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N6-methyladensine (m6A) has been identified as the best-characterized and the

most abundant mRNA modification in eukaryotes. It can be dynamically

regulated, removed, and recognized by its specific cellular components

(respectively called “writers,” “erasers,” “readers”) and have become a hot

research field in a variety of biological processes and diseases. Currently, the

underlying molecular mechanisms of m6A epigenetic modification in diabetes

mellitus (DM) and diabetic microvascular complications have not been

extensively clarified. In this review, we focus on the effects and possible

mechanisms of m6A as possible potential biomarkers and therapeutic targets in

the treatment of DM and diabetic microvascular complications.
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1 Introduction

Diabetes mellitus (DM) is an international health problem characterized by insulin

resistance (IR) and insulin deficit (1). It has been estimated by the International Diabetes

Federation that 537 million individuals worldwide are living with diabetes in 2021. By 2045,

784 million people will be affected by diabetes (2). DM can lead to macrovascular and

microvascular complications. Macrovascular complications include coronary heart disease,

strokes, and peripheral arterial disease. Microvascular complications include diabetic kidney

disease (DKD), diabetic retinopathy (DR), and diabetic peripheral neuropathy (DPN) (3).

Methylation is an important modification of nucleic acids and proteins. It can regulate the

expression and inhibition of genes and be involved in a variety of diseases, such as DM, cancer,

aging, and so on (1, 4–6). RNA epigenetics modification has become a regulatory mechanism

to coordinate cell transcriptome and proteome in different physiological processes. Similar to

DNA methylation and histone modifications, RNA modifications can be dynamically

regulated, removed, and recognized by its specific cellular components (respectively called

“writers,” “eraser,” “readers”) and affect RNA splicing, stability, localization, translation, and
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transcription of mRNAs (7). RNA methylation includes N6-

methyladensine (m6A), 5-methylcytosine, N1-methyladenosine, N7-

methylguanosine, etc. (8). Among these modifications, m6A has been

identified as the best-characterized and the most abundant mRNA

modification in eukaryotes (9–11). And m6A methylation has become

a hot research field in a variety of biological processes and diseases,

such as aging, lipid metabolism, the development of hematopoietic

system, central nervous system and reproductive system, obesity,

cardiovascular diseases, cancers, renal diseases and et al. (7, 11–16).

We find that five reviews onm6A and diabetes have been published (1,

17–20). However, there’re still some gaps that the existing reviews

mainly focused on the relationship between m6A modification and

DM and did not provide a detailed summary about the advancement

of m6A and diabetic microvascular complications. Microvascular

injury is very important for the prognosis of DM. In consequence,

this review highlights the molecular mechanisms and potential

therapeutic targets of m6A and diabetic microvascular complications.
2 m6A

m6A, first discovered in Novikoff hepatic cancer cells (21), is an

internal modification and highly clustered in near stop codons and

in 3’UTRs of mRNAs (22). With the constant sequence RRACH

(where R stands for A or G and H for A, C, or U), it is found in

highly conserved sections and is dynamically regulated by particular

methyltransferases and demethylases, which interacts to maintain

RNA methylation homeostasis (10, 23) (Figure 1).
2.1 Writers

The m6A modification is post-transcriptionally installed by

methyltransferase complex(MTC), which composes of METTL3,
Frontiers in Endocrinology 02
METTL14, Wilms’ tumor 1-associated protein (WTAP) (24). Either

METTL3 or METTL14 alone exhibits fairly weak catalytic activity

in vitro. However, the METTL3-METTL14 complex displayed

significantly higher activity. Meanwhile, METTL14 can offer an

RNA-binding scaffold to enhanced activity of METTL3 methylation

(25). METTL3 and METTL14 are the core subunits of MTC and

play a key role in different biological processes. In mouse embryonic

brains, knockout of METTL3 and METTL14 can prolong the cell

cycle of radial glial cells and extend cortical neurogenesis into the

postnatal stage in a m6A-dependent manner (26). Besides, the

METTL3-METTL14 heterodimer complex is closely related to

the most of m6A sites in mRNA. More than 99% of the total m6A

was lost in mouse embryonic stem cells upon genomic deletion of

METTL3 or CRISPR-mediated silencing of METTL14 (27). WTAP

is the third subunit of MTC. Although WTAP has no catalytic

activity against RNA targets, it can facilitate the accumulation of

METTL3-METTL14 heterodimer complex in nuclear speckles (28).

WTAP depletion led to a marked decrease of m6A levels in mRNA

and the buildup of both METTL3 and METTL14 in nuclear

speckles (29). Besides, WTAP is involved in regulating

transcription and alternative splicing of mRNA (29, 30).

Therefore, WTAP, as a regulatory subunit, may play a key role in

RNA epigenetic modification.

Apart from MTC, other methyltransferases include METTL5,

METTL16, Zinc finger CCHC-type containing 4 (ZCCHC4), RNA-

binding motif protein 15 (RBM15), and others. The miCLIP analysis

confirmed that METTL5 and ZCCHC4 are highly specific

methyltransferases which can respectively install 18S rRNA and 28S

rRNA. TRMT112 is indispensable to stability and activation of

METTL5 in order to achieve metabolic capacity in cells (31). Recent

studies demonstrated the crucial function of METTL5-mediated 18S

rRNA m6A modification in regulation of tumor development and

immune microenvironment (32, 33). It has been identified METTL16

is a conserved eukaryotic methyltransferase. MAT2A transcript
FIGURE 1

Regulation and function of m6A modification.
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encoding SAM synthetase and U6 snRNA are the two methylation

targets. METTL16 can bind to mRNA MAT2A 3’UTR hairpins,

thereby affecting the splicing and stability of MAT2A pre-mRNA

and regulating SAM homeostasis (34). Another methyltransferase,

RBM15, belongs to the split ends protein family. The long non-

coding RNA X-inactive specific transcript (XIST)-mediated gene

silencing requires RBM15 and its paralogue-mediate dadenosine

methylation. On the contrary, knockdown of both RBM15 and

RBM15b blocked XIST-mediated gene silencing (35). So RBM15 is

essential for XIST-mediated X chromosome inactivation. In addition,

by interacting with intron-binding splicing factor, SF3B1, RBM15

regulates alternative splicing and megakaryocyte differentiation (36).
2.2 Erasers

