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Elucidating the causal
links between plasma
and cerebrospinal fluid
metabolites and pituitary
tumors: a Mendelian
randomization analysis
Wencai Wang , Menghao Liu, Zun Wang, Wei Ye
and Xianfeng Li *

Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China
Background: Pituitary tumors (PTs) are common benign intracranial tumors.

Investigating the metabolites in serum and cerebrospinal fluid in PTs is essential

to understanding the underlying biological mechanisms and identifying new

biomarkers and therapeutic strategies.

Methods: We used the GWAS dataset of PTs from the FinnGen database, a

dataset of 486 plasma metabolites from the GWAS catalog database, and a

dataset of 338 cerebrospinal fluid (CSF) metabolites from the WADRC and WRAP

study collections. An inverse variance weighting (IVW) approach was utilized as

the mainly method to investigate causality between metabolites and PTs,

supplemented by four complementary methods to strengthen our findings.

Additionally, we utilized several sensitivity methods to guarantee the

robustness of our findings.

Results: The study identified 17 plasma metabolites and 10 CSF metabolites related

to PTs. Among these, 11 metabolites indicated a significant positive causality with

PTs, while 16 displayed a remarkable negative causality. Particularly, plasma levels of

3-dehydrocarnitine (OR = 2.73, 95% CI = 1.55–4.83, P = 0.001) and acetylcarnitine

(OR = 0.35, 95% CI = 0.19–0.63, P = 0.001) were found to be significant exposure

factors for PTs. Multiple sensitivity analyses confirm the robustness of the results. The

study found no evidence of a reverse causality between PTs and the plasma levels of

3-dehydrocarnitine and acetylcarnitine.

Conclusions: The present study identified 27 metabolites associated with the

incidence of PTs, among which 3-dehydrocarnitine and acetylcarnitine are the

most noteworthy.
KEYWORDS

Mendelian randomization, 3-dehydrocarnitine, acetylcarnitine, pituitary tumors,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1460278/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1460278/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1460278/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1460278/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1460278/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1460278/full
https://orcid.org/0009-0004-5673-1643
https://orcid.org/0000-0001-8549-537X
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1460278&domain=pdf&date_stamp=2024-11-28
mailto:lixianfeng2000@163.com
https://doi.org/10.3389/fendo.2024.1460278
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1460278
https://www.frontiersin.org/journals/endocrinology


Wang et al. 10.3389/fendo.2024.1460278
1 Introduction

Pituitary tumors (PTs) are the second most common primary

brain neoplasm, accounting for about 10-15% of all brain tumors,

and are the most common benign tumor in the saddle region (1).

Larger PTs often cause patients to experience visual field defects,

headaches or hypopituitarism (2). Additionally, functional PTs can

produce excessive amounts of hormones, resulting in various

endocrine symptoms (3). The first-line treatment option for PTs

is typically endoscopic transsphenoidal pituitary surgery, except for

prolactinomas, for which the first-line treatment option is

medication with bromocriptine or carbamazepine (4).

In recent years, the rapid development of metabolomics has

provided new research methods for studying the pathogenesis of

diseases, including PTs, and for searching for biomarkers (5).

Previous studies have shown that choline is negatively correlated

with growth inhibitory receptor type 2 expression in growth

hormone-secreting pituitary adenomas, and positively related to

magnetic resonance imaging T2 signals and Ki-67 indices (6). In

addition, growth inhibitor stimulates BKCa channels in rat PT cells

via lipoxygenase metabolites of arachidonic acid (7). Various

studies suggest that metabolites are closely related to the

development of PTs (8, 9). Nevertheless, it remains unknown

which metabolites are causally associated with PTs.

Mendelian randomization (MR) is an epidemiological

technique that uses genome-wide association study (GWAS) data

to investigate causality between exposures and outcomes (10). It

reduces the effects of reverse causality and confounding factors.

