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Polycystic ovary syndrome (PCOS) is a prevalent disorder of the endocrine

system with significant clinical implications, often leading to health

complications related to adipose tissue accumulation, including obesity, insulin

resistance (IR), metabolic syndrome, and type 2 diabetes mellitus. While the

precise pathogenesis of PCOS remains unclear, it is now recognized that genetic,

endocrine, and metabolic dysregulations all contribute significantly to its onset.

The immunopathogenesis of PCOS has not been extensively explored, but there

is growing speculation that immune system abnormalities may play a pivotal role.

This chronic inflammatory state is exacerbated by factors such as obesity and

hyperinsulinemia. Therefore, this review aims to elucidate the interplay between

IR in PCOS patients, the controlled immune response orchestrated by immune

cells and immunomodulatory molecules, and their interactions with adipocytes,

hyperandrogenemia, chronic inflammation, and metabolic homeostasis.
KEYWORDS
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1 Introduction

Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in women,

characterized by anovulatory subfertility. It affects approximately 5.6% of Chinese women

of reproductive age and around 10% of women from other ethnic backgrounds (1, 2).

Clinical features of PCOS include irregular menstruation, infertility, hyperandrogenemia,

ovarian polycystic changes, and metabolic abnormalities such as obesity, insulin resistance

(IR), and dyslipidemia (Figure 1). PCOS is recognized as a significant risk factor for T2DM

(T2DM), cardiovascular disease, gestational diabetes, and gestational hypertension.

The etiology of PCOS remains elusive, and its pathogenesis is complex. According to

the latest diagnostic criteria, PCOS can be diagnosed by meeting any two of the following

criteria: clinical/biochemical hyperandrogenemia, ovulation disorders, and ultrasound

evidence of polycystic ovarian manifestations/abnormal Anti-Mullerian Hormone
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(AMH) levels (1, 3). Heterogeneity in the diagnostic modalities of

IR is evident, with studies demonstrating that fasting triglycerides

can be used selectively in place of fasting glucose for the assessment

of IR, and that the HOMA-IR index, glucose, and serum insulin

levels do not provide a fully consistent measure of IR severity (4, 5).

While IR is not a diagnostic criterion for PCOS, the oral glucose

tolerance test (OGTT) has been utilized as a primary screening tool

for PCOS patients. In recent years, two distinct subtypes of PCOS

with varying biochemical profiles have been internationally defined

(6). The reproductive subtype is characterized by elevated serum

luteinizing hormone (LH) and sex hormone-binding globulin

(SHBG) levels, typically with a normal body mass index (BMI)

and insulin levels. On the other hand, the metabolic subtype is

associated with high BMI and insulin levels, along with relatively

low LH and SHBG levels.

There is a growing body of evidence suggesting that immunity plays

a significant role in the manifestation of symptoms in PCOS,

particularly concerning insulin resistance, adipocyte dysfunction,

glucose metabolism, and chronic inflammation. The chronic low-

grade inflammation observed in PCOS patients is primarily linked to

the accumulation of visceral adipose tissue, where adipocytes undergo

necrosis due to hypoxia, leading to the infiltration of inflammatory cells

that secrete various inflammatory cytokines. Immune cells have the

capacity to either trigger or suppress inflammation by releasing pro-

inflammatory or anti-inflammatory cytokines. Immune molecules such

as antibodies complement proteins, and lymphokines are generated by
Frontiers in Endocrinology 02
immune cells in response to antigenic stimulation. Dysregulated

immune cell function or imbalances in immune-related factors can

result in immune dysfunction (7, 8). Due to impaired ovulation in

patients with PCOS, IR causes androgen overproduction in patients

with low progesterone levels, and the two inflammatory phenotypes

reinforce each other. the IR-induced abnormalities persist and are

exacerbated by androgenic and metabolic disorders, which induce

severe immune dysregulation, resulting in the development of

systemic symptoms in the patients (9) (Figure 2).

Moreover, several immune molecules are directly implicated in

the immune response and are closely associated with insulin

resistance in PCOS. This review provides a brief overview of

current research on various innate immune cells and immune

molecules, elucidating their roles and mechanisms in the

development of insulin resistance in PCOS.
2 Immune cell regulation in IR

2.1 Macrophage immune regulation in IR

Macrophages play a crucial role in the immune response of

patients with PCOS who develop IR. They serve as primary actors in

innate immunity and also function as antigen-presenting cells in

specific immunity. While not all patients with an IR phenotype

show signs of obesity, it is evident that obesity significantly increases
FIGURE 1

The symptoms of PCOS: PCOS is a chronic endocrine, metabolic and reproductive disorder with multiple signs and symptoms. Its main
characteristics are ovulation dysfunction (manifested by irregular menstruation, such as oligomenorrhea and amenorrhea), hyperandrogen
(manifested by hypertrichosis and acne), polycystic ovary morphology, metabolic disorders (obesity and insulin resistance) and infertility.
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the risk of metabolic syndrome in individuals with PCOS (10).

In obese PCOS patients with decreased levels of lipocalin (11),

there is a substantial increase in both the size and quantity of

adipocytes within a short timeframe. This rapid growth leads to

local tissue ischemia and hypoxia, triggering the accumulation of

macrophages, which can expand to more than five times their

original size (12–14). Activated and differentiated M1 macrophages

are predominantly located in a ring-like structure surrounding dead

adipocytes, known as the crown-like structure (CLS), where they

phagocytose these cells and sustain the release of pro-inflammatory

cytokines (15).

Clinical studies have shown increased expression and

phosphorylation levels of Forkhead box O1 (FOXO1) in peripheral

blood macrophages from patients with PCOS (16). Insulin signaling

in macrophages leads to the inactivation and nuclear exclusion of

FOXO1 during its phosphorylation, a process that can be reversed

under conditions of IR or inflammation (17). Silencing FOXO1 in

macrophages results in monocytes exhibiting a greater polarization

towards the M2-type, which helps to reduce the inflammatory state

and IR (18, 19). On the other hand, upregulating FOXO1 promotes

the release of Toll-like receptor 4 (TLR4)-mediated pro-inflammatory

factors such as IL-1b, IL-6, and TNF-a (16).

TNF-a is recognized as the initial chronic inflammatory

cytokine discovered in adipose tissue linked to obesity. TNF-a
has the ability to diminish insulin expression by reducing the levels

of insulin receptor substrate 1 (IRS-1) and glucose transporter 4

(GLUT4) proteins. Additionally, TNF-a can trigger inflammatory

pathways like nuclear factor kappa-B (NF-kB) and c-Jun N-

terminal kinase (JNK) in adipocytes. This activation hampers

insulin sensitivity further under the influence of inflammatory

factors, thereby worsening IR (20–22).