m6A demethylases–the fat mass and obesity-associated protein

(FTO) and AlkB homolog 5 (ALKBH5), can directly reverse

adenosine methylation, so called erasers. Both belong to the AlkB

family dioxygenases (37, 38). FTO distributes in the nucleus and

cytoplasm and has different substrates. FTO can mediate nuclear

m6A and cytoplasmic m6Am and m6A in mRNA, m6A in U6RNA,

m6Am in snRNA and m1A in tRNA (39). Early genome-wide

related studies have demonstrated the impact of FTO on human

obesity and homeostasis (40, 41). Overexpression of FTO in mice

led to increased food consumption and obesity whereas inactivation

of FTO resulted in significant weight loss and growth retardation

(41, 42). Recent studies have shown that FTO is involved in the

occurrence and development of various biological processes, such as

neuropsychiatric disorders and tumorigenesis and development,

etc. (43, 44). Similar to METTL3, ALKBH5 collocates with nuclear

speckles and affects mRNA processing, and eventually has an

impact on mRNA export and RNA metabolism. ALKBH5 is

highly specific for the demethylation of m6A mRNA and no other

substrates have been found (38).
2.3 Readers

The reader’s ability to recognize is a determining factor in how

the m6A modification affects targeted RNA metabolism. Currently,

the most well characterized readers in eukaryotes include YT521-B

homology (YTH) domain family, heterogeneous nuclear

ribonucleoproteins (HNRNPs), and insulin-like growth factor 2

mRNA-binding proteins (IGF2BPs). These readers alter RNA

function by attaching either directly or indirectly to the m6A

motifs (45). YTH domain family consists of YTH domain family

protein 1-3 (YTHDF1-3) and YTH domain containing protein 1-2

(YTHDC1-2). They process similar and highly conserved YTH

domain structure, which is mainly composed of four a-helices and
four b-strands (46, 47). YTHDC1 is the only member of the YTH

family localizing in the nucleus. The N- or C-terminal sequence of

YTHDC1 interacts with hypo- or de-phosphorylated RS domain of

SRSF3, which mediates alternative splicing and mRNA export (48–

50). YTHDC2 binds U-rich motifs in 3’UTRs of RNAs using a

DExD box helicase domain and interacts with the 5’ to 3’
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exoribonuclease XRN1, thus promoting translation and

degradation of mRNAs (51, 52). There are different views on the

effect of YTHDF proteins on m6A mRNA. Prevailing canonical

model think YTHDF1 enhances mRNA translation, YTHDF2

promotes mRNA degradation, and YTHDF3 has both functions

(53–55). A unified model proposed by Zaccara et al. demonstrates

that YTHDF proteins are closely related to the degradation of m6A-

RNAs but not the translation (56). Besides, some evidence pointed

the function of YTHDF proteins depends on the context in which

they are located (57). YTHDF1 can interact with argonaute 2 and

contribute to P-body (a membrane-free organelle involved on post-

transcriptional regulation of mRNAs) formation, finally promoting

the degradation of the target mRNAs (58). The interaction of

YTHDF3 with eukaryotic translation initiation factor 2 alpha

kinase 2 facilitates translational processes in oxaliplatin-resistant

colorectal cancer (59). HNRNPs include HNRNPAB, HNRNPC,

HNRNPG, the most abundant protein of which is HNRNPAB.

HNRNPs do not directly bind to m6A, but through a mechanism

called “m6A switch”. That is, m6A-dependent RNA structural

remodeling can regulates RNA-HNRNPs interactions, thus

influencing nuclear events such as gene expression, maturation

and processing (60–62). Each of HNRNPs processes high- or low-

affinity nucleic acid binding sites that can bind a variety of RNA and

DNA sequences (63). For instance, HNRNP A2/B1 contains two

RNA recognition motif (RRM), RRM1 and RRM2, which can

respectively recognize the AGGG motif and UAG motif (60).

Besides, it can regulate alternative splicing and promote

processing of pri-miRNAs via interacting with DGCR8 protein in

a METTL3-dependent manner (64). HNRNPC is involved in the

regulation of premRNA splicing and is crucial for the development

of tumors (65, 66). HNRNPG contains the extensive low-

complexity regions, N-terminal ~300 amino acids and Cterminal

~58 amino acids (62). HNRNPG can bind a purine-rich motif and

indirectly recognize the N6-methyl group through a low-complexity

region. Besides, Using an RGG region in the low-complexity region,

HNRNPG regulates alternative splicing by interacting with

phosphorylated C-terminal domain of RNA polymerase II and

m6A-modified nascent pre-mRNA (67). IGF2BPs and YTHDF2

impose an opposite role in m6A function. YTHDF2 contributes to

RNA degradation (53, 56). whereas IGF2BPs can regulate stability

and translation of target RNAs (68). Besides, they recognize

different targets and share only a small number of binding sites (68).

Chemical labeling and sequencing of m6A is crucial for studying

the function of m6A. The chemical inertness of m6A makes it

difficult to label directly. The most commonly used high-

throughput sequencing technique is methylated RNA

immunoprecipitation sequencing (MeRIP-Seq) depending on

m6A antibody, which only provides 100-200 nucleotide

resolution. Based on MeRIP-seq, several strategies, including

miCLIP, PA-m6A-seq and tMeRIP-seq, improve resolution but

cannot quantify m6A. And there are some antibody-independent

strategies which have the advantage of single-base resolution, such

as MAZTER-seq and m6A-REF-seq. In addition, several novel

chemical labeling methods for m6A have emerged. m6A-SEAL, a

FTO-assisted m6A selective chemical labelling method, can

specifically enrich m6A, but cannot achieve single-base resolution
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and quantify m6A. Compared to m6A-SEAL, NOseq and m6A-

label-seq typify single-base resolution feature. On the downside,

NOseq Lacks of specificity and sensitivity and cannot distinguish

m6A and m6Am, while m6A-label-seq can only be applied to

cellular systems and requires the metabolism of Se-allyl-L-

selenohomocysteine (69). Current chemical labelling strategies

still have much room for improvement. It is essential and urgent

to develop a strategy to achieve single-base resolution and

specifically enrich m6A independent of antibodies.
3 m6A and DM

Epigenetics of b-cell include DNA methylation, histone

modification, chromatin remodeling and accessibility, mRNA and

non-coding RNAs (ncRNAs) modification, etc. (70). It can impact

b-cell function and adaptation, and be involved in regulating

glycometabolism and insulin secretion (71). m6A is the most

studied RNA modification and closely related to regulation of

islet b-cell function and the progression of DM. Studies have

shown that m6A content in RNA was differentially expressed in

different tissues. It was reduced in the peripheral blood of type 2

diabetes (T2D) patients compared with healthy controls (72, 73)

and elevated in the livers of high fat diet (HFD) mice (74, 75).
3.1 The writers in DM

mRNAm6Amethylation plays a major role in the pathogenesis of

T2D. METTL3 and METTL14 protein levels were downregulated in

whole islets from patients with T2D (76, 77). Knowdown of METTL3

andMETTL14 in EndoC-bH1 cells inhibited the insulin/IGF1–AKT–

PDX1 signaling and led to the cell cycle arrest and impaired insulin

secretion in b-cells (76). Methylglyoxal (MG), as a precursor of

advanced glycation end products, is significantly increased in

patients with newly diagnosed T2D (78). MG-induced

downregulation of METTL3 expression promoted decrease in m6A

levels in b cells. Besides, METTTL3 plays a protected effect on insulin

secretion of b-cell with the evidence that silencing of METTL3

significantly reduced glucose-stimulated insulin secretion (GSIS)