Therefore, we intended to investigate the effects of serum and

cerebrospinal fluid (CSF) metabolites on PTs employing MR.
2 Methods

2.1 Study design

This paper is based on the STROBE-MR report and strictly

follows the three main assumptions of MR analysis (11): 1) the

designated instrumental variables(IVs) are strongly related to serum

and CSF metabolites; 2) the IVs are not confounded by other

factors; and 3) the IVs influence the occurrence of PTs only through

serum and CSF metabolites, not through other pathways (Figure 1).
2.2 GWAS data source

The GWAS dataset of PTs as defined by the International

Classification of Diseases, 10th Revision (ICD-10) is from round

9 of the FinnGen database. It includes 1,402 European patients with

PTs and 375,875 control European patients (12). The serum
Abbreviations: PTs, Pituitary tumors; MR, Mendelian randomization; GWAS,

genome-wide association study; CSF, cerebrospinal fluid; IVs, instrumental

variables; ICD-10, International Classification of Diseases, 10th Revision; IVW,

inverse variance weighting; MR-PRESSO, Mendelian randomized polytomous

residuals and outliers; SMP, Small Molecule Pathway.
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metabolite GWAS dataset consists primarily of 486 metabolites

from the German KORA F4 study (n = 1,768 individuals) and the

UK TwinsUK study (n = 6,056 individuals) (13). The 338 CSF

Metabolites GWAS dataset was obtained from CSF specimens from

689 participants in the Wisconsin Alzheimer’s Disease Research

Centre (532 participants) and the Wisconsin Alzheimer’s Disease

Prevention Registry (168 participants). The study received approval

from the Institutional Ethics Review Board of the University of

Wisconsin Health Sciences (14).
2.3 IVs selection

We took the following steps in screening the IVs:1) We used a

threshold of p<5×10−8 to screen SNPs; 2) We used the criteria of

r2<0.001 and LD = 10,000 kb to remove linkage disequilibrium; 3)We

calculated the F-statistic for each SNP, excluding those with F-statistics

smaller than 10 and retaining those larger than 10; 4) We excluded

SNPs in palindromic sequences; 5) Finally, we used PhenoScanner to

remove SNPs related to potential confounding factors (15).
2.4 Statistical analysis

Our MR analyses were all performed using the TwoSampleMR

package in R Studio (16). First, serum and CSF metabolites were

selected as IVs, and PTs were considered endpoints. The inverse

variance weighting (IVW) technique was used as the mainly

analysis method. Furthermore, weighted modal, weighted median,

MR-Egger, and simple modal methods were used as supplementary

analyses. Given the exploratory nature of this study, we did not

apply the Bonferroni correction method; instead, results with a P-

value of less than 0.05 were considered significant.

We performed sensitivity analyses of our MR results using a

variety of methods.MR-Egger regression intercepts and Mendelian

randomized polytomous residuals and outliers (MR-PRESSO) were

used to detect potential horizontal pleiotropy. Cochrane’s Q-statistics

and their corresponding p-values were computed in the IVW test and

MR-Egger regression to evaluate potential heterogeneity among IVs.

If significant heterogeneity was found (p<0.05), we used the random

effects model of IVW to obtain more unbiased and robust estimates.

The robustness of our MR analysis results was verified through

scatterplots and funnel plots. Additionally, leave-one-out analyses

were conducted to evaluate the potential impact of individual SNPs

on the observed causal relationships.
2.5 Metabolic pathway analysis

We performed metabolic pathway analyses of metabolites

causally associated with PTs using Metaconflict 5.0. (https://

www.metaboanalyst.ca/) (17). In summary, 11 metabolic

pathways were identified from the metabolite database, with 9

pathways sourced from both the Small Molecule Pathway (SMP)

database and the KEGG database, and 2 pathways derived

exclusively from KEGG.
frontiersin.org
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3 Results