Obesity, inflammation, and IR show a mutually reinforcing

relationship, i.e., increased accumulation of adipocytes promotes

macrophage aggregation and differentiation, thereby inducing

inflammation and stimulating IR.
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In lean patients with PCOS, abnormalities in adipose tissue

persist (11). In the subcutaneous adipose tissue of PCOS patients,

there were higher levels of CD11c-positive adipose tissue

macrophages, as well as elevated levels of TNF-a and leptin

compared to body mass index (BMI)-matched women without

PCOS. Additionally, in visceral adipose tissue, catecholamines

exhibited significantly increased lipolytic effects, leading to the

release of fatty acids from visceral adipose tissue, which were

closely linked to insulin resistance. On the other hand, some

studies have indicated that there is no significant difference in the

transport and mechanism of action of fatty acids and

monoacylglycerol in PCOS patients, regardless of whether

adipocytes are normal or abnormal in size (23, 24).

Presently, the majority of studies concentrate on investigating the

mechanism of IR in obese patients with PCOS. However, the cause of IR

in lean PCOS patients might be associated with the pro-inflammatory

differentiation of macrophages triggered by abnormal fatty acid lipolysis

in visceral fat. It is noteworthy that the locations of macrophage

aggregation in the two categories of PCOS patients are not identical

(25). In patients with polycystic ovary syndrome (PCOS), there are

elevated levels of androgens and serum homocysteine. In mice with

PCOS induced by dehydroepiandrosterone (DHEA), homocysteine

leads to an imbalance of M1/M2-type macrophages in adipose tissue,

causing a shift from M2-type to M1-type macrophages. This transition

exacerbates DHEA-induced IR. Furthermore, the abnormally elevated

insulin levels at this stage can stimulate androgen secretion

from ovarian membranous cells, reduce insulin receptor

autophosphorylation in ovarian granulosa cells, and further worsen

the chronic inflammatory response and IR in the ovaries (26, 27).
2.2 T Lymphocyte immune regulation in IR

T cells are a type of immune cell that matures in the thymus and

plays a crucial role in specific immunity within an organism. They
FIGURE 2

Factors affecting PCOS, phenotypes and mechanisms of interactions between long-term effects: mechanisms of interactions between IR,
hyperandrogenemia and chronic inflammation in PCOS, and the relationship with long-term effects. Environmental and genetic factors may
contribute to obesity, and the combination of obesity and these two factors predispose to IR and hyperandrogenemia.The interaction between IR
and hyperandrogenemia may create a favorable environment for chronic inflammation, and the whole process is involved by the immune system.
Ultimately, the interplay among chronic inflammation, immune system, IR, and hyperandrogenemia may result in infertility, metabolic disorders, and
adverse pregnancy outcomes in patients with PCOS.
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exhibit diverse subtypes and functions. CD4+ T cells contribute to

maintaining the body’s immune response by recognizing major

histocompatibility complex (MHC)-II-like molecules on the surface

of antigen-presenting cells, subsequently activating and guiding

other immune cells to the infection site. In the follicular fluid of

patients with PCOS, the proportion of CD8+ T cells was notably

lower compared to CD4+ T cells (28). CD4+ T cells play a more

significant role in various clinical manifestations in PCOS patients,

including IR. Based on their complex metabolic programming and

cytokine production, CD4+ T cells can differentiate into distinct

functional subpopulations. Among these, Th1 [producing

interferon-gamma (IFN-g)], Th17 (producing IL-17, IL-21, and

IL-22), and Th2 (producing IL-4, IL-5, and IL-13) effector cells

primarily rely on aerobic glycolysis for energy generation. In

contrast, regulatory T cells (Treg) [producing IL-10, transforming

growth factor b (TGF-b)] depend on oxidative phosphorylation

driven by fatty acid oxidation (29–31).

In peripheral blood and adipose tissue of PCOS patients with

metabolic abnormalities, T cells are the second largest immune cell

population after macrophages, with significantly increased

proportions of Th1, Th17, and CD8+ T cells and decreased

proportions of Th2 and Treg cells (32–34). Metabolites of

adipocytes can influence T-cell differentiation mediated by the T

cell antigen receptor (TCR), and of the many soluble differentiation

stimulators, fatty acids have been shown to be the strongest

stimulators of Th1 differentiation (35, 36). T cells differentiated

into pro-inflammatory Th1 cells produce IFN-g, which induces

macrophage differentiation towards the M1 phenotype. The

aggregation of Th1 cells and infiltration of IFN-g will recruit

other immune cells, including macrophages, and increase the

body’s inflammatory immune response (37). The above responses

will be more pronounced in obese individuals. It was found that, in

addition to its effects on immune cells, IFN-g can directly induce IR

in mature human adipocytes by taking charge of the activation of

the janus kinase (JAK)/signal transducer and activator of

transcription 1 (STAT1) pathway and inhibiting the expression of

insulin signaling genes (GLUT4 and IRS1), lipid-forming genes

(Perilipin, Lipoprotein Lipase, and Fatty Acid Synthesis Enzymes),

and genes related to lipid storage (Recombinant Peroxisome

Proliferator Activated Receptor(PPAG) and Lipocalin) (38).

Insulin sensitivity was improved when the interferon gene was

knocked out (39).

In the immunoregulation of T cells, the co-inhibitory receptors

cytotoxic T-lymphocyte-associated protein 4(CTLA-4) and

programmed cell death protein 1(PD-1) are co-expressed on

effector T cells and participate in the dynamic balance of the

immune response. The expression of PD-1 is maintained in T

cells, which participates in the routine immune response of the

body. In the acute phase, the expression of PD-1 decreases rapidly,

and the body produces a rapid immune response. The proportion of

T cells with elevated PD-1 expression in serum and follicular fluid

was significantly higher in patients with PCOS than in normal

patients, then metabolic disorders in patients with PCOS are

associated with PD-1 expression (40). PD-1-overexpressing T

cells are one of the subpopulations of the T-cell depletion

phenotype (41, 42), and when in the presence of a PD-L1/PD-1
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pathway blocking antibody, dendritic cells trigger the proliferation

of syngeneic T cells and modulate T-cell subsets, which have

elevated levels of IL-2 (43). This may suggest that in PCOS

patients with abnormal T cells, PD-1 always plays a role in the

relevant pathway and that high expression of PD-1 may inhibit T

cell differentiation to Th2 type cells that secrete anti-inflammatory

cytokines. In contrast, insulin has an anti-inflammatory effect on

circulating immune cells, which may induce T cells to differentiate

into an anti-inflammatory Th2 phenotype, and the dysregulation of

the Th1/Th2 ratio and the PD-1-associated pathway may play a key

role in resisting the effect of insulin on the immune response

associated with T cells (44, 45).