through regulating musculoaponeurotic fibrosarcoma oncogene

family A (MafA), whereas this process could be reversed by

upregulation of METTL3 (79). Li et al. reported similar results that

islet b-cell-specific deletion of METTL3 induced b-cell failure,

decreased insulin secretion and hyperglycemia (80). Meanwhile, in

Pdx1+ pancreatic progenitor cells, absence of METTL3 could inhibit

Hdac1 expression and further activate wnt/b-catenin and Notch/

Hes1 pathways, leading to hyperglycemia and hypoinsulinemia, along

with an atrophic pancreas, reduced islet mass, and abnormal increase

in ductal formation (81). Remarkably, METTL3 levels increase

significantly in b-cells at the onset of type 1 diabetes but quickly

decrease with disease progression. METTL3 silencing enhanced the

level of 2′-5′-oligoadenylate synthetase (OAS, an innate immune

mediators) by increasing its mRNA stability. Hence m6A methylation

regulates the OAS innate immune response as a b-cell protective
mechanism. In b-cell METTL14 knockout mouse lines, glucose
Frontiers in Endocrinology 04
intolerance, decreased insulin secretion and lower body weight

could be observed (82, 83). RNA sequencing showed METTL14

deficiency led to the upregulation of genes related to b cell death and

inflammatory response (82). The loss of METTL3 and METTL14

suppressed the expression of critical b cell transcription factors Pdx1,

MafA, and Nkx6.1 as well as mature b-cell markers Ucn3 and GLUT2

(77). These studies indicate METTL3 and METTL14 are essential for

maintaining b cell function and maturation. WTAP, another m6A

writer, has a similar effect on modulating b cell function. WTAP was

downregulated in islet b cells of T2D patients due to lipotoxicity and

chronic inflammation. WTAP-betaKO mice displayed severe glucose

intolerance and reduction in pancreatic insulin content. So WTAP

deletion leads to b cell failure and diabetes (84).

METTL3 is also a key factor in regulating IR. In the liver tissues

from patients with T2D and HFD mice, the level of m6A and

METTL3 was consistently elevated (74, 75). FASN is a metabolism-

related protein and its m6A modification is involved with the

development of IR and T2D (85). METTL3 deletion in HepG2

cells and primary hepatocytes dramatically reduced the

phosphorylation of IRb, AKT, and GSK3b and the expression of

FASN, thereby improving glucose homeostasis and insulin

sensitivity (74). Another study showed METTL3 overexpression

brought about liver metabolic disorders and IR. On the contrary,

METTL3 ablation plays a protective role through increasing the

stability of key genes involved in hepatic lipid and glucose

metabolism (75). IR is also one of the key immunopathogenesis

of nonalcoholic fatty liver disease (NAFLD) (86). Li et al. used a

NAFLD model to investigate the biological function of METTL3-

mediated m6A methylation in IR. The overexpression of METTL3-

mediated CYP2B6 suppressed phosphorylation of the insulin

receptor substrate, finally leading to hepatic IR (87).
3.2 The erasers in DM

RNA sequencing showed significant associations of variants in

FTO and T2D and diabetic nephropathy (DN) (88, 89). Setum FTO

level was significantly downregulated in T2D patients and negatively

correlated with m6A levels (72, 73, 90). However, The expression of

FTO in islets and the interaction between FTO expression and insulin

secretion is controversial. Taneera et al. found FTO expression was

lower in T2D islets than in non-diabetic islets from cadaver donors.

And in glucose-responsive insulin-secreting C-peptide modified

human proinsulin (GRINCH) cells and INS-1 cells, silencing of

FTO expression led to a reduction in insulin secretion (91, 92).

Mechanistically, FTO silencing led to a significant decrease in b-cell
functional genes, which compromises pancreatic b-cell function.
Meanwhile, the dysregulation of FTO expression leads to impaired

mitochondrial function and reduced ATP production, possibly

contributing to the pathogenesis of T2D (92). The findings of Fan

were at odds with those of Taneera et al., observing that the

expression of FTO was high in mouse MIN6 cells. And FTO

overexpression significantly inhibited insulin secretion and targeted

activating NF-kB pathway via reactive oxygen species (ROS)

generation, whereas FTO silence had no effect on insulin secretion

(93). This difference may be due to different approach of FTO
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expression (FTO silence by siRNA, vs. overexpression by lentivirus)

and different derivation of in vitro models (GRINCH cells were

obtained from a clonal rat, while MIN6 cells were derived from

murine). Wu et al. revealed autophagy overload could trigger b cell

apoptosis and decrease insulin secretion. In glucolipotoxic stress

conditions, enhanced-NR3C1 significantly upregulated FTO

expression in b-cells and further diminished m6A modifications on

autophagy related genes(Atg12, Atg5, Atg9a, Atg16l2), which induced

hyperactive autophagy and b-cell failure (94). And it is observed that

(–)-epigallocatechin 3-gallate, the most predominately active catechin

in green tea, promoted FTO degradation and prevented the NR3C1

enhancement-induced oxidative stress, thereby exerting a protective

effect on glucose tolerance and b-cell function in b-cell-specific
NR3C1-overexpressing mice (95). Therefore, targeting FTO

provides new insights into the treatment of diabetes.

Although FTO gene has been implicated in the regulation of b-
cell function and insulin secretion, the precise mechanism not fully

clarified yet. Additional investigations are required to comprehend

the regulation of FTO expression and its potential interactions with

other transcription factors influencing b-cell survival, metabolism,

and function.
3.3 The readers in DM

It has been demonstrated that m6A reader proteins are crucial

in regulating b cell activity and glucose metabolism. In pancreatic b
cells from T2D patients, Li et al. found a substantial drop in

YTHDC1, which is linked to lipotoxicity and chronic

inflammation. In b-cell specific YTHDC1 knockout mice, GSIS

was reduced and serum glucagon levels were increased dramatically

(96). Similarly, another study showed the expression of m6A and

YTHDC1 was downregulated in white blood cells from T2D

patients. Ablation of YTHDC1 in b-cells of adult mice exhibits a

significant decrease in insulin synthesis and secretion, as well as

glucose intolerance. On a molecular level, multiple genes correlated

with b-cell maturity, such as MafA, Gck and Glut2, were decreased,

indicating that b-cell maturity is impacted by YTHDC1 loss (97).

A cluster of single nucleotide polymorphisms in the second

intron of IGF2BP2 found by genome-wide association studies

(GWAS) are the susceptibility gene regions of T2D and closely

associated with development of T2D/glucose metabolism (98–102).