3.1 MR analysis of 486 plasma metabolites’
impact on PTs

The MR analysis identified significant associations between

plasma metabolites and the risk of PTs. Specifically, 2

−hydroxyacetaminophen sulfate (OR=0.97, 95%CI: 0.95-1.00,

P=0.024), acetylcarnitine (OR=0.35, 95%CI: 0.19-0.63, P=0.001),

isovalerate (OR=0.45, 95%CI: 0.24-0.84, P=0.012), myristate

(OR=0.48, 95%CI: 0.27-0.86, P=0.014), pipecolate (OR=0.63, 95%

CI: 0.41-0.96, P=0.034), threonate (OR=0.65, 95%CI: 0.43-0.97,

P=0.035) showed inverse correlations with PTs’ risk. Conversely,

2−hydroxyisobutyrate (OR=2.27, 95%CI: 1.34-3.84, P=0.002), 3

−dehydrocarnitine (OR=2.73, 95%CI: 1.55-4.83, P=0.001), 3

−indoxyl sulfate (OR=1.62, 95%CI: 1.03-2.53, P=0.036), citrate

(OR=2.17, 95%CI: 1.03-4.55, P=0.040), and glycerate (OR=2.01,

95%CI: 1.01-4.02, P=0.048) were positively related to the risk of

PTs. Additionally, six unknown metabolites were discovered to be

causally linked to the occurrence of PTs. (Figures 2, 3) Scatter plots

illustrating these causal relationships are provided in Figure 4.

However, reverse MR analysis revealed no causal association

between PTs and these plasma metabolites(P<0.05).
3.2 MR analysis of 338 CSF metabolites’
impact on PTs

The MR analysis displayed significant associations between CSF

metabolites and the risk of PTs. Specifically, Acetylcarnitine (c2)

(OR=0.90, 95%CI: 0.83-0.97, P=0.005), Arabonate/xylonate
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(OR=0.65, 95%CI: 0.44-0.98, P=0.037), Dimethyl sulfone (OR=0.95,

95%CI: 0.90-1.00, P=0.034), N-formylmethionine (OR=0.78, 95%CI:

0.63-0.95, P=0.016), Tryptophan (OR=0.57, 95%CI: 0.33-0.96,

P=0.036), Urea (OR=0.71, 95%CI: 0.52-0.97, P=0.0353) showed

inverse correlations with PTs’ risk. Conversely, N-acetylglutamate

(OR=1.21, 95%CI: 1.02-1.44, P=0.027) and N-acetylisoleucine

(OR=1.54, 95%CI: 1.04-2.28, P=0.032) were positively associated

with the risk of PTs. Additionally, two unknown CSF metabolites

were discovered to be causally linked to the occurrence of PTs.

(Table 1) Scatter plots illustrating these causal relationships are

provided in Figure 5. However, reverse MR analysis revealed no

causal association between PTs and these CSF metabolites (P<0.05).
3.3 Sensitivity analyses

To ensure the robustness of our findings, sensitivity analyses were

conducted, confirming the integrity of IVs and hypothesis of the MR

pattern through MR-Egger tests and Cochran’s Q. Regarding plasma

metabolites and PTs, no evidence of heterogeneity was observed across

the seventeen types of plasma metabolites. Except for 2-

hydroxyisobutyrate, myristate (14:0) and X-13859, there was no

pleiotropy in the other fourteen plasma metabolites. Concerning CSF

metabolites and PTs, except for tryptophan and X-25109, there was no

heterogeneity in the other eleven CSFmetabolites. Except for arabonate/

xylonate, there was no pleiotropy in the other eleven CSF metabolites.

