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Introduction: The sodium/iodide symporter (NIS) mediates active iodide

accumulation in the thyroid follicular cell. Biallelic loss-of-function variants in

the NIS-coding SLC5A5 gene cause congenital dyshormonogenic

hypothyroidism due to a defect in the accumulation of iodide, which is

required for thyroid hormonogenesis.

Objective: We aimed to identify, and if so to functionally characterize, novel

pathogenic SLC5A5 gene variants in a patient diagnosed with severe congenital

dyshormonogenic hypothyroidism characterized by undetectable radioiodide

accumulation in a eutopic thyroid gland, as well as in the salivary glands.

Methods: The coding region of the SLC5A5 gene was sequenced using whole-

exome sequencing. In silico analysis and in vitro functional characterization of

missense SLC5A5 gene variants were performed.

Results: Proposita’s whole-exome sequencing revealed a novel pair of

compound heterozygous missense variants in the SLC5A5 gene, c.1,627G>A

(p.G543R) and c.1,684T>A (p.L562M). The parents were heterozygous carriers of

the variants as determined by Sanger sequencing of the SLC5A5 gene. The

p.G543R variant in the homozygous state has previously been associated with

congenital hypothyroidism. The novel p.L562M variant was not reported in the
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Genome Aggregation Consortium dataset. In silico analysis of the pathogenic

impact of the p.L562M variant yielded inconclusive results. Functional in vitro

studies showed that the p.L562M variant reduces iodide accumulation due to

defective expression of the mutant NIS protein at the plasma membrane.

Notably, the aliphatic residue Leu at position 562 in the carboxy terminus of

the protein, which is highly conserved in NIS orthologues, is required for NIS

plasma membrane expression.

Conclusions: We report novel compound heterozygous missense SLC5A5 gene

variants causing defective iodide accumulation, thus leading to congenital

dyshormonogenic hypothyroidism.
KEYWORDS

congenital hypothyroidism, iodide transport defect, sodium iodide symporter (NIS),
whole-exome sequencing, biallelic loss-of-function SLC5A5 variants
Introduction

Congenital hypothyroidism is the most common endocrine

disorder in newborns, and among the most common preventable

causes of intellectual disability. In Argentina, congenital

hypothyroidism occurs with an incidence of 1:2,367 based on

thyrotropin-based newborn screening programs (1). Genetic

defects or environmental factors affecting thyroid hormonogenesis

lead to congenital dyshormonogenic hypothyroidism (2). In

particular, iodide transport defect is a rare autosomal recessive

disorder caused by the inability of thyroid follicular cells to

accumulate iodide, resulting in congenital dyshormonogenic

hypothyroidism. An iodide transport defect is suspected when

normal radioiodide accumulation in a eutopic thyroid gland, as

well as, in the salivary glands is reduced to absent (3–5).

Iodide accumulation, the first step in the biosynthesis of the iodine-

containing thyroid hormones, is mediated by the sodium/iodide

symporter (NIS) (6). NIS is an integral basolateral plasma membrane

glycoprotein that mediates—with remarkable affinity—sodium-coupled

active iodide accumulation into the thyroid follicular cell (7).

Structurally, NIS is a 13-transmembrane segment glycoprotein with

an extracellular amino-terminus and a large intracellular carboxy-

terminus, which contains a conserved monoleucine-based sorting

motif that is required for NIS basolateral plasma membrane

expression in the thyroid follicular cell (8, 9), and involved in reduced

NIS plasma membrane expression in thyroid cancer (10). Recently, the

three-dimensional structure of NIS was determined at atomic resolution

using single-particle cryogenic electron microscopy, providing

structural information on the mechanisms underlying NIS-mediated

iodide transport (11), a long-standing question in the thyroid field.

Highlighting the importance of NIS in thyroid physiology, biallelic

loss-of-function variants in the NIS-coding SLC5A5 gene cause

defective iodide accumulation, thus leading to congenital

dyshormonogenic hypothyroidism (6). To date, more than forty
02
pathogenic SLC5A5 variants gene have been identified in patients

with congenital dyshormonogenic hypothyroidism. Detailed molecular

characterization of NIS variants has provided mechanistic information

on structure-function relationships, highlighting critical amino acids

for substrate binding, specificity, and stoichiometry, as well as folding

and plasma membrane targeting (12–17).