As demonstrated by Regué et al. IGF2BP2 is strongly expressed in

pancreatic b cells, which stimulates insulin production through the

upregulation of the AKT-GSK3b-PDX1 pathway (103). PDX1 is a

critical transcription regulator for the development and maturation

of b cell (104). IMP2 deficiency led to a decrease in Pdx1, in turn

affecting b-cell proliferation and function (103). Taken together,

IGF2BP2 is a human T2D-associated gene. Targeting IGF2BP2 is a

promising avenue to improve b-cell function and the development

of T2D (Figure 2).

ncRNAs are crucial regulatory RNA, including microRNAs

(miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs

(circRNAs) and exert a potential role in the occurrence and

development of DM and its complications (105, 106). A variety of

ncRNAs regulate pancreatic b cell survival and insulin secretion
Frontiers in Endocrinology 05
(105). There are few studies associated to the effect of m6A on

ncRNAs in diabetes. A study showed LncRNA XIST was

upregulated in the peripheral blood of gestational DM patients

and HG-cultured HTR8/SVneo cells, and METTL14 facilitated

proliferation and migration and inhibited cell apoptosis and cell

cycle arrest by impeding XIST expression (107).

Taken together, these data indicate that m6A and its downstream

pathways are important regulatory mechanisms in the occurrence

and development of diabetes. There are still unresolved issues in this

field. In the current investigations, hyperglycemia and hyperlipemia

are the most widely used stimulation conditions in experimental

model. The majority of research focus on how one enzyme

contributes to the pathophysiology of DM. However, DM is a

complex and heterogeneous disorder that can be caused by several

different factors, such as autoimmune, genetics, environment,

lifestyle, etc. (108). There may exist differences in m6A

modification network under the single condition and the complex

pathogenesis of DM. Exploring the pathogenesis of m6A in DM

under different backgrounds is conducive to elucidate the

pathophysiological mechanisms of different diabetes subtypes, so as

to provide precise and individualized management strategies for

patients in the future.
4 m6A and microvascular
complications of DM

4.1 m6A and DKD

DKD is associated with an immune cell-mediated inflammatory

response. One study has proved that m6A-modified lncRNA could

mediated the expression and inflammatory response of

macrophages in patients with DN (109). DN has multiple

morphological changes, including thickened glomerular basement

membrane, mesangial expansion, podocyte injury, tubulointerstitial

fibrosis, epithelial-to-mesenchymal transition (EMT), etc. (110).

EMT is thought to be a key factor in renal fibrosis (111). Some

researchers have confirmed m6A epigenetics has an important

impact on the development of DN through a variety of mechanisms.
4.1.1 The writers in DKD
METTL3/METTL4/WTAP complex, as writers of m6A, acted as

a regulator in the pathogenesis of DKD. METTL14 expression and

m6A RNA levels were upregulated in DKD model. METTL14 could

promote cell apoptosis and inflammation and aggravated renal

injury of DN through three mechanisms (112–114). First,

Overexpression of METTL14 increased inflammatory factors

levels and apoptosis in human renal glomerular endothelial cells

via downregulating m6A modification of a−klotho (112). Second,

METTL14-mediated RNA m6A modification inhibited autophagy

and increased apoptosis and inflammation in podocytes and db/db

mice through promoting Sirt1 mRNA m6A modification and

degradation (113). Third, endoplasmic reticulum stress (ERS) can

lead to cell apoptosis and is a vital pathogenic mediator of DN

(115). METTL14 regulated the m6A modification of TUG1 and
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activated the MAPK1/ERK signaling, which aggravated high

glucose (HG)-induced renal tubular epithelial cell apoptosis and

ERS (114). According to another study, FTO, METTL3 and

METTL14 mRNA were shown to be considerably lower in HK2

cells treated with HG as opposed to normal glucose, whereas only

METTL14 overexpression could inhibit the expression of EMT-

related proteins, such as TGF-b1 and a-SMA, as well as HDAC5 by

regulating Akt pathway (116). Similar to METTL14, METTL3 were

also involved in the pathogenesis of DN through several pathways.

First, upregulation of METTL3 promoted podocytes apoptosis and

inflammation factors levels. And TIMP2-mediated Notch signaling

pathway was the downstream target of METTL3 in DN (117).

Second, nuclear receptor-binding SET domain protein 2 (NSD2), a

SET histone methyltransferase family member, was down-regulated

in T2D and promoted the proliferation of pancreatic b cell lines and

the release of insulin (118). In DN, METTL3 promotes NSD2

expression to lessen mesangial cell activation and interstitial

fibrosis under the HG treatment (119). Third, METTL3 silencing

could suppress the proliferation, EMT, migration, and fibrosis of
Frontiers in Endocrinology 06
HG-treated HK2 cells through mediate m6Amodification of WISP1

mRNA, thus alleviating renal injury of DN (120). Fourth, METTL3

could induce apoptosis and mitophagy of renal tubular epithelial

cells through modulating the PINK1/Parkin signaling pathway in

an YTHDF2-dependent manner, whereas METTL3 knockdown

inhibited the progression of DKD (121). Besides, Liu et al. has

showed a renoprotective effect of the total flavones of Abelmoschus

manihot (TFA) on DN. Mechanistically, TFA could ameliorate

pyroptosis and podocytes injury in HG circumstances by

downregulating METTL3-dependent m6A modification and

activating NLRP3-inflammasome and PTEN/PI3K/Akt signaling

(122). Another study revealed that silencing of METTL3 suppressed

the degradation of circ-0000953 in HG-stimulated podocytes. And

the overexpression of circ-0,000,953 ameliorated podocyte injury

and autophagy disorder by targeting Mir665-3p-Atg4b (123). It has

been proved WTAP is highly expressed in DN patients and in HG

−induced HK−2 cells. WTAP promoted cell pyroptosis and

inflammation by targeting NLRP3 in DN. Otherwise, WTAP

silencing could inhibit DN progression (124). Bai et al. confirmed
FIGURE 2

The m6A methylation in DM and its microvascular complications.
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marrow mesenchymal stem cells (MSCs) administration could

alleviate HG-induced HK-2 cells injury and renal injury in DN

mice. Mechanistically, MSCs could repress WTAP expression via

inactivating Smad2/3 and thus alleviate the development of DN

(125). So targeting m6A through the writer is a prospective therapy

strategy for DN.