Furthermore, both leave-one-out and MR-PRESSO analyses detected

no underlying instrumental outliers, providing further support for the

robustness of our results. Detailed summaries of sensitivity analyses are

available in Tables 2, 3, while illustrations of leave-one-out analysis and

funnel plots can be discovered in Supplementary Figures 1, 2.
FIGURE 1

Schematic illustration of the study design. snps, single nucleotide polymorphisms. Created with BioRender.com.
frontiersin.org
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FIGURE 3

Forest plots illustrating the significant causal estimates of plasma metabolites on PTs are presented. SNPs, single nucleotide polymorphisms;
OR, odds ratio; IVW, inverse-variance weighted.
FIGURE 2

Summary of causal estimates regarding the impact of all plasma metabolites on PTs in MR analysis. From outside to inside, the corresponding
P-values of IVW, MR-Egger, WM, Egger intercept, MRPRESSO Global Test, Q, odds ratio are represented, respectively. MR, Mendelian randomization;
IVW, inverse-variance weighted; WM, weighted median.
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TABLE 1 The significant IVW results of cerebrospinal fluid metabolites and pituitary tumors.

Exposure Method nSNP b se OR (95%CI) pval

Acetylcarnitine (c2) IVW 111 -0.11 0.04 0.90(0.83,0.97) 0.005

Arabonate/xylonate IVW 13 -0.42 0.20 0.65(0.44,0.98) 0.037

Dimethyl sulfone IVW 76 -0.05 0.03 0.95(0.90,1.00) 0.034

N-acetylglutamate IVW 34 0.19 0.09 1.21(1.02,1.44) 0.027

N-acetylisoleucine IVW 13 0.43 0.20 1.54(1.04,2.28) 0.032

N-formylmethionine IVW 25 -0.25 0.11 0.78(0.63,0.95) 0.016

Tryptophan IVW 26 -0.57 0.27 0.57(0.33,0.96) 0.036

Urea IVW 30 -0.34 0.16 0.71(0.52,0.97) 0.032

X-24686 IVW 74 0.09 0.04 1.10(1.02,1.18) 0.016

X-25109 IVW 64 -0.18 0.08 0.84(0.72,0.98) 0.027
F
rontiers in Endocrinology
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FIGURE 4

Scatter plots for the causal association between plasma metabolites and PTs. (A) myristate (14:0) (B) pipecolate (C) citrate (D) glycerate
(E) 2-hydroxyisobutyrate (F) 3-indoxyl sulfate (G) threonate (H) acetylcarnitine (I) X-11247 (J) 3-dehydrocarnitine (K) X-11452
(L) 2-hydroxyacetaminophen sulfate (M) X-12696 (N) isovalerate (O) X-13215 (P) X-13671 (Q) X-13859.
frontiersin.org
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3.4 Metabolic pathway analyses

In the metabolic pathway analysis, two significant metabolic

pathways primarily involved in PTs were identified. The results

showed that the “Arginine biosynthesis” pathway (P = 0.002) and

the “Glyoxylate and dicarboxylate metabolism” pathway (P = 0.008)

may be involved in the development and occurrence of PTs.
Frontiers in Endocrinology 06
4 Discussion

We used serum metabolites, CSF metabolites, and PTs for MR

analysis to investigate the causality between metabolites and PTs. In

our research, we identified 17 plasma metabolites and 10 CSF

metabolites associated with PTs. Among them, 11 metabolites

showed significant positive causality with PTs, while 16
TABLE 2 The sensitivity analysis results of serum metabolites and pituitary tumors.