Here, we conducted whole-exome sequencing in a patient with

severe congenital dyshormonogenic hypothyroidism characterized by

undetectable radioiodide accumulation in a eutopic thyroid gland and

the salivary glands. A novel pair of compound heterozygous variants in

the SLC5A5 gene, c.1627G>A (p.G543R) and c.1684T>A (p.L562M),

have been identified. The missense variant p.G543R in homozygous

state has previously been associated with congenital hypothyroidism.

Moreover, we conducted functional analysis revealing that the novel

missense variant p.L562M lowers iodide accumulation due to defective

NIS expression at the plasma membrane. In conclusion, we report

novel compound heterozygous missense SLC5A5 gene variants causing

defective iodide accumulation, thus leading to congenital

dyshormonogenic hypothyroidism.
Materials and methods

Patient’s medical records

The proposita was a full-term female infant born in 1993 as the

third child of non-consanguineous and healthy Caucasian parents. The

proposita was diagnosed with congenital hypothyroidism (TSH 60.0

µU/ml, range 1.3-10.0 µU/ml; total T4 0.8 µg/dl, range 6.0-18.0 µg/dl) at

21 days of age, after detection of high TSH level on newborn screening

(>60 µU/ml, cut off 15 µU/ml). Thyroid function analyses were

performed by DELFIA system (PerkinElmer - Waltham, MA). Serum

levels of thyroglobulin were not available. Clinical examination showed

jaundice, lethargy, tongue protrusion, reticulated skin, and umbilical
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hernia. X-ray revealed lack of ossification of the distal femoral epiphysis.

Levothyroxine replacement therapy was started immediately after

diagnosis with a daily dose of 50 µg/kg with excellent treatment

adherence over the course of 20-years follow-up period.

Levothyroxine dosage was regularly adjusted based on thyroid

function tests. At 2.3 years of age, thyroid function evaluation after

levothyroxine withdrawal indicated permanent congenital

hypothyroidism (TSH 99 µU/ml, range 0.5-6.5 µU/ml; total T4 1 µg/

dl, range 4.5-12.5 µg/dl; free T4 0.1 ng/dl, range 0.8-2.2 ng/dl). Thyroid

ultrasound revealed a eutopic small thyroid gland (0.23 ml, range 0.30-

2.0 ml) with heterogeneous texture. Thyroid scintigraphy revealed

undetectable 131I-iodide accumulation in the thyroid gland, as well as

in the salivary glands, suggesting an iodide transport defect. Dosage of

saliva-to-plasma radioiodide ratio was not technically available in the

Division of Nuclear Medicine. At the age of 8, theWechsler Intelligence

Scale for Children (WISC-III) test showed normal neurocognitive

development with lower performance in executive functions. The

proposita grew normally in the 25th percentile, underwent normal

pubertal development, and reached a final height of 164 cm, according

to the mean parental height. Parents and older sisters were

clinically euthyroid.
Ethical statement

The study was approved by the Ethics Committee of the

Hospital de Niños Dr. Ricardo Gutierrez (Buenos Aires,

Argentina) and was conducted with the written informed consent

of the parents of the proposita’.
Whole-exome sequencing

Genomic DNA was extracted from whole blood using Wizard

Genomic DNA Purification Kit (Promega – Madison, WI). Whole-

exome sequencing was performed by Macrogen (Seoul, South Korea)

using an Illumina platform with 150-bp paired-end reads. Exome

capture and library preparation were conducted using Agilent

SureSelect V6 post (Agilent Technologies, Santa Clara, CA). Raw

reads were mapped to the reference human genome (GRCh38) using

the Burrows-Wheeler Alignment software and processed according to

the recommendations of the Genome Analysis Toolkit. Variant calling

was performed using HaplotypeCaller, and variant annotation was

carry out using ANNOVAR. Precomputed scores from in silico meta-

predictors able to reach strong evidence for pathogenicity (18),

including BayesDel, REVEL, VEST4, and MutPred2, were annotated

using dbNSFP (version 4.7a) database. Variant interpretation was

determined according to the American College of Medical Genetics

andGenomics guidelines in a quantitative Bayesian framework (19, 20).
Sanger sequencing

The nucleotide sequence of coding exons of interest of the

SLC5A5 gene was determined by Sanger sequencing by capillary

electrophoresis (Macrogen) as reported previously (21).
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Expression vectors and site-
directed mutagenesis

The amino-terminus hemagglutinin (HA)-tagged human NIS

cDNA sequence cloned into the pcDNA3.1 expression vector was

kindly provided by Dr. Nancy Carrasco (Vanderbilt School of

Medicine) (22).