RBM15 is also a member of the m6A methyltransferases. Qin

et al. proved the expression of METTL16 and RBM15 was elevated

in the model group of DN mice. In HG-induced HK-2 cells, cell

viability was suppressed and the expression of inflammatory factors

and pyroptosis-related proteins were elevated, which could be

reversed by RBM15 silence. AGE-RAGE signaling pathway

activated by RBM15 participated in the pathogenesis of DN (126).
4.1.2 The erasers in DKD
The biological role of FTO-mediated m6A modification in DKD

are controversary. serum FTO level was decreased in DKD patients

(72, 90), whereas the expression of FTO was increased in high

glucose-induced podocytes, and FTO upregulation enhanced serum

amyloid A2 mRNA stability by regulating the NF-kB pathway, thus

participating in podocyte injury and the progression of DKD (127).

Another study showed FTO have a protective effect on DKD

pathogenesis with evidence that FTO overexpression significantly

attenuates kidney injuries and inflammation of DKD via inhibiting

SOCS1/JAK/STAT axis (90).

4.1.3 The readers in DKD
Podocyte is an important component of GBM. Podocyte loss

and foot process effacement contribute to the development of

DKD (128). Insulin-like growth factor-2 is identified to be

produced by the glomerular podocyte and is important for

maintaining podocyte survival and glomerular function (129).

Previous study showed that calcium/calmodulin-dependent

protein kinases (CAMK), belongs to CAMKs Ser/Thr protein

kinase family, play an important role in maintaining

mitochondrial homeostasis and regulating inflammation and

oxidative response (130, 131). IGF2BP3 promoted the stability

of CAMK1 mRNA by m6A modification and further alleviated DN

progression via inhibiting mitochondria fission and cell apoptosis

(132). Lin et al. found circUBXN7 was significantly upregulated in

DKD plasma. And upregulated circUBXN7 enhanced the binding

of IGF2BP2 and SP1 mRNA, which promoted macrophage

infiltration, tubular EMT and fibrosis and accelerated the

progression of DKD (133) (Figure 2, Table 1).

Current researches have showed that m6A methylation is

involved in the pathogenesis of DKD through regulating cell

injury, inflammation, apoptosis, EMT, interstitial fibrosis and etc.,

which holds promising implications for its diagnosis and treatment.

We found that the same effector protein was differentially expressed

in DKD (See Table 1) This may be caused by the heterogeneity of

different cell or animal models and stimulation conditions, etc. The

targeting of m6A methylation and effector protein is a promising

regulatory mechanism, which will facilitate the advancement of

future therapies for DKD, delay the progression of DKD to end-

stage renal disease and enhance the overall prognosis of DKD.
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4.2 m6A and DR

DR, a major ocular complication of diabetes, is one of the main

causes of visual loss and blindness and accounts for about 30% to

40% of all diabetes cases (134).

4.2.1 The writers in DR
Endothelial dysfunction and EMT are the prominent factors in

the pathogenesis of DR (135, 136). Retinal pigment epithelium

(RPE) cells are essential for the development and maintenance of

adjacent photoreceptors in the vertebrate retina and frequently

utilized in vitro cellular models in DR research (137). METTL3

expression levels were lowered in RPE cells treated with HG in a

time-dependent manner. Mechanistically, overexpression of

METTL3 in RPE cells attenuated HG-induced cell proliferation,

apoptosis, and pyroptosis by regulating miR-25-3p/PTEN/Akt

signal pathway (138). Similarly, another study revealed METTL3

expression was downregulated in DR patients, mice and human

retinal microvascular endothelial cells. METTL3 overexpression

could suppress EMT-related molecules levels via the SNHG7/

MKL1 signaling pathway (139). Therefore, METTL3 play a

protective role on endothelial dysfunction and EMT.

Oxidative stress is a key event that contributes to DR

pathogenesis (140). Under the hypoxic-stress condition, m6A

methylation and METTL3 in endothelial cells and mouse retinas

were upregulated, which contributed to the progression of

pathological angiogenesis by regulating wnt signaling activation (a

significant increase in LRP6 and DVL1 levels) in a YTHDF1-

dependent manner. Conversely, METTL3 silencing suppresses

pathological angiogenesis (141). Adequate pericyte attachment

was critical for maintenance of blood-retinal barrier (BRB)

integrity and maturation. Pericyte dropout impaired BRB,

eventually leading to blindness, which is involved in DR

pathogenesis and accelerates DR progression (142). Suo et al.

reported that m6A modification level and METTL3 were

increased in retinal pericyte dysfunction under HG condition and

retinal vessels of diabetic mice. Pericyte-specific METTL3 deletion

resulted in a high expression of PKC-h, FAT4, and PDGFRA via

YTHDF2-dependent pathway, which could minimize pericyte

apoptosis via impacting their proliferation, viability, and

differentiation, and alleviate retinal vascular leakage (143).

4.2.2 The erasers in DR
Retinal microglia’s M1 polarization was enhanced while M2

polarization was suppressed by HG. A20, anti-inflammatory

molecule, was negatively correlated with M1 polarization. Besides,

inhibiting ALKBH5 in microglia led to higher m6A modification

level, which decreased A20 expression and further enhanced M1

polarization of retinal microglia of DR. Therefore, targeting A20 is a

promising therapeutic means for DR (144). FTO is regarded as an

essential epitranscriptomic regulator in diabetes-induced vascular

endothelial dysfunction. Zhou et al. identified high glucose could

induce retinal vascular leakage and enhance inflammation cytokine

(IL-1b, IL-18) secretion and apoptosis of human retinal

microvascular endothelial cells (HRMECs). FTO silencing could
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TABLE 1 The regulatory mechanism of m6A in DKD.

Patients/Animal/Cell model
m6A

Effector Protein
Target genes Mechanisms

Author and Year
of Publication

patients sample
DN patients renal
biopsy samples

METTL14 ↑ a-klotho ↓
cell/renal injury, inflammation
and apoptosis↑

Li et al.,
2021 (112)animal model db/db mice kidney

cell model HG induced HRGECs

patients sample
DN patients renal
biopsy samples

METTL14 ↑ sirt1 ↑ apoptosis and inflammation ↑
Lu et al.,
2021 (113)animal model db/db mice kidney

cell model human podocytes

animal model STZ-induced mice kidney
METTL14 ↑ TUG1↓

MAPK1/ERK signaling ↑ — cell
apoptosis and ERS/renal lesions
and fibrosis ↑

Zheng et al.,
2023 (114)

cell model HG-induced HK2 cell

animal model STZ-induced mice kidney
METTL14 ↓ PTEN ↓

PI3K/Akt pathway↑ —HDAC5↑
—EMT ↑

Xu et al.,
2021 (116)cell model HG-induced HK2 cell

patients sample
DN patients renal
biopsy samples

METTL3 ↑ TIMP2 ↑
Notch3 and Notch4 signaling↑ —

podocyte injury, apoptosis and
inflammation ↑

Jiang et al.,
2022 (117)

animal model
db/db mice kidney
STZ-induced mice kidney

cell model HG-induced MPC5 cell

patients sample
DN patients renal
biopsy samples

METTL3 ↓ NSD2 ↓
mesangial cell activation and
interstitial fibrosis ↑

Tang et al.,
2022 (118)animal model STZ-induced mice kidney

cell model mouse mesangial cell line

animal model STZ-induced mice kidney
METTL3 ↑ WISP1 ↑

Wnt/b-catenin pathway ↑ —

proliferation, EMT, migration,
and fibrosis ↑

Chen et al.,
2024 (120)

cell model HG-induced HK2 cells

animal model STZ-induced mice kidney
METTL3 ↑ PINK1/Parkin ↓ apoptosis and mitophagy ↑