CD4+ CD25+ Foxp3+ Treg cells were significantly lower in the

peripheral blood of PCOS patients than in controls (34). FOXP3+

Treg cells can stimulate the production of IL-10 by macrophages

through the secretion of IL-13, mediated by transforming growth

factor-b. TGF-b and IL-10 act as the main anti-inflammatory

cytokines in metabolism (46, 47). Smad4 and Recombinant Runt

Related Transcription Factor 2 (RUNX2) genes are part of the TGF-b
signaling pathway. The expression of these genes and related mRNAs

increases during the development of hyperinsulinemia and IR in

organisms (48). PCOS patients also differ from some obese patients in

terms of hormone secretion levels. Estrogen helps limit inflammation,

and in PCOS patients with hyperandrogenemia, the expression of the

transcription factor B lymphocyte-induced maturation protein 1

(BLIMP1), which is androgen-dependent, is elevated. This leads to

an immune response that brings about a new balance in the

interaction between increased adipocyte inflammation and male-

specific IL-33-producing stromal cells that actively recruit and locally

expand Treg cell populations in a BLIMP1-dependent manner under

the influence of sex hormones (49). In PCOS patients, there was a

notable increase in Th17 cells, which predominantly secrete IL-17 to

trigger neutrophilic inflammation, despite an overall decrease in Treg

cells in the serum (34, 50). This indicates that the imbalance between

Th17 and Treg cells in the context of abnormal insulin metabolism in

PCOS patients is primarily due to the reduced levels of Treg cells.
2.3 B Lymphocyte immune regulation in IR

Similar to T-cells, B-cells are classified into different

subpopulations based on their distinct phenotypes, functions, and

the primary cytokines they secrete. Presently, there are two primary

categories: B-1 and B-2 cells. B-1 cells are predominantly found in

organ cavities, mucosal tissues, and adipose tissues. They can be

further categorized into CD5+B-1a and CD5-B-1b based on their

CD5 expression (51, 52). B-1a cells, as innate B-like cells, are the

primary producers of natural IgM antibodies in the body (53), and

mainly function in the absence of antigens. In contrast, B-1b cells

participate in T-cell-mediated immune responses to external

antigens. B-2 cells are B cells traditionally derived from the bone

marrow and migrate to lymphoid organs (54). They generate and

concentrate specific antibodies, playing a crucial role in humoral

immunity, and have the ability to differentiate into memory B cells

and plasma cells. When B cells secrete anti-inflammatory factors

like IL-10, and IL-35, they are collectively known as regulatory B
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cells (Bregs). These cells are not distinct subtypes from B-1 and B-2

cells but rather functional subtypes within these two classes of

B cells.

In the context of IR driven by inflammatory adipose tissue, B-

cells are the initial immune cells to accumulate, followed closely by

T-cells, and eventually by macrophages (55). In individuals with

PCOS experiencing low-grade chronic inflammation, the levels of

anti-inflammatory IL-10 produced by Bregs were significantly lower

compared to controls (56–58). Conversely, enhancing IL-10

expression or administering it for short durations in IR mice led

to a notable increase in systemic insulin sensitivity. This effect was

lost in the absence of IL-10 (59–61), indicating its role in inhibiting

the differentiation of T cells into pro-inflammatory Th1 cells.

In patients with PCOS, the levels of IL-10 produced by B-1 cells

decrease, leading to an increase in T-cell differentiation towards a

pro-inflammatory phenotype, consequently promoting the

development of insulin resistance originating from visceral

adiposity (62–64). Additionally, B-2 cells have been demonstrated

to have a pro-inflammatory function in the expansion of adipose

tissue in rats consuming a high-fat diet (65). Moreover, in

PCOS patients, this activation of B cells is closely linked to

hyperandrogenism and the androgen receptor (66).

In line with mouse data, hyperandrogenemia also increases

levels of IL-1b, IL-8, and IL-18 in PCOS patients (67). IL-8

functions as a pro-inflammatory factor that attracts neutrophils to

adipose tissue, contributing to inflammation and IR (68).

Furthermore, in obese PCOS individuals, there are changes in the

levels of the pro-inflammatory cytokine leptin. Leptin triggers the

phosphorylation of JAK2, STAT3, p38MAPK, and ERK1/2 in B-

cells, decreases the expression of apoptotic factors, enhances B-cell

survival, and promotes Th1 cell differentiation (69, 70). Limited

research has focused on the pro-inflammatory mechanisms of B

cells in insulin-resistant PCOS patients. Additionally, the

association between B cells and macrophage polarization

mechanisms in dysfunctional adipose t issue requires

further exploration.
2.4 Dendritic cells immune regulation in IR

Dendritic cells (DCs) are antigen-presenting cells that play a role

in both innate and acquired immunity. They are categorized based on

morphology into conventional DCs (CDCs) and plasma cell-like DCs

(PDCs) (71). DCs express surface markers like MHCII, CD11b,

CD11c, and C-X3-C motif chemokine receptor 1, which are shared

with macrophages. This similarity indicates that in dysfunctional

adipose tissue, DCs function akin to macrophages (72, 73). Unlike

many other immune cells that undergo substantial proliferation, DCs

proliferate within tissues, albeit to a lesser extent (74, 75).

CDCs in adipose tissue can be subdivided into cDC1 (CD4-

CD8a+ CD103+ CD205+ CD11b- CLEC9A+ XCR1+ CD24+

MHCII-) (76–78) and cDC2 (CD4+/- CD8a- CD205-CD11b+

CLEC4A4+ CD24+ MHCII+) (79, 80) based on descent. Both

types of DCs increase in obese or inflamed tissues. cDC1 cells

lacking MHCII are involved in cross-presentation to CD8+ T cells,

leading to an expansion of CD8+ cells (81). The lack of MHCII
Frontiers in Endocrinology 05
expression in cDC1 and the decrease in the total number of CD11c+

cells enhance the body’s insulin sensitivity and lower the likelihood

of IR. Nevertheless, this evidence alone does not imply a direct

involvement of CD11c+ DCs in IR; CD11c+ macrophages also

contribute to the reduction in inflammation levels (77).