Exposures Methods Q Q_pval Ple_pval

2-hydroxyacetaminophen sulfate IVW 185.18 0.341 0.994

2-hydroxyisobutyrate IVW 89.21 0.832 0.038

3-dehydrocarnitine IVW 95.49 0.907 0.134

3-indoxyl sulfate IVW 55.15 0.803 0.355

acetylcarnitine IVW 110.88 0.432 0.548

citrate IVW 180.14 0.156 0.412

glycerate IVW 107.95 0.154 0.754

isovalerate IVW 64.58 0.660 0.273

myristate (14:0) IVW 131.56 0.112 0.021

pipecolate IVW 90.35 0.224 0.226

threonate IVW 72.26 0.309 0.278

X-11247 IVW 59.50 0.833 0.527

X-11452 IVW 64.62 0.420 0.914

X-12696 IVW 131.62 0.325 0.418

X-13215 IVW 171.82 0.533 0.300

X-13671 IVW 111.33 0.553 0.579

X-13859 IVW 191.78 0.132 0.026
FIGURE 5

Scatter plots for the causal association between cerebrospinal fluid metabolites and PTs. (A) Acetylcarnitine(c2) (B) Arabonate/xylonate (C) Dimethyl
sulfone (D) N-acetylglutamate (E) N-acetylisoleucine (F) N-formylmethionine (G) Tryptophan (H) Urea (I) X-24686 (J) X-25109.
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metabolites showed significant negative causality with PTs. Our

study identified a variety of serum metabolites that may function as

biomarkers for PTs. Among them, serum 3-dehydrocarnitine and

acetylcarnitine are the most noteworthy.

MR is analogous to randomized controlled trials in nature and

uses genetic variations as IVs to make causal inferences. It is able to

avoid to some extent the problems of confounders (e.g., overall

patient frailty) (18) and reverse causation in traditional

observational studies because genes are determined at birth and

are not affected by acquired environment or disease. With the

increasing application of metabolomics in various diseases within

neuroendocrinology and neurosurgery, it has provided new insights

and ideas for exploring therapeutic targets and biomarkers for

various brain tumors. While metabolomics research on PTs

remains in its infancy, numerous researches have consistently

demonstrated that metabolomics plays a crucial role and holds

promising prospects for studying the mechanisms of PTs (5, 19).

Metabolites play a crucial role in living organisms, participating

in processes such as energy metabolism, cell signaling, and

maintaining intracellular stability. Abnormal changes in

metabolites can reflect the development of specific diseases.

Metabolomics has shown that different subtypes of pituitary

adenomas exhibit distinct metabolic profiles. Previous studies

have identified differences in the levels of metabolites such as

deoxycholic acid, pyridoxine, and methyl 3-adipate in ACTH
Frontiers in Endocrinology 07
adenomas (20). In prolactinomas, downregulation of N-

acetylaspartate, phosphoethanolamine, and inositol expression,

along with upregulation of glutamine, aspartate, and glutamate

expression, has been observed (21). In invasive non-functioning

pituitary adenomas, the levels of creatinine, desipramine, taurine,

hypotaurine, lactate, and succinic acid were upregulated, whereas

the levels of cis-11-eicosatetraenoic acid, glyceric acid,

docosahexaenoic acid, arachidonic acid, hypoxanthine, lysine,

linoleic acid, xanthine, valine, uracil, and oleic acid were

downregulated (8). In contrast, differences in amino acids, lipids

and glucose metabolites were also present in acromegaly (19). Our

discovery that acetylcarnitine is inversely associated with PTs

suggests that it could represent a significant therapeutic target for

PTs. Acetylcarnitine, a derivative of carnitine, plays a crucial role in

multiple neural pathways and has demonstrated utility in treating

various neurological disorders, including dementia, cerebral

ischemia, and neuroblastoma (22–25). Acetyl L-carnitine has been

proposed to modulate the tumor microenvironment through its

impact on the target glandular axis and subsequent neuroendocrine

secretion (26). 3-Dehydrocarnitine, belonging to the carnitine

family, functions as an intermediate in the degradation of

carnitine. Carnitine has traditionally been linked with fatty acid

metabolism. Metabolites of fatty acids might influence PTs growth

by modulating the release of inflammatory factors and

neurotransmitters from pertinent signaling pathways (6, 27).
TABLE 3 The sensitivity analysis results of cerebrospinal fluid metabolites and pituitary tumors.