Wang et al.,
2023 (121)cell model HG-induced HK2 cells

cell model HG-induced MPC5 cell
METTL3 ↓ PTEN ↑

PI3K/Akt Signaling ↓—
NLRP3↑—pyroptosis and cell
injury ↑

Liu et al.,
2021 (122)

patients sample
renal biopsy samples of
DN patients

METTL3 ↓ circ-0000953 ↑
Mir665-3p-Atg4b ↑— podocyte
injury and autophagy ↓

Liu et al.,
2024 (123)

animal model

STZ-induced mice kidney
db/db mice kidney
HFD mice kidney

cell model HG-induced podocytes

patients sample
renal biopsy samples of
DN patients

WTAP ↑ NLRP3 ↑
cell pyroptosis and
inflammation ↑

Lan et al.,
2022 (124)animal model db/db mice kidney

cell model HG-induced HK2 cells

animal model STZ-induced mice kidney
WTAP ↓ ENO1 ↓ renal injury and inflammation ↓

Bai et al.,
2024 (125)cell model HG-induced HK2 cells

animal model db/db mice kidney
RBM15 ↑

GSDMD, Caspase-1,
NLRP3 ↑

AGE-RAGE signaling ↑—cell
pyroptosis and inflammation ↑

Qin et al.,
2023 (126)cell model HG-induced HK-2 cells

(Continued)
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alleviate diabetes-related retinal vascular dysfunction and

inflammation both in vivo and in vitro by inhibiting NF-kB
pathway (145). Besides, Chen et al. found in neural retinas

collected from STZ mice FTO overexpression contributed to DR

phenotypes, including angiogenesis, vascular leakage, inflammation

and neurodegeneration by enhancing CDK2 mRNA stability in an

YTHDF2-dependent manner (146).

4.2.3 The readers in DR
YTHDF2, m6A reader, plays a significant role in the progress of

DR. Qi et al. reported the expression of YTHDF2 was significantly

decreased in the retinal tissues of STZ-induced mice and HG-treated

HRMECs and retinal Müller cells (rMCs). YTHDF2 silencing

enhanced expression of pro-inflammatory factors in rMCs and

induced proliferation, migration and invasion in HRMECs (147).

Besides, high glucose promotes poly (ADP-ribose) polymerase

(PARP) expression, which participates in HRMECs apoptosis and

mediates retinal fibrosis and inflammation. YTHDF2- mediated m6A

modification epigenetically may regulate stabilization of m6A

methylated PARP1 transcripts and activate FAK/AKTsignaling

pathway in the pathogenesis of DR (148). Previous study showed

the activation of PI3K/AKT pathway led to RPE cells damage and was

involved to DR progression (149). YTHDF2 promoted instability of

integrin b1 mRNA, which further suppressed FAK/PI3K/AKT

pathway and alleviated the progression of DR (147). Dysregulation

of autophagy and pyroptosis in RPE cells was a significant

pathological mechanism of DR (138, 150). It was reported

CircFAT1 bound to YTHDF2 to promote autophagy and suppress

pyroptosis of HG-induced RPE cells, thereby alleviating DR

progression (151) Another study showed IGF2BP2 may positively

regulate lncRNA HOXD Cluster Antisense RNA 1 (HAGLR) via a

m6A‐dependent manner. Knockdown of HAGLR inhibited HG‐

induced HRPE cells apoptosis and pyroptosis via targeting miR‐

106b‐5p/PTEN/Akt signaling, thereby alleviating DR pathology (152)

(Figure 2, Table 2).

The above findings reveal m6A RNA modification influences

various factors associated with early DR pathogenesis like

inflammation, oxidative stress, and neurogenesis, suggesting m6A
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may play a crucial role in metabolic memory of DR. Thus far, only a

small number of pathways related to the pathogenesis of DR have

been identified. Therefore, to ascertain the underlying regulatory

mechanisms of m6A methylation in DR, more research is necessary.
4.3 m6A and DPN

DPN is among the most common long-term complications of

diabetes and is at higher risk of all-cause and cardiovascular

mortality. Mild symptoms encompass numbness and tingling. Even

in some patients it can cause diabetic foot ulcers (DFU), disabling

neuropathic pain and lower-limb amputation (153). DPN was

characterized by the increase of oxidative stress, mitochondrial

damage, and neuron apoptosis (154). Adipose derived stem cells

(ADSCs) play a vital role in wound repair by secreting some natural

growth factors (155) and activating the PI3K/Akt signaling pathway

(156). Zhou et al. discovered a novel link between ADSCs and wound

repair with evidence that ADSCs promoted the expression of vascular

endothelial growth factor C and lymphangiogenesis marker, LYVE-1,

via METTL3/IGF2BP2-m6A pathway in DFUmice (157).Wang et al.

‘s study revealed that knocking down METTL3 substantially reduced

the abundance of lncCCKAR5, which further inhibited human

umbilical cord mesenchymal stem cells apoptosis and promoted

macrophage polarization and revascularization under the

conditions of HG stimulation. So m6A-modification of lncCCKAR-

5 is a potential therapeutic target of diabetic wound healing (158).

Another study showed HG-treatment resulted in a decrease in ATP

as well as PDH activity and an increase in ROS in RSC96 cells, which

were reversed by YTHDC2 overexpression. It means YTHDC2

overexpression improved mitochondrial metabolic reprogramming

in DPN (159) (Figure 2, Table 3).