Additionally, human monocyte-derived dendritic cells

(moDCs) express CD14+ and are considered precursors of

inflammatory dendritic cells (82). Conventional dendritic cell type

2 (cDC2) triggers CD4+ T-cell differentiation and exhibits a

protective effect against adipose tissue inflammation. This effect

induces IL-10 production through the activation of the Wnt/

CD11b-catenin pathway in cDC2 cells [CD11c(hi) MHCII+

CD11b-], which typically express MHCII. Conversely, the

previous pro-inflammatory function can be suppressed in

dendritic cells [CD11c(hi) MHCII+ CD11b+] by activating the

PPARg pathway (83). Both mechanisms may contribute to IR in

patients with PCOS. Moreover, the influence of serum estradiol

levels on gonadotropins in PCOS patients impacts the maturation

of CD11c+HLADR+ dendritic cells in human follicular fluid,

consequently affecting IR levels (84). However, the precise

molecular mechanism underlying this process remains unknown.
2.5 Natural killer cell immune regulation
in IR

NK cells, which are innate lymphoid-like cells (ILCs)

originating from the bone marrow, are widely distributed in

various organ tissues and serve specific immune functions.

Studies have shown that NK cells constitute 13% of immune cells

in visceral fat and contribute to the inflammatory polarization of the

immune response (85, 86). Inflammatory conditions predominantly

regulate the local activity of NK cells through IL-12, IL-15, and IL-

18 produced by dendritic cells and macrophages, with a particular

focus on the extensively researched role of IL-15 (87–89).

IL-15 is highly expressed in the follicular fluid of PCOS patients

and is positively correlated with serum testosterone levels.

Treatment with IL-15 enhances the expression of Cytochrome

P450 17A1 (CYP17A1) in granulosa cells, a key enzyme for

androgen synthesis. Elevated levels of CYP17A1 lead to increased

production of DHEA, a precursor for most androgens. Elevated

androgen levels significantly contribute to inflammation and

inflammation-induced IR (90).

In an inflammatory state, the expression of adipocyte NKp46

(NCR1) ligand is upregulated, and IL-15 binds to IL-15Ra on NK

cell membranes, activating NK cells to produce IFN-g. This

promotes the polarization of CD4+ cells and macrophages

towards an inflammatory state, contributing to the development

of IR. Aggregated macrophages secrete large amounts of

chemokines such as C-C motif chemokine ligand 3(CCL3), C-C

motif chemokine ligand 4(CCL4), and chemokine CXC ligand 10

(CXCL10), which facilitate the recruitment of NK cells (91, 92).

Adipose tissue macrophage inflammation and IR can be

improved by inhibiting NK cell function using neutralizing

antibodies or through E4bp4 heterozygous knockout in mice (93).

This is because inhibiting NK cell function leads to decreased
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expression of TNF-a and IL-1b, while increasing the expression of

anti-inflammatory IL-10 and Arg1. Furthermore, leptin and

lipocalin, linked to obesity, also regulate NK cell function. Short-

term exposure to leptin enhances NK cell cytotoxicity and IFN-g
levels, whereas long-term exposure has the opposite effect.

Conversely, lipocalin consistently suppresses NK cell function,

irrespective of treatment duration (94, 95). This data indicates

that in obese patients with PCOS, elevated leptin levels and/or

decreased lipocalin levels activate NK cells, promoting the initiation

and progression of inflammatory responses in adipose tissue,

partially elucidating the development of IR in obese PCOS patients.

Due to significant phenotypic diversity and individual variances

in PCOS patients, limited research has focused solely on NK cells,

their cytokines, and their precise mechanisms.
2.6 Granulocyte immune regulation in IR

Granulocytes are a type of leukocytes characterized by specific

cytoplasmic granules. They are classified into major subgroups,

including eosinophils, basophils, and neutrophils. In the complex

inflammatory environment of PCOS patients, granulocytes are

rapidly generated in the bloodstream, contributing to the immune

response (96, 97). Specifically, the neutrophil-to-lymphocyte ratio

(NLR) showed a positive correlation with HOMA-IR and serum

insulin levels, irrespective of the obesity level in PCOS patients. This

indicates a potential higher proliferation of granulocytes compared

to lymphocytes in PCOS patients. Among the three types of
Frontiers in Endocrinology 06
granular leukocytes, neutrophil count and its proportion in

leukocytes are commonly utilized as serum inflammation

markers. Lourdes et al. observed that in PCOS patients with both

hyperandrogenemia and hyperinsulinemia, the elevated white

blood cell counts were primarily attributed to increased

neutrophils. Moreover, glucose-lowering medications effectively

suppressed the rise in neutrophils, thereby alleviating the

inflammatory response in patients (98). Currently, it is believed

that the mechanism of neutrophils affecting IR in PCOS is linked to

myeloperoxidase (MPO). This belief stems from the higher MPO

levels in leukocytes of PCOS patients compared to controls, with a

more significant increase in the presence of IR (97, 99). However,

due to the harsh culture conditions of granulocytes and the

difficulty of detection, no authoritative study has yet revealed the

specific mechanism of their role in IR in PCOS patients.

Overall, the mechanisms by which immune cells influence

insulin resistance in PCOS patients are intricate and varied,

necessitating further investigation into the functions of most

immune cells (Figure 3).
3 Immune molecules regulation in IR

3.1 Cytokine

3.1.1 Tumor necrosis factor-a in IR
The tumor necrosis factor (TNF) superfamily comprises 19

ligands and 29 receptors (100), all of which demonstrate
FIGURE 3

The role of immune cells in IR in patients with PCOS: Abnormal proliferation of immune cells can cause immune dysfunction or imbalance in the
ratio of immune-related factors. Several immune cells are involved in the inflammatory response, such as macrophages, T cells, B cells,
granulocytes, dc, and NK cells, which can initiate or inhibit the host’s inflammatory response through the production of proinflammatory cytokines
or suppressor cytokines. dc, dendritic cell; NK, natural killer cell.
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proinflammatory activity. In the 1960s, a factor that induces tumor

regression was discovered and named TNF-a. TNF-a was initially

identified in macrophages and serves as a prototype of the TNF

ligand family. Upon activation, TNF-a initially generates a

transmembrane protein (tmTNF-a) in adipocytes and

subsequently engages in signaling via two receptors, TNF-R1 and

TNF-R2 (101, 102). Two transcription factors, NF-kB, and activator
protein-1 (AP-1), have been identified to participate in the signaling

process (103, 104). This factor was detectable in various

components of the human oocyte-corona cumulus complex as

early as fifty years ago (105, 106). Currently, TNF-a, a significant

inflammation marker in vivo for PCOS patients, also impacts the

clinical characterization of PCOS patients in diverse manners (107).

