinct

from nuclear receptors (Figure 4C) (16, 40, 61–63). Given that

GPCRs trace their origins back into history over one billion years,

whereas the original ancestral nuclear steroid receptor appeared
Frontiers in Endocrinology 05
about 500-600 million years ago (7), other works (4, 11) have very

reasonably suggested that sex steroids affect the physiology of

mollusks through this mechanism.

The rapid effects of E2 in vertebrates are mediated by a single

GPCR called GPER1 [for detailed reviews, see (62, 63)]. Our

candidate was unresponsive to E2, suggesting that no GPER1

homolog is present in Lymnaea. The identified sequence likely

belongs to the protostome allatostatin-C receptors, which are

closely related to echinoderm somatostatin/allatostatin-C-type

receptors and chordate somatostatin-type and opioid-type

receptors (Supplementary Figure 3) (64, 65). Without assessing

the robustness of previously reported rapid effects of E2 on Mytilus

hemocytes, we note that only the lysosomal membrane stability-

decreasing effect has so far been properly verified. This classic

‘immune response’, as also referenced by the authors of the original

study (4), led to the hypothesis the E2 may act as a xenobiotic

‘inflammatory agent’ for mollusks. Consistent with the previous

idea that recognition and deactivation of xenobiotics were

significant evolutionary pressures for receptor development (66),

we hypothesize that mollusks have an unknown specific membrane

receptor, though not a GPER1 homolog, capable of binding E2 and

initiating a rapid immune response.

Rapid actions of P are implemented by five mPR subtypes,

which are not GPCRs but belong to the progestin and adipoQ

receptor (PAQR) family, in vertebrates [for recent detailed reviews,

see (16, 61)]. The previous scenario was that mPRs are exclusive to
FIGURE 2

Second messenger assay (Ca2+ mobilization) for assessing the potential ligand-receptor interaction between vertebrate type-sex steroids and Lymnaea
membrane sex steroid receptor candidates. Dose-response curve of E2 in GPER1 candidate-expressing HEK cells (A), P in mPR candidate-expressing
cells (B), and T in GPCR6A candidate or ZIP9 candidate-expressing HEK cells (C, D). Empty vector was transfected as the negative control (Mock). None
of the candidates were responsive to the main steroid ligand. Data points are means ± SEM of two (A, B, D) or three (C) independent transfections.
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FIGURE 3

Confocal microscopic observation of immunostained HEK293 cells expressing codon usage optimized mPR and ZIP9 candidates fused with G16
protein (A) and functional receptor assay for assessing ligand-binding (B, C). (A) Expressed receptor candidates stained with anti-G16 antibody
(green), nuclei stained with Hoechst 33342 (blue), and merged views of the transfectants. The candidates were localized at the plasma membrane.
The expression of both candidates significantly improved due to the codon usage optimization. Bars = 50 mm. Dose-response curve of P in mPR
candidate-expressing cells (B) and T in ZIP9 candidate-expressing HEK cells (C). Empty vector was transfected as the negative control (Mock). Both
candidates were unresponsive to the main steroid ligand. Data points are means ± SEM of two independent transfections.
FIGURE 4

Sex steroid signaling in vertebrates. (A) Classic nuclear pathway involving estrogen (ER), progesterone (PR), and androgen (AR) receptors, which are
primarily located as monomers in the nucleus or as monomers bound to heat shock proteins (HSPs) in the cytoplasm. After steroid binding,
dimerization, changes in receptor conformation (and nuclear localization), the receptors bind to specific steroid-response elements (SREs) to
modulate gene transcription. (B) The membrane forms of ER, PR, and AR are tethered to the cell membrane and can also bind sex steroids activating
G proteins (e.g., Gs) and/or kinases (e.g., PI3K/Akt pathway). (C) Membrane sex steroid receptors (GPCRs and non-GPCRs) which are unrelated to ER,
PR, and AR can also bind sex steroids activating G proteins and kinases. Red X symbols mark vertebrate receptors which have no homologs in
Lymnaea, while green/red X symbols indicate vertebrate receptors which have structural but, in terms of the sex steroid signaling, not functional
homologs in Lymnaea.
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chordates (67). However, a recent comprehensive genomic analysis

of metazoans revealed homologs for mPRb and mPRg in bivalves,

suggesting that the five vertebrate mPRs evolved from an ancestral

metazoan mPRg (18). It is also noteworthy that mPRa, which has

been shown to mediate most mPR functions in vertebrate cells

(even when they express all isoforms), is absent in invertebrates.

Our in silico revealed only one potential mPR candidate in

Lymnaea. Conservation analysis of this sequence yielded similar

results to those previously reported in mollusks (Supplementary

Figures 9, 10) (17). However, our ligand-receptor interaction

experiment showed that this candidate did not respond to P,

suggesting the absence of an mPR homolog in Lymnaea.

Adiponectin receptor, a member of PAQR family, was recently

identified and showed to be involved in learning and memory

formation of Lymnaea (68). Our identified sequence may also

belong to the PAQR family (Supplementary Figure 4) and use

adiponectin as its ligand, but further studies are required to confirm

this assumption. Collectively, the present study supports the

original theory that functional mPRs are exclusive to chordates.

Non-genomic effects of T in vertebrates are mediated by two

proteins, GPRC6A (GPCR) and ZIP9 (non-GPCR) [reviewed by

(40, 69)]. Our homology-searches revealed one candidate for both

proteins in Lymnaea, but neither responded to T, suggesting the

absence of mAR homologs in this species. GPRC6A is also known

to be activated by L-a-amino acids (40). Based on our in silico

analyses (Supplementary Figures 2, 5), we suppose that the

identified Lymnaea sequence functions as a metabotropic

glutamate receptor, although experimental validation awaits

further studies. In vertebrate cells, ZIP9 has dual functions as a

zinc transporter and as a mAR activating second messengers (40).

Since Lymnaea ZIP9 was unresponsive to T, we hypothesize that its

sole function is to participate in zinc homeostasis.

In summary, our findings strongly suggest that functional

homologs of vertebrate membrane sex steroid receptors are not

present in Lymnaea. Although further experiments are required on

other molluscan model species as well, we propose that both

classical and non-classical sex steroid signaling for endocrine

responses are specific to chordates. In light of this, it remains an

important and unanswered question how vertebrate steroids affect

the physiology of mollusks. Vertebrate sex steroids are probably

xenobiotic ‘inflammatory agents’ for mollusks and may be

recognized by membrane receptors involved in rapid immune

responses. Another potential target for endocrine disruption by

vertebrate steroids in mollusks might be an ecdysone-like pathway.

Ecdysone signaling was long thought to be exclusive to arthropods;

however, studies from 2010 have demonstrated the presence of an

orthologue of the EcR/NR1H receptor in other protostome taxa,

including mollusks and annelids (70). In insects, 20-

hydroxyecdysone exerts both genomic and non-genomic actions

(71). It is noteworthy that GPCR-mediated effects of 20-

hydroxyecdysone have also been described in mammals,

demonstrating the activation of an endogenous signaling pathway
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by a clearly exogenous steroid (72). Our homology searches

revealed Lymnaea sequences homologous to both insect nuclear

and membrane (GPCR) ecdysone receptors (Supplementary

Figure 11), paving the way for future studies aimed at

investigating this potential target pathway. Our findings have

implications not only for the fields of endocrinology and

evolution but also for ecology: it is important to consider the

signaling pathways and responsiveness of mollusks to vertebrate

sex steroids when assessing the impact of these compounds

on ecosystems.
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