Exposure Method Q Q_pval Ple_ pval Presso_pval

Acetylcarnitine (c2) MR Egger 90.26 0.904

IVW 90.67 0.910 0.526 0.902

Arabonate/xylonate MR Egger 10.28 0.506

IVW 15.67 0.207 0.040 0.260

Dimethyl sulfone MR Egger 71.87 0.549

IVW 71.88 0.581 0.914 0.613

N-acetylglutamate MR Egger 29.26 0.606

IVW 31.63 0.535 0.133 0.574

N-acetylisoleucine MR Egger 13.40 0.268

IVW 13.48 0.335 0.798 0.365

N-formylmethionine MR Egger 12.75 0.957

IVW 16.34 0.876 0.071 0.878

Tryptophan MR Egger 36.97 0.044

IVW 37.91 0.047 0.443 0.059

Urea MR Egger 32.50 0.255

IVW 33.30 0.266 0.413 0.274

X-24686 MR Egger 65.42 0.695

IVW 65.42 0.724 0.986 0.746

X-25109 MR Egger 89.89 0.012

IVW 90.80 0.012 0.433 0.013
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Lipid metabolism is pivotal in the initiation and advancement of

PTs (28). Lipid metabolism represents a significant component of

the metabolic reprogramming observed in tumor cells (29). Large

quantities of fatty acids can either be utilized for constructing cell

membranes or oxidized to generate energy (30, 31). In addition,

lipids serve not only as structural components and sources of energy

for tumor cells but also regulate cell growth, differentiation, and

proliferation through signaling pathways (32). Our study indicates a

causal association between acetylcarnitine, myristate, isovalerate, 2-

hydroxyisobutyric acid, and 3-dehydrocarnitine—lipids and their

related compounds—and the development of pituitary tumors.

Earlier research has also linked taurine and glyceric acid to IGF-1

levels, suggesting their potential as metabolomic biomarkers for

active acromegaly (33). Additionally, integrated protein-metabolite

pathway analyses demonstrated significant enrichment of multiple

metabolites within the fatty acid metabolic pathway in ACTH-

secreting pituitary adenomas (34). Thus, these results collectively

indicate that lipid metabolism could indeed play a significant role in

the development of pituitary tumors, potentially influencing

metabolic reprogramming and signaling pathways like the

phosphatidylinositol-3-kinase (PI3K)/Akt pathway (35–38).

Furthermore, fluctuations in the levels of these lipid metabolites

in pituitary tumors can serve as biomarkers for tumor diagnosis

and treatment.

The relationship between amino acid metabolism and PTs is

complex (39). Our study suggests that some amino acid metabolites

such as Arabonate, N-formylmethionine, Tryptophan, N-

acetylglutamate and N-acetylisoleucine are causally associated

with the development of PTs. Notably, N-acetylglutamate is

related to the glutamine metabolic pathway. One of the most

important mechanisms linking amino acid metabolism and PTs is

glutamine metabolism, which is altered in pituitary tumorigenesis

and may vary across different clinical types of PTs (40). Glutamine

provides ATP to tumor cells, supplies critical precursors for

nucleotides, and helps tumor cells survive in hostile environments

through the synthesis of glutathione (41). Additionally, glutamine

metabolism is intricately linked to the mTOR signaling pathway,

which is crucial for tumor cell proliferation and growth (42, 43).

Furthermore, certain amino acids, such as tryptophan, may

influence the pituitary gland via the neuroendocrine pathway,

indirectly affecting pituitary cell proliferation and tumor

formation (44).