The molecular levels of GLUT-4 and IRS1, associated with

glucose membrane transport and glucose uptake respectively, were

significantly lower in PCOS patients with BMI compared to normal

women (108–110). Conversely, TNF-a may contribute to insulin

resistance in PCOS patients by inhibiting tyrosine kinase

phosphorylation of IRS and reducing the biological activity of

GLUT-4 (111). Statistically significant variations were also noted

in the expression levels of TNF-a and lipocalin in obese women

with PCOS compared to those without PCOS (112, 113). A negative

correlation was observed between the two variables. In vitro

experiments elucidate this relationship: TNF-a decreases lipocalin

expression and secretion, while lipocalin influences TNF-a-induced
proinflammatory and insulin inhibitory effects (114–117). It is

evident that in patients with PCOS, TNF-a, known for its pro-

inflammatory role, plays a predominant role. NF-kB, a

transcription factor influenced by TNF-a, may also contribute to

insulin resistance through a specific mechanism linked to its

significant upregulation of inflammatory interleukins (e.g., IL-1b,
IL-6) upon activation (118).

3.1.2 Interleukin-6 in IR
Interleukin-6 (IL-6), a multifunctional signaling molecule, is

primarily produced by immune cells, epithelial cells, and tumor

cells (119, 120). In the field of reproductive endocrinology, its key

roles include regulating gonadotropin secretion, implantation,

luteal function, and embryo development. IL-6’s activity is

triggered by various pro-inflammatory molecules like TNF-a,
interferon-g (IFN-g), and IL-1 (121). Initial studies indicate that

IL-6 may enhance lipolysis in human adipocytes cultured for 48

hours. Sennet et al. found that short-term IL-6 treatment (30-90

minutes) increased socs-3 expression in HepG2 cells and rat

hepatocytes, potentially affecting insulin-induced IRS-1 tyrosine

phosphorylation, p85 binding, and downstream PKB/Akt

phosphorylation, with a similar mechanism implicated in T2DM

(122–124). Higher serum IL-6 levels in normal-weight polycystic

subjects suggest that elevated IL-6 levels in nonobese subjects with

PCOS may also contribute to IR (125). Two other studies on purely

obese patients and obese PCOS patients also found higher IL-6

expression in obese PCOS patients compared to purely obese

patients (126, 127). Therefore, in obese conditions, androgens

trigger immune responses in patients with polycystic ovaries,

creating a mutually reinforcing relationship between polycystic
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changes, hyperandrogenism, and insulin resistance. The more

complex mechanisms of IL-6 need further exploration.

3.1.3 Interleukin-17 in IR
The pro-inflammatory cytokine IL-17 is associated with tissue

inflammation induction. This cytokine family comprises six

members, IL-17A to IL-17F, with IL-17A and IL-17F being

closely related and co-expressed on linked genes. IL-17 is sourced

from both Th17 and Th2 cells, while IL-17E is specifically from Th2

cells and enhances the Th2 pathway’s activity. Previous studies have

demonstrated a significant increase in Th17 cells in PCOS patients,

with high concentrations of IL-17A, a characteristic Th17 cytokine,

compared to the control group.

IL-17 plays a role in adaptive immunity and in the production

and interaction of innate immune cells on tissue cells, so it is

reasonable to assume that it is involved in the low-grade chronic

inflammation produced by adipose tissue as an important

participating component. Furthermore, IL-6, a signaling molecule

necessary for the differentiation of CD4+ cells into the Th17 lineage

(128, 129), is a major downstream gene target of IL-17 (130, 131). A

study by Fulghesu et al. showed that IL-6 concentrations were much

higher in the sera of patients with the same PCOS who also had IR

than in those without IR (132). Similar findings were obtained in

obesity-promoting Th17 cells in expanded diet-induced obese mice,

where Th17 cell numbers were significantly increased in wild-type

genes, whereas the response of Th17 cells was not enhanced in IL-6-

deficient mice (133). These studies suggest that, to some extent, the

chronic inflammation that generates IR is dependent on the

associated response of Th17 cells, which in turn is dependent on

the activation of IL-6. CCAAT/enhancer binding protein (C/EBP) b
and C/EBPd are important transcription factors that promote

adipocyte differentiation (134), and during adipogenesis, C/EPBb
is sequentially phosphorylated at three sites (Thr188, ser184 and

Thr179) in its internal regulatory structural domain (135).

Although IL-17 inhibits adipogenesis, it induces an increase in

the abundance of C/EBPb and C/EBPd in lipogenic cell lines (130,

136) and induces phosphorylation at Thr188 and Thr179 sites

(137). A study showed that IL -17 triggered a significant increase

in IL-6 levels in differentiated adipocytes in culture of human

mesenchymal cells (138). Increased IL-6 stimulates Th17 cell

differentiation, which in turn may lead to an upregulation of IL-

17-induced IL-6 levels. Although the relationship between IL-17

and IL-6 mutual stimulation has been demonstrated in many cells

including adipocytes, the exact mechanism of IL-17 action on

adipocytes and IR remains unknown, as does the promotion of

CD4+ T cell differentiation into Th17 cells by IL-6.

3.1.4 Interleukin-18 in IR
Interleukin 18 (IL-18), also known as IF-g-inducible factor, is a

pro-inflammatory cytokine that in humans is encoded by the IL-18

gene. IL-18 belongs to the IL-1 superfamily and is produced by

macrophages and other cells. Upon IL-18 stimulation, natural killer

(NK) cells and some T cells release another important cytokine,

IFN-g or type II interferon, which in turn activates macrophages or

other cells.
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In adipose tissue, non-adipocytes, such as stromal vasculature

and immune cells, are the primary source of IL-18 (139, 140).

Simultaneously, immune cells synthesize IL-18Ra/b heterodimeric

receptor complexes, to which IL-18 binds and plays a crucial role.

Abnormal inflammation in adipose tissue leads to changes in IL-

18R/IL-18 expression on CLS immune cells (141). Studies on

animals have shown that mice with reduced IL-18 secretion

exhibit elevated levels of adipose and pro-inflammatory factors in

adipose tissue, resulting in glucose intolerance (142). However, a

statistical analysis of diabetic patients revealed a positive correlation

between elevated serum IL-18 and glycemic abnormalities after

excluding the influence of BMI and adipokines. Similar results were

observed in patients with PCOS and other low-grade chronic

inflammatory conditions (107, 143, 144). This variation may be

attributed to the diverse functions of IL-18 in different tissues (145).