Overall, the evidence so far suggests that m6A RNA

modification process is emerging as a novel mechanism in DPN,

but there are still few relevant studies. Therefore, further probing

the molecular mechanism of m6A in DPN is of great significance for

elucidating the pathogenesis and discovering new therapeutic

strategies for DPN.
TABLE 1 Continued

Patients/Animal/Cell model
m6A

Effector Protein
Target genes Mechanisms

Author and Year
of Publication

animal model
DN patients renal
biopsy samples FTO ↓ SOCS1 ↓

JAK-STAT pathway ↑ —kidney
inflammation and injury ↑

Sun et al.,
2022 (90)

cell model db/db mice kidney

animal model STZ-induced mice kidney
FTO ↑ SAA2 ↑

NF-kB pathway ↑—podocyte
injury and inflammation ↑

Lang et al.,
2024 (127)cell model human podocytes

animal model STZ-induced mice kidney
IGF2BP3 ↑ CAMK1 ↑

mitochondria fission and cell
apoptosis ↓

Yuan et al.,
2024 (132)cell model HG-induced HK2 cell
The up arrow (↑) means increased and the down arrow (↓) means decreased. METTL14, methyltransferase-like 14; METTL3, methyltransferase-like3; WTAP,Wilms’ tumor 1-associated protein;
RBM15, RNA-binding motif protein 15; FTO, fat mass and obesity-associated protein; IGF2BP3, insulin-like growth factor 2 mRNA-binding protein 3; DKD, diabetic kidney disease; DN,
diabetic nephropathy; HG, high glucose; HRGECs, human renal glomerular endothelial cells; STZ, streptozotocin; HK2, human renal tubular epithelial cells; MPC5, mouse podocyte cell-5 line;
TUG1, taurine upregulated gene 1; ERS, endoplasmic reticulum stress; HDAC5, histone deacetylase 5; EMT, epithelial–mesenchymal transition; NSD2, nuclear receptor-binding SET domain
protein 2; PINK1, PTEN induced putative kinase 1; PTEN, phosphate and tension homology; NLRP3, The NOD-like receptor pyrin domain-containing protein 3; MSCs, Marrow mesenchymal
stem cells; ENO1, a-enolase; SOCS1, suppressors of cytokine signaling 1; SAA2, serum amyloid A2; CAMK1, calcium/calmodulin-dependent protein kinase type 1.
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TABLE 2 The regulatory mechanism of m6A in DR.

Patients/Animal/Cell model
m6A Effector

Protein
Target genes Mechanisms

Author and
Year

of Publication

patients sample
The peripheral venous blood
samples of T2D patients

METTL3 ↓ miR-25-3p ↓
PTEN/Akt signal↑—cell proliferation,
apoptosis and pyroptosis ↑

Zha et al.,
2020 (138)

cell model
HG-induced human RPE cell
line ARPE-19

patients sample

human vitreous humor
samples from patients
with DR

METTL3 ↓ lncRNA SNHG7 ↓ MKL1 signaling ↓—EMT ↑
Cao et al.,
2022 (139)

animal model
retinal tissues of STZ-
induced mice

cell model
HG-induced human retinal
microvascular endothelial cells

animal model OIR Model
METTL3 ↑ LRP6, DVL1↑

wnt signaling↑—
pathological angiogenesis↑

Yao et al.,
2020 (141)cell model hypoxic-stress HUVECs

animal model
retinal tissues of STZ-
induced mice

METTL3 ↑
PKC-h/FAT4/
PDGFRA ↓

retinal pericyte loss, vascular leakage, and
vascular lesions ↑

Suo et al.,
2022 (143)

cell model
HG-induced human
retinal pericytes

animal model
retinal microglia of STZ-
induced diabetes rats

ALKBH5 ↑ A20 ↑ M1 polarization ↓
Chen et al.,
2022 (144)

cell model
HG-induced mouse microglia
cell line BV2

patients sample
retinal fibrovascular
membranes of PDR patients

FTO ↑ TNIP1 ↓
NF-kB pathway ↑—retinal vascular
dysfunction and inflammation ↑

Zhou et al.,
2023 (145)animal model retinas of STZ-induced mice

cell model HG-induced HRMECs

patients sample
fibrovascular membranes
obtained from PDR patients

FTO ↑ CDK2 ↑
angiogenesis, vascular leakage,
inflammation and neurodegeneration ↑

Chen et al.,
2024 (146)animal model retinas of STZ-induced mice

cell model HG-induced HRMECs

animal model
retinal tissues of STZ-induced
diabetic mice

YTHDF2 ↓ ITGB1 ↑
FAK/PI3K/AKT signaling pathway ↑ —

inflammation and neovascularization ↑
Qi et al.,
2021 (147)

cell model
HG-induced HRMECs
and rMCs

patients sample
human vitreous samples from
PDR patients

YTHDF2 ↓ PARP1↑
FAK/AKT signaling pathway ↑ — cell
apoptosis, retinal fibrosis, inflammation ↑

Sun et al.,
2022 (148)

animal model
vitreous samples from STZ-
induced diabetic rats

cell model HG-induced HRMECs

patients sample
The peripheral venous blood
from PDR patients

IGF2BP2 ↑ lncRNA HAGLR ↑
miR‐106b‐5p/PTEN/Akt signaling ↑—
apoptosis and pyroptosis ↑

Luo et al.,
2023 (152)cell model HG-induced human RPE cell
F
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The up arrow (↑) means increased and the down arrow (↓) means decreased. METTL3, methyltransferase-like3; ALKBH5, AlkB homolog 5; YTHDF2: YT521-B homology N6 methyladenosine
RNA binding protein 2; FTO, fat mass and obesity-associated protein; DR, diabetic retinopathy; DM, Diabetes mellitus; RPE, retinal pigment epithelium; STZ, streptozotocin; OIR, Oxygen-
induced retinopathy; HUVECs, human umbilical vein endothelial cells;PDR, proliferative diabetic retinopathy; HRMECs, Human retinal microvascular endothelial cells; rMCs, retinal Müller
cells; SNHG7, small nucleolar RNA host gene 7; MKL1; megakaryocytic leukemia 1; EMT, epithelial–mesenchymal transition; ITGB1, integrin b1; PARP1, Poly (ADP-ribose) polymerase 1;
HAGLR, HOXD Cluster Antisense RNA 1.
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5 Clinical implications of
m6A modification

The exploration of molecular mechanism is for clinical application.

Developing therapies that targeting m6A modification or related

enzymes has been the focus of many research teams and some m6A

inhibitors have been discovered (160, 161). Several inhibitors targeting

m6A have been reported inmetabolic diseases. Dac51, entacaponea and

meclofenamic acid are the inhibitors of FTO. Dac51 could protect

against excessive autophagy activation and reverse b-cell dysfunction
(94). Entacapone could decrease fasting blood glucose and improve

glucose tolerance in high-fat diet-induced obese mouse model (162).

Meclofenamic acid has been shown to alleviate ROS accumulation and

cell apoptosis (163). METTL3-specific inhibitor STM2457 has a

significant inhibitory effect on renal fibrosis (164). In addition, some

natural compounds have shown potential therapeutic effects via

targeting m6A methylation. Epigallocatechin gallate is the most

biologically active and abundant catechin in green tea and curcumin

is a natural phenolic compound, which both act to inhibit lipogenesis.