Site-directed mutagenesis was conducted by PCR using the

mutagenic oligonucleotides 5’-CCACTGTGCTGTGCAGA

GCCCTCATCAGC (forward) and 5’-GCTGATGAGGGCT

CTGCACAGCACAGTGG (reverse) for G543R, and 5’-CCCTGG

CCCCGGGAATGTTGTGGTGG ( f o rw a r d ) a nd 5 ’ -

CCACCACAACATTCCCGGGGCCAGGG (reverse) for L562M

using Phusion Hot Start II DNA Polymerase (Thermo-Fisher

Scientific - Waltham, MA), followed by methylated template

plasmid digestion with DpnI (Promega – Madison, WI) (23).

Mutagenic oligonucleotides were generated using QuickChange

primer design software (Agilent Technologies - Santa Clara, CA).

The fidelity of al l constructs was verified by Sanger

sequencing (Macrogen).
Cell culture and transfections

HeLa cells (CCL-2, American Type Culture Collection,

Rockville, MD) were cultured in Dulbecco Modified Eagle’s

Medium (Thermo-Fisher Scientific) supplemented with 10% fetal

bovine serum (Natocor, Córdoba, Argentina). Cells were

transfected with 1 µg plasmid/well in 6-well plates using

TurboFect Transfection Reagent (Thermo-Fisher Scientific). All

experiments were conducted two days after transfection.
125I-iodide transport assays

Transfected cells were incubated in DMEM containing 10 mM
iodide supplemented with 50 mCi/mmol 125I-iodide (PerkinElmer

Life Sciences - Waltham, MA) for 30 min at 37°C (24). NIS-specific

iodide uptake was assessed in the presence of 40 mM perchlorate.

Intracellular radioiodide was extracted with ice-cold ethanol and

quantified in a Triathler Gamma Counter (Hidex - Turku, Finland).

The amount of DNA was determined by the diphenylamine method

after trichloroacetic acid precipitation. Results were expressed as

picomoles of iodide per mg DNA, and standardized by the ratio of

the percentage of mutant NIS-positive cells to the percentage of WT

NIS-positive cells—both of which were determined by flow

cytometry under permeabilized conditions—in order to correct

for differences in transfection efficiency between samples.
Flow cytometry

Cells were fixed in 2% phosphate-buffered paraformaldehyde

and stained with 0.5 mg/ml affinity-purified rabbit polyclonal anti-

human NIS antibody (25) in PBS containing 0.2% human serum

albumin and 0.2% Quillaja saponin (Sigma-Aldrich - St. Louis, MO)
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(26). After washing, cells were incubated with 1 mg/ml Alexa-488-

conjugated anti-rabbit antibody (A-11008, Molecular Probes -

Eugene, OR). The fluorescence of ~5x104 events per tube was

assayed in a BD FACSCalibur Flow Cytometer (BD Biosciences -

San Jose, CA). Data analysis was performed with FlowJo software

(Tree Star - Ashland, OR).
Western blot

SDS-PAGE, electrotransference to nitrocellulose membranes,

and immunoblotting were conducted as reported previously (26).

Membranes were blocked and incubated with 0.2 mg/ml affinity-

purified rabbit polyclonal anti-human NIS (25) and 0.2 mg/ml

rabbit polyclonal anti-glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) (sc-25778, Santa Cruz Biotechnology - Santa Cruz, CA)

primary antibodies. After washing, membranes were incubated with

0.07 mg/ml IRDye 680RD goat anti-rabbit (#926-68071) secondary

antibody (LI-COR Biosciences - Lincoln, NE). Membranes were

visualized by Odyssey Infrared Imaging System (LI-COR

Biosciences). Relative band intensity was quantified using ImageJ

software (National Institutes of Health - Bethesda, MD).
Immunofluorescence

Transfected cells seeded onto glass coverslips were fixed in 2%

phosphate-buffered paraformaldehyde and stained with 0.5 mg/ml

affinity-purified rabbit polyclonal anti-human NIS antibody (25)

and 2 mg/ml mouse monoclonal anti-Calnexin (sc-23954, Santa

Cruz Biotechnology) antibodies in PBS containing 0.2% human

serum albumin and 0.1% Triton X-100 for permeabilized

conditions (27). Alternatively, cells were stained with 1:50 mouse

monoclonal anti-human NIS VJ1 antibody (28) in PBS containing

0.2% human serum albumin for non-permeabilized conditions.