For instance, in bone marrow tissues, IL-18 primarily contributes to

maintaining glucose homeostasis, while in tissues other than bone

marrow, it mainly regulates the expansion of adipocytes (142). In

individuals with adipose inflammation, IL-18 expression showed a

negative correlation with IRS1, GLUT-4, lipocalin, and PPARg
expression (142), while demonstrating consistent changes with

the severity of obesity, insulin resistance, lipid metabolism, and

dyslipidemia, all indicating a significant role of IL-18 in insulin

metabolism abnormalities (146–148).
3.2 Immunomodulatory molecules in IR

3.2.1 Interferon regulatory factor in IR
Up to now, studies have identified nine members of the

mammalian interferon regulatory factor (IRF) family: IRF1, IRF2,

IRF3, IRF4 (PIP, LSIRF, or ICSAT), IRF5, IRF6, IRF7, IRF8 (ICSBP),

and IRF9 (ISGF3g) (149, 150). IRFs play a key role in the regulation of
innate and acquired immunity as a transcriptional regulator of type I

interferons and interferon-inducible genes (151). The structure of IRF

and its function in tumor growth have been well described (152). This

study aims to clarify the potential relationship among IRFs, immune

cells, and IR in patients with PCOS (as shown in Table 1).

3.2.2 Secreted frizzled-related protein 4 in IR
Secreted frizzled-related protein 4 (SFRP4) is a peptide hormone

belonging to the SFRPs family, expressed in various tissues such as

adipocytes, pancreas, and uterus (153–155). Elevated SFRP4 levels are

observed in metabolic disorders linked to IR, like T2DM and

gestational diabetes mellitus (GDM) (156, 157). SFRP4 plays a role

in adipocyte differentiation, increasing adipokines, inducing oxidative

stress in pancreatic cells with low antioxidant enzymes. Moreover,

SFRP4 inhibits insulin extracellular secretion by reducing Ca2+

channel opening in pancreatic islet cells (153, 158). Wnt signaling

(WNT5) showed a negative correlation with body weight in women

with PCOS and controls (159). Acting as a Wnt signaling pathway

antagonist, SFRP4 hindersWnt proteins from binding toWnt ligands

or Fzd, thereby blocking the Wnt signaling pathway (160). These

findings suggest that SFRP4 is directly or indirectly involved in the

pathophysiologic pathway of IR.
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3.2.3 Afamin in IR
Afamin was biochemically characterized as a vitamin E-binding

protein found in follicular fluid, suggesting involvement in the

reproductive system, particularly in follicle maturation (161, 162).

Vitamin E, a crucial antioxidant that combats oxidative stress in

vivo, suggests that Afamin likely participates in anti-apoptotic

processes related to oxidative stress (163). Two studies reported

elevated levels of hyperglycemia-induced reactive oxygen species

(ROS) and activated NF-kB in PCOS patients, resulting in TNF

transcription, with the most significant impact observed in obese

PCOS patients (164, 165).
4 Immunotherapy

Since the immune mechanism of PCOS is rarely studied and the

research of immunotherapy for PCOS is still in the preliminary

stage, so in this part, we summarized the existing immunotherapy

methods and looked forward to more research and exploration in

this field.
4.1 Immunosuppressive therapy

Tacrolimus (FK506) is an 822 kDa lipophilic macrolide

antibiotic known for its potent immunosuppressive properties. It

has been shown to inhibit the production of IFN-g and IL-2 by

activated T cells, as well as the aberrant expression of chemokine

CXC ligand. This inhibition effectively suppresses the inflammatory

response in target organs, such as the ovary and adipose tissue in

murine models, thereby promoting ovarian ovulation and

providing protection against IR (166–168).

Isotretinoin, a derivative of vitamin A, acts as an effective

antiproliferative and antikeratinizing agent with certain

immunosuppressive effects. A prospective clinical study conducted

in Egypt investigated the impact of oral isotretinoin administration in

patients with PCOS. The study reported a significant reduction in

both free testosterone levels and acne scores following treatment.

However, it also noted a considerable increase in serum triglyceride

and cholesterol levels among the patients (169). Importantly, the

study did not include measurements of insulin and glucose levels.

These findings suggest that while isotretinoin may effectively

modulate hormonal levels in PCOS patients, it does not appear to

alleviate symptoms associated with metabolic disorders.
4.2 Stem cell therapy

Mesenchymal stem cells (MSCs) significantly modulate the

therapeutic immune response in a murine model of PCOS.

Numerous studies have shown that MSC treatment markedly

reduces serum expression of ovarian-specific genes and

peripheral levels of the pro-inflammatory cytokine TNF-a in

mice with PCOS. This effect may be mediated by the anti-

inflammatory cytokine IL-10 (170–172). Peripheral blood flow
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cytometry analysis by Lamei Cheng et al. revealed that MSC

treatment restored the proportions of macrophages and

neutrophils in both peripheral blood and spleen to normal levels

in the PCOS mouse model. Additionally, the ratio of pro-

inflammatory M1 to anti-inflammatory M2 was appropriately

adjusted. Variations in donor origin significantly affect the

immunomodulatory effects of MSCs. Specifically, adipose-

derived MSCs from obese or IR individuals show a markedly

reduced ability to downregulate inflammatory factor expression

and suppress CD4+ T cell activity. This reduced efficacy may

result from intrinsic abnormalities in MSC function related to

insulin resistance (173, 174). Currently, stem cell therapy

targeting PCOS patients with IR, along with the underlying

mechanisms affecting the immune system and stem cell

abnormalities, has not progressed to the clinical research phase.
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4.3 Links between treatment modalities
and immunity

The clinical treatment strategy for IR induced by PCOS is

comparable to that for type 2 diabetes. Lifestyle management is

the preferred approach. Engaging in appropriate exercise and

following a low glycemic index (LGI) diet can reduce waist

circumference, total testosterone, low-density lipoprotein (LDL),

fasting insulin, LDL cholesterol, triglycerides, and total cholesterol

(175). The LGI diet decreases levels of growth hormone-releasing

peptide while increasing glucagon levels. Physical activity and

vigorous aerobic exercise enhance insulin sensitivity and

androgen levels in patients with PCOS. Excessive fatty acid

consumption and stabilization of hormone levels can effectively

alleviate immune dysregulation in patients with PCOS.
TABLE 1 Summary of IRF members and their connection to IR in PCOS.

IRF Expression Target genes in immune cell Functions Connection to IR in PCOS

IRF1 (192–199) Prevalently in
multiple tissues
and cell lines.

IFN-inducible genes (iNOS, Caspase-1,
Cox-2 etc.)
Connected with MyD88 and TLR
signaling genes (IFN-b, IL-4, IL-12, IL-
15, PPARy).