Mechanistically, epigallocatechin gallate can suppress the protein

stability of FTO while curcumin can decrease the expression of

ALKHB5 (95, 165, 166). Another study reported that intake of

betaine inhibits hepatic fat accumulation and regulates mitochondrial

activity by targeting FTO, thereby improving fatty liver disease and

metabolic syndrome (167). TFA, a compound that is extracted from

abelmoschus manihot, has been identified to ameliorate pyroptosis and

podocytes injury in DKD by targeting METTL3-dependent m6A

modification (122). The inhibition of dysregulated m6A effector

proteins is a possible new treatment approach, but no m6A

inhibitors have entered clinical trials to yet. Researchers still need to

devote more efforts to finding new methods and drugs that can be put

into clinical use as soon as possible.

Although current studies reveals the abnormal expression of

m6A effector proteins in peripheral blood mononuclear cells or

biopsy specimen of DM and its microvascular complications,

limited researches have not been able to confirm whether effector

proteins are specifically expressed only in a particular disease or at a

certain stage in the process of diseases. Therefore, they cannot be

employed as a specific biomarker for early diagnosis in DM and its

microvascular complications.
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6 Conclusion and perspectives

m6A is a dynamic and reversible epigenetic modification. A

growing number of studies have revealed m6A is involved in the

occurrence and development of various metabolic diseases, such as

obesity, cardiovascular diseases, diabetes, NAFLD and et al., and

provides valuable insights into the etiology, pathogenic mechanism

and treatment (168). This review summarizes the underlying

molecular mechanisms between m6A in DM and its microvascular

complications, but many mechanisms remain to be elucidated.

Current research exists some limitations. First, in most studies,

animal and cell models are used for in vivo and in vitro studies,

while patients sample is rarely used. Second, some researchers have

discovered the association of genetic variants with DM using GWAS,

but have not explored the mechanism in depth. Third, dysfunction of

m6A effector proteins have been identified in diabetic microvascular

complications, however upstream regulators remain unclear. Fourth,

sample size is relatively small. Of note, DKD, DR, DPN are all

microvascular complications of diabetes. There are differences in the

regulation of RNA methylation in different organs due to

heterogeneity in terms of tissue distribution, origin, phenotype and

microenvironment, which also increases the difficulty in the study

between m6A methylation and microvascular complications of

diabetes. We put forward several future research directions. First,

with the advancement of gene sequencing technology and the

reduction of cost, more metabolism-related genomics will be

discovered so as to further explore the biological function of m6A

and the mechanism in diabetes and its complications. Second,

multiple enzymes together regulate and maintain m6A RNA

methylation. Future studies should focus on the interaction between

multiple enzymes under multiple incentive conditions and the mutual

interplays of m6A and other RNA modifications in DM and diabetic

microvascular complications. Third, exploring m6A modification as a

specific biomarker that can predict the development of diabetes, the

risk of complications, and the response to treatment will be conducive

to more precise disease management and intervention. Fourth, due to

the heterogeneity of diabetes, it is essential to investigate individual

differences of m6A in patients with diabetes and develop

individualized diagnosis and treatment strategies. Fifth, develop

drugs that target specific pathologic pathways based on in-depth
TABLE 3 The regulatory mechanism of m6A in DPN.

Patients/Animal/Cell model
m6A Effector

Protein
Target genes Mechanisms

Author and Year
of Publication

animal model DFU mice
METTL3/IGF2BP2↑ VEGFC ↑

migration and tubule formation ability
of LECs↑ and lymphangiogenesis in
DFU mice ↑

Zhou et al., 2021 (157)
cell model ADSCs-stimulated LECs

cell model HG-treated hUCMSCs METTL3 ↓
lncCCKAR5 ↓

Inhibited hUCMSCs apoptosis and
promoted macrophage polarization
and revascularization

Wang et al.,2024 (158)

animal model
sciatic nerves of db/
db mice

YTHDC2 ↓

KDM5B ↓
mitochondrial metabolic
reprogramming ↓

Jiao et al., 2023 (159)

cell model HG-induced RSC96 cells
The up arrow (↑) means increased and the down arrow (↓) means decreased. DPN, diabetic peripheral neuropathy; METTL3, methyltransferase-like3; IGF2BP2, insulin-like growth factor 2
mRNA-binding protein 2; YTHDC2, YTH domain containing protein 2; DFU, diabetic foot ulcer; ADSCs, adipose derived stem cells; LECs, lymphatic endothelial cells; VEGFC, vascular
endothelial growth factor C; hUCMSCs, human umbilical cord mesenchymal stem cells; RSC96, rat Schwann cells; KDM5B, lysine demethylase 5B.
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understanding of m6A and DM and its microvascular complications,

for instance b cell protection and regeneration, podocyte repair and

etc. In conclusion, discovering underlying mechanisms of m6A

methylation in DM and its microvascular complications and more

upstream regulators and downstream targets of m6A are beneficial for

providing more personalized, effective and safe treatment strategies for

diabetes patients.
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m6A N6-methyladenosine
Frontiers in Endo
DM diabetes mellitus
IR insulin resistance
DKD diabetic kidney disease
DR diabetic retinopathy
DPN diabetic peripheral neuropathy
MTC methyltransferase complex
WTAP Wilms' tumor 1-associated protein
ZCCHC4 Zinc finger CCHC-type containing 4
RBM15 RNA-binding motif protein 15
XIST X-inactive specific transcript
FTO fat mass and obesity-associated protein
ALKBH5 AlkB homolog 5
YTH YT521-B homology
HNRNPs heterogeneous nuclear ribonucleoproteins
IGF2BPs insulin-like growth factor 2 mRNA-binding proteins
YTHDF YTH domain family protein
YTHDC YTH domain containing protein
RRM RNA recognition motif
MeRIP-Seq methylated RNA immunoprecipitation sequencing
ncRNA non-coding RNAs
T2D type 2 diabetes
HFD high fat diet
MG methylglyoxal
GSIS glucose-stimulated insulin secretion
MafA musculoaponeurotic fibrosarcoma oncogene family A
OAS 2′-5′-oligoadenylate synthetase
NAFLD nonalcoholic fatty liver disease
DN diabetic nephropathy
GRINCH glucose-responsive insulin-secreting C-peptide modified

human proinsulin
ROS reactive oxygen species
EMT epithelial-to-mesenchymal transition
GWAS genome-wide association studies
miRNAs microRNAs
lncRNAs long noncoding RNAs
circRNAs circular RNAs
EMT epithelial-to-mesenchymal transition
ERS endoplasmic reticulum stress
HG high glucose
NSD2 nuclear receptor-binding SET domain protein 2
TFA total flavones of Abelmoschus manihot
MSCs mesenchymal stem cells
CAMK calcium/calmodulin-dependent protein kinases
crinology 16
RPE Retinal pigment epithelium
BRB blood-retinal barrier
HRMECs human retinal microvascular endothelial cells
rMCs retinal Müller cells
PARP poly (ADP-ribose) polymerase
HAGLR HOXD Cluster Antisense RNA 1
DFU diabetic foot ulcers
ADSCs adipose derived stem cells.
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