Secondary staining was performed with 2 mg/ml anti-rabbit

Alexa-488-conjugated and anti-mouse Alexa-594-conjugated

antibodies (A-11008 and A-11012, Molecular Probes). Nuclear

DNA was stained with 4′,6-diamidino-2-phenylindole (DAPI)

(Molecular Probes). Coverslips were mounted with FluorSave

Reagent (Calbiochem - La Jolla, CA) and images were acquired

on an Olympus FluoView 1200 confocal microscope (Olympus

America - Center Valley, PA). Quantification of NIS expression at

the plasma membrane was conducted on non-permeabilized cells

using FIJI ImageJ software (National Institutes of Health).
Statistical analysis

Results are presented as the mean ± SEM of at least three

independent experiments. Statistical tests were performed using

Prism 8.0 software (GraphPad Software - La Jolla, CA). Multiple

group analysis was conducted by one-way ANOVA and Newman-

Keuls multiple-comparisons post hoc test. Differences were

considered significant at p<0.05.
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Results

Iodide transport defect was suspected in the proposita on the

basis of severe congenital dyshormonogenic hypothyroidism

characterized by undetectable radioiodide accumulation in a

eutopic thyroid gland, as well as in the salivary glands. Proposita´

s whole-exome sequencing revealed heterozygous missense variants

in the SLC5A5 gene: c.1,627G>A, p.G543R and c.1,684T>A,

p.L562M (GenBank Reference Sequence NM_000453.3, MANE

Select Transcript). Pathogenic variants in other genes involved in

thyroid development or physiology were not evidenced. The

SLC5A5 gene variants were further confirmed by Sanger

sequencing (Figure 1A). Consistent with the recessive nature of

the disease, analysis of the parents showed that the father is

heterozygous for p.G543R and the mother for p.L562M, while

older sisters were not included in the study (Figures 1A, B).

The variant c.1627G>A has been reported in Single Nucleotide

Polymorphism database (rs776596656) in heterozygosis showing a
FIGURE 1

Identification of compound heterozygous missense SLC5A5 gene
variants causing congenital dyshormonogenic hypothyroidism.
(A) Sanger sequencing chromatogram showing a 9-bp fragment of
SLC5A5 exon 13 (nucleotides 1,624 to 1,632) and exon 14
(nucleotides 1681 to 1689). Amino acids are indicated using the
one-letter code. The proposita is compound heterozygous for the
variants c.1,627G>A (p.G543R) and c.1,684T>A (p.L562M), while the
mother carries the variant c.1,684T>A and the father the variant
c.1,627G>A. (B) Segregation of SLC5A5 gene variants in the
proposita’s family.
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total allele frequency of 0.00001054, according to The Genome

Aggregation Database (version 4.1.0, acceded October 2024). In

silico analysis predicted the p.G543R variant as pathogenic

(Table 1). Significantly, the p.G543R variant was previously

identified in homozygous state in a patient with goitrous congenital

hypothyroidism (29), and functional characterization showed that

G543R NIS lacked iodide transport activity due to impaired plasma

membrane expression (30). The novel p.L562M variant was absent in

The Genome Aggregation Database (version 4.1.0, acceded October

2024). In silico analysis using pathogenicity predictors revealed that

the p.L562M variant did not meet the criteria to be considered either

benign (BP4) or pathogenic (PP3) (Table 1) (18). According to the

ACMG guidelines, the p.G543R variant was classified as pathogenic

(PM2_Supporting, PM3_Supporting, PM5, PP3_Moderate, PP4,

PS3), and the p.L562M variant as variant of unknown significance

(PM2_supporting + PM3 + PP4).

According to the rat NIS three-dimensional structure (11), which

shares 89% sequence identity with human NIS, the residue G543 is

located on the cytoplasmic side of transmembrane segment XIII,

while the residue L562 is located in the cytoplasm-facing carboxy-

terminus (Figure 2A). Functional characterization was conducted to

test the pathogenicity of the p.L562M variant. HeLa cells, which do

not express NIS endogenously, transfected to express L562M NIS

showed reduced perchlorate-sensitive iodide accumulation compared
Frontiers in Endocrinology 05
to cells expressing WT NIS (Figure 2B). Immunofluorescence

confocal microscopy analysis under non-permeabilized conditions

to assess plasma membrane NIS expression revealed that the levels of

p.L562M NIS were significantly lower than those of WT NIS,

suggesting that plasma membrane sorting of the mutant protein is

severely impaired. (Figures 2C, D). Together, these findings indicate

that the L562M substitution decreases NIS targeting to the plasma

membrane, and consequently reduces NIS-mediated iodide

transport. As previously reported (30), G543R NIS-expressing cells

did not exhibit perchlorate-sensitive iodide accumulation, ultimately

because G543R NIS was not targeted to the plasma membrane

(Figures 2B, C).