Acts to block the cell cycle and induce
apoptosis; participates in NK cell
development and CD8+ T cell
differentiation; promotes T cell
differentiation toward Th1; accelerates
myocardial remodeling, Ischemia-
Reperfusion(I/R)-induced liver injury
and T1DM.

Enhances androgen sensitivity and
worsens the body’s inflammatory
response via the TGF-b/IRF1 signaling
pathway; the pathway leading to IR in
PCOS may resemble that in T2DM, with
regulation by the troponin I type 3
(TNNI3) and Baculoviral IAP Repeat
Containing 3(BIRC3) genes.

IRF2 (200, 201) Similar to IRF1 Attenuates type I IFN (Just like
IRF1);
Connected with MyD88 and TLR
signaling genes(IL-4 and IL-12).

Influences type I IFN response; involved
in NK cell development and CD4+ DC
differentiation; promotes T cell
differentiation toward Th1.

No studies have been done, the
mechanism of action may be similar to
that of IRF1

IRF3 (202–207) Most tissues
and cell lines.

Induces type I IFNs (IFN-a/b)
DNA stimulation(ERK2, IKKb, PPARg)
TLR stimulation
Microglia stimulation(IL-22).

Induces type I IFNs; Maintains insulin
sensitivity and lipid homeostasis; reduces
inflammation and myocardial
hypertrophy; participates in I/R injury
tolerance induced by pretreatment with
TLR ligands; exacerbates hepatic I/
R injury.

IRF3 enhances adipose inflammation and
IR through its downstream IKKb/NF-kB
and PPP2R1B-AMPK/AKT pathways.
Activation of IFN-b/IL-10 induced the
transformation of macrophages into M1
type in white adipose tissue. TLR3 and
TLR4 upstream of IRF3 participate in
proinflammatory lipogenesis and IR by
activating IRF3. Upstream IL-22/IL-22R1
inhibits IRF3 from increasing M2-type
macrophage differentiation and
alleviating symptoms.

IRF4 (208–212) Exists in cells
with high
energy
metabolism and
is abundant
in lymphocytes.

Connected with IRF5, MyD88 and TLR
signaling genes (IRF5, IL-4, CREB
and SRF)

Retards IRF5 interaction with MyD88
and reduces tlr-dependent inflammation;
required for differentiation of CD4+ DCs,
pDCs and macrophages; involved in B-
lymphocyte development.

Within the adipose tissue of obese PCOS
patients may be associated with reduced
macrophage secretion of pro-
inflammatory factors (IL -1b and
TNF -a).

IRF5 (213, 214) Mainly in B-
cells and
DCs.

Connected with MyD88 and TLR
signaling genes (TNF-a, IL-6, IL-12);
Participates in metabolic disease
(TGF-b1).

Participates in IR and
obesity.

There are no detailed reports in the
literature, but IRF5 levels are elevated in
obese patients.

IRF7 (215–218) Most tissues
and cell lines.

Connected with MyD88 and TLR
dependent induction of type I IFNs
(IFN-a/b)
DNA stimation(IKKb)

Deteriorates obesity, hepatic steatosis,
and the related inflammation.

In PCOS patients, IRF7 causes low-grade
chronic inflammation and IR through
androgen-dependent TLR4/IRF-7/NF-kB
signaling, and metformin targets this
pathway to alleviate symptoms; IRF7 also
modulates MCP-1 transcription in
adipose tissue, resulting in macrophage
aggregation and pro-inflammatory effects
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Lifestyle management is now widely promoted globally.

Medications used as adjunctive treatments can effectively manage

long-term complications.

Metformin (Met) is currently the primary therapeutic agent

used for insulin sensitization in individuals with PCOS, while

glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are

commonly employed in the treatment of T2DM. A study by Liao

et al. investigated the efficacy of combining GLP-1 RAs and Met in

reducing IL-6 and other molecules related to the inflammatory

immune response, as evaluated through plasma proteomics (176).

Additionally, Met has been shown to affect the levels of 11 cytokines

in patients with PCOS, and its therapeutic efficacy is closely linked

to androgen levels in these individuals (177).

The selection of pharmacological agents is crucial for improving

insulin sensitivity and managing other metabolic disorders in

patients with PCOS. As shown in the previous section, a

significant association exists between the immune system and IR

in patients with PCOS. Therefore, selecting medications that

modulate inflammatory cytokine activity or inhibit the

recruitment and proliferation of pro-inflammatory immune cells

may offer a promising therapeutic strategy for future research.

In addition to medications, the incorporation of supplements

may theoretically enhance the hypoglycemic effects of Met (e.g.,

sage, curcumin, quercetin, inositol, and various herbs) (178).

However, aside from potential synergistic or additive effects with

Met, no other known herb-drug interactions have been documented

(179). Future therapeutic studies should investigate potential

interactions between herbs or nutrients and drugs, as well as any

immediate or long-term risks associated with these interactions.
5 Immunomarker

The immune system is a crucial system present at birth that

continuously undergoes adaptive changes and regulatory functions

throughout an organism’s life. Several comorbidities of PCOS are

associated with low-grade inflammation, indicating altered immune

function (180). Significant alterations in cytokine levels, including

TNF-a, IL-6, IL-17, IL-18, and ultrasensitive C-reactive protein

(CRP), have been observed in the peripheral blood of PCOS

patients. These changes may result from an increased proportion

of abnormal immune cells, such as pro-inflammatory M1

macrophages, CD4+ T cells, NK cells, and neutrophils (181–183).

This aberrant manifestation is present in specific tissues of PCOS

patients, including adipose tissue, the endometrium, and certain

ovarian cells (180). Consequently, inflammatory molecules have

been defined as biomarkers of PCOS. Among the PCOS phenotypes

discussed in this article, levels of CRP, TNF-a, and IL-6 correlate

with IR, body weight, and adiposity in PCOS patients (184). TNF-a
is found in the subcutaneous adipose tissue of PCOS patients, where

it accumulates with macrophages, differentiates, and increases in

density along the CLSS (185). Conversely, IL-6 functions as a signal

transducer and transcriptional activator in the inflammatory

response to IR, regulating various target genes, including IRS, AP-

1, and NF-kB, to promote systemic and local inflammatory

responses. However, large clinical cohort studies correlating
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multiple inflammatory cytokines with IR incidence and severity

in PCOS patients are still needed to statistically correlate cytokines

with IR incidence and severity before further interpretation of the

potential of cytokines as immune markers for IR can be made.