Further transcriptome analysis suggests that ligands

associated with 3-dehydrocarnitine, including PPARa, AMPK,

SREBP, ChREBP, PGC-1a, and SIRT, may be involved in the

signaling pathways of gonadotroph tumors, while PPARa, AMPK,

SREBP, and ChREBP ligands may play a role in the signaling

pathways of prolactinoma. Similarly, ligands associated with

acetylcarnitine, such as PPARa, PGC-1a, SIRT1, PPARd,
SREBP-1c, LXRa/b, and PPARg, are likely involved in the

signaling of gonadotroph tumors. Additionally, PPARa, PGC-
1a, and FOXO1 ligands linked to acetylcarnitine may participate

in the signaling pathways of prolactinoma, while SREBP-1c,

LXRa/b, PPARg, HIF-1a, PPARa, PGC-1a, and FOXO1 are

likely involved in the signaling of nonfunctional pituitary

tumors (45). These transcriptome ligands jointly regulate the
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expression of related metabolites and genes, modulating

signaling pathways that ultimately impact tumor development

and progression (Supplementary Table 1).

The arginine biosynthetic pathway consists of a series of

chemical reactions that convert amino acids into arginine.

Arginine is an essential amino acid with several cellular functions,

including protein synthesis and cell proliferation (46). Tumor cells

may upregulate the arginine synthesis pathway to meet the

demands of rapid proliferation, particularly in pituitary tumors

(47). Furthermore, arginine metabolism is closely related to

immune regulation (48). Pituitary tumor cells can inhibit T-cell

activity by depleting arginine, thereby evading the immune system’s

attack (49). Key enzymes in the arginine synthesis pathway, such as

arginase and nitric oxide synthase, are upregulated in pituitary

tumors and may serve as diagnostic markers or therapeutic targets.

Glyoxylate is metabolized via the glyoxylate cycle or glycine

pathway to produce the intermediate product glyoxylate, which

can be further metabolized to oxalate or converted into other

intermediates that enter the tricarboxylic acid cycle. The

accumulation of glyoxylate and its metabolites may influence the

oxidative stress levels and metabolic state of pituitary tumor cells,

thereby promoting tumor growth and survival (50). Dicarboxylic

acids, including oxalic acid, fumaric acid, and succinic acid, are

crucial intermediates of the TCA cycle, involved in energy

production and cellular metabolism (51). Pituitary tumor cells

may undergo metabolic reprogramming in the dicarboxylate

metabolic pathway, promoting cell proliferation and anti-

apoptosis by affecting ATP production, redox state, and the

accumulation of metabolic by-products (38). Investigating

abnormalities in the arginine metabolic pathway, as well as the

glyoxylate and dicarboxylate metabolic pathways, may help identify

pituitary tumor-specific biomarkers for diagnosis and monitoring

disease progression. Drugs targeting these metabolic pathways

could be utilized in the treatment of pituitary tumors. For

example, inhibiting key enzymes in these pathways may reduce

the energy supply and growth advantage of tumor cells.

Additionally, by modulating oxidative stress levels, the

proliferation of tumor cells may be inhibited, and apoptosis may

be promoted.

Our study examined the causality of serum and CSF metabolites

with PTs, identifying numerous metabolites that could serve as

potential biomarkers for PTs. Notably, serum 3-dehydrocarnitine

and acetylcarnitine emerged as the most promising biomarkers.

However, several limitations must be acknowledged. Firstly, our

MR analyses were based on metabolite GWAS data with a limited

sample size, necessitating the collection of more samples and

metabolite species across diverse populations to accurately

elucidate the relationship between metabolites and PTs. Secondly,

our study represents a preliminary exploration; thus, further

experimental researches are desired to validate these results and

investigate underlying mechanisms in greater detail. Thirdly, our

findings may be specific to European populations and might not be

generalizable to other ethnic groups. Lastly, due to the exploratory

nature of our study, multiple testing adjustments were not applied;

however, we ensured the robustness of our results by employing

multiple MR algorithms.
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5 Conclusions

In conclusion, our comprehensive analysis of 486 plasma

metabolites and 338 CSF metabolites successfully identified 27

metabolites associated with PTs. These findings underscore the

potential of plasma and CSF metabolites, particularly serum 3-

dehydrocarnitine and acetylcarnitine, as biomarkers for PTs. This

research opens promising avenues for early detection and risk

assessment of PTs.
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