Abnormal proportions of immune cells may serve as biological

markers for the detection of PCOS. Currently, the proportions of T-

cells, CD4+ T-cells, and NK-cells are recognized as independent risk

factors for the development of PCOS (181). Although the mechanism

of B-cells remains incompletely understood, studies indicate that the

number of B-cells inclined to differentiate into plasma cells is elevated

in the peripheral blood of PCOS patients (186). This differentiation

tendency is characterized by the presence of CD19+. Furthermore,

administering an anti-CD19 antibody in PCOS mouse models has

been shown to reduce serum TNF-a levels and macrophage

infiltration in adipose tissue (187). This finding not only suggests

the potential for B-cell intervention in PCOS treatment but also

indicates that flow cytometry analysis of peripheral blood cells may

serve as an early immunodiagnostic marker for the disease.

Immunodiagnosis during the pre-morbid phase of PCOS lacks

substantial research support. However, surface leukocytes, the most

prevalent type of immune cells, have been examined in this

population during this timeframe. Investigating the clustering of

differentiation antigens among immune cells during this period, as

well as analyzing cytokine levels in various tissues of patients with

different subclinical phenotypes, could yield more credible clinical

evidence for early immune markers in PCOS patients.
6 Outlook

In recent decades, significant progress has been made in

identifying the causative factors of PCOS and clarifying its clinical

symptom clusters; however, substantial gaps remain in our

understanding of its biological mechanisms. Although IR is just

one of the many clinical symptoms of PCOS, its long-term effects

on the body are complex, including an increased risk of T2DM and

cardiovascular disease. Various clinical interventions have been

employed to manage PCOS and its related complications; however,

without understanding the underlying causes of the disease, early

intervention and delaying the onset of complications are not feasible.

The immune system plays a crucial role in the pathogenesis of PCOS,

characterized by its widespread distribution, diverse functions, and

complex regulatory mechanisms. Investigating the detailed

mechanisms of immune system actions is essential for tracing the

origins and developing treatments for PCOS.

The prevalence of obesity in PCOS patients is 50-80% (188, 189).

Mendelian randomization studies indicate a causal link between high

BMI and PCOS risk, suggesting severe PCOS may increase BMI

(190). Ethnicity, geography, and diet significantly affect the

proportion of PCOS patients with high BMI globally. While the

immunologic connection between high BMI, IR, and PCOS is well-

studied, more research is needed on IR mechanisms in individuals

with normal BMI.

Current research on the immune system in patients with PCOS

primarily examines the distribution and abundance of immune cells

and molecules. This includes the recruitment of pro-inflammatory
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M1macrophages in peripheral blood and follicular fluid, alterations

in the T1/T2 cell ratio, and an increase in B cells. Subsequently, the

specific surface antigens of these immune cells are identified, and

appropriate antibody therapies are administered. This approach

aims to manage the progression of the inflammatory state, alleviate

patient symptoms, and address the challenges associated with

irregular and incomplete medication regimens. In addition to

pharmacological treatment, standardizing lifestyle habits in PCOS

patients can help reduce the risk and progression rate of the disease,

particularly in those who are obese. Healthy dietary practices,

regular exercise, and adequate sleep are effective strategies for

reducing inflammatory factors in patients and modulating the

distribution of immune cells. In recent years, there has been a

surge in clinical trials investigating the effects of plant-derived

products on PCOS. Natural compounds can antagonize certain

pro-inflammatory cytokines and participate in the post-receptor

signaling pathways of immune factors. They also enhance tissue cell

sensitivity to insulin by influencing related molecules, including

GLUT4 and IRS. Therefore, future investigations should focus on

natural components to evaluate the purification effects of active

ingredients responsible for the beneficial effects of these plants.

Additionally, combining these with existing drugs could lead to the

development of more effective formulations for hormone regulation

and insulin enhancement in PCOS.

GMAS has identified over 20 genetic loci associated with PCOS;

however, correlating these loci with the existing pathological

mechanisms of PCOS remains a significant challenge. PCOS, an
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umbrella term for a group of clinical syndromes, shares common

disease targets with T2DM, nonalcoholic fatty liver disease, and

obesity (191). This overlap suggests potential mechanisms involving

compensatory hyperinsulinemia, insulin resistance, systemic

inflammation, cardiovascular disease, and pregnancy complications

in PCOS patients. This suggests underlying mechanisms related to

compensatory hyperinsulinemia, insulin resistance, T2DM, systemic

inflammation, cardiovascular disease, and pregnancy complications

in PCOS patients. Therefore, immunological studies of PCOS should

extend beyond the female reproductive system to encompass

metabolic changes throughout the body. This broader approach

may uncover complex cellular interactions that facilitate the

identification of biomarkers for predictive and targeted therapies, as

well as improve predictions of therapeutic responses.
7 Conclusion

PCOS, as a group of metabolic disorder syndromes with diverse

and heterogeneous symptoms, has received widespread attention

due to its sudden increase in prevalence in the general population.

Imbalances in the immune system could potentially contribute

significantly to the diverse symptoms of PCOS. This paper

examined IR in PCOS, along with its related cellular and

molecular mechanisms (Figure 4). Immune cells interact with

immune molecules, triggering diverse signaling pathways in the

body including NF-kB, JNK, and PI3K/AKT. This interaction
FIGURE 4

Relationship between immunity and insulin resistance: Immune cells secrete different cytokines in different states, and IL-6 affects the function of
IRS-1 by regulating the expression of SOCS-3 in insulin receptor-containing cells. Meanwhile, TNF-a regulates the transcription of inflammatory
genes through JNK and NF-kB signaling pathways. Excessive SFA in the body affects the nuclear translocation of NF-kB and inhibits IRS-1-related
functions via IKKB.IL-18 has been shown to have an effect on the development of insulin resistance, but the exact pathway of action is unknown.
All of these factors contribute to the blockade of insulin action and glucose glucose transport, resulting in IR. IL, interleukin; IRS, insulin receptor
substrate; SOCS, suppressor of cytokine signaling; GLUT, glucose transporter protein.
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influences cellular sensitivity to insulin and glucose transport

efficiency by enhancing the transcription of inflammatory genes.

Thus, assessing the expression of immune molecules and the ratio

of immune cells in PCOS patients is crucial for evaluating their

inflammatory status and preventing potential long-term

complications symptomatically. Nonetheless, numerous immune-

related molecules in PCOS patients have unidentified functions in

insulin resistance, exhibiting intricate and diverse roles in pathways,

as well as diverse functions of immune cells. Additional research is

required to clarify the molecular biological mechanisms of the

immune system in PCOS-related symptoms and to gradually

integrate these findings into clinical practice. This integration

aims to enhance the long-term prognosis and outcomes for

patients, offering novel therapeutic approaches.
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