On Western blots, the electrophoretic pattern of WT NIS

showed a higher ratio of fully glycosylated polypeptides (~90 kDa,

band B) to partially glycosylated polypeptides (~60 kDa, band A)

(Figure 3A). Fully glycosylated NIS corresponds mostly to

polypeptides located at the plasma membrane, whereas partially

glycosylated polypeptides mostly correspond to those that have not

exited the endoplasmic reticulum compartment. In contrast, the

fully glycosylated NIS polypeptide (~90 kDa, band B) was minimally

detected in L562M NIS-expressing cells, reinforcing the concept that

only a small percentage of the mutant protein is targeted to the

plasma membrane (Figure 3A). In addition, immunofluorescence

confocal microscopy analysis under permeabilized conditions

revealed that L562M NIS mostly colocalized with the endoplasmic

reticulum-resident protein Calnexin, indicating that the mutant

protein is mostly retained in the endoplasmic reticulum, whereas

WT NIS was predominantly expressed at the plasma membrane

(Figure 3B). As previously reported (30), G543R NIS is completely

retained in the endoplasmic reticulum (Figures 3A, B). Multiple

sequence alignment of NIS orthologues from different metazoan

species revealed that the p.L562M variant affects a highly conserved

residue (Figure 3C). Together, these findings suggest that the

p.L562M variant decreases NIS targeting to the plasma membrane,
TABLE 1 In silico pathogenicity prediction of variants.

Variant BayesDel REVEL MutPred2 VEST4

p.G543R 0.28 0.78 0.85 0.95

p.L562M -0.17 0.51 0.61 0.40
Pathogenicity (PP3)/benignity (BP4) evidence strength per variant was annotated using
recommended thresholds for each meta-predictor (18). Thresholds for supporting levels of
evidence for benignity (BP4) and pathogenicity (PP3) are ≤ -0.18 and ≥ 0.13 for BayesDel, ≤
0.391 and ≥ 0.737 for MutPred2, ≤ 0.290 and ≥ 0.644 for REVEL, and ≤ 0.449 and ≥ 0.764
for VEST4.
FIGURE 2

L652M severely reduces NIS plasma membrane expression. (A) Three-dimensional structure of rat NIS (PDB: 7UUY). The residues G543 and L562 are
highlighted in pink. Image generated with The PyMOL Molecular Graphics System (Schrödinger, New York). (B) Steady-state iodide uptake in HeLa
cells transiently expressing empty vector (mock) or WT, or the NIS variants G543R and L562M. Cells were incubated with iodide in the absence
(black bars) or presence (gray bars) of perchlorate. Data are expressed in pmol of I−/mg of DNA ± SEM (n=3) and standardized by transfection
efficiency, which was assessed by flow cytometry. *p<0.05 (ANOVA, Newman-Keuls test); ns, not significant. (C) Representative merged
immunofluorescence analysis of WT or mutant NIS plasma membrane expression probed with anti-human NIS VJ1 antibody under non-
permeabilized conditions. Cell nuclei were stained with DAPI (blue). Scale bars: 10 µm. (D) Mean fluorescence intensity quantification of
immunofluorescence confocal microscopy images assessing plasma membrane NIS expression. Results are expressed as the mean ± SEM (n=10-12
cells). *p<0.05 (ANOVA, Student’s t-test).
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and consequently reduces NIS-mediated iodide transport, thereby

expanding the spectrum of congenital hypothyroidism-causing

SLC5A5 gene variants.
Discussion

Next-generation sequencing has been instrumental in expanding

the mutational landscape of monogenic forms of congenital

hypothyroidism. In particular, whole-exome sequencing analysis

has revealed pathogenic variants in novel genes involved in the

pathogenesis of congenital hypothyroidism (31, 32). Here, using

whole-exome sequencing, we identify a novel pair of compound

heterozygous missense SLC5A5 gene variants—p.G543R and

p.L562M—in a proposita with congenital dyshormonogenic

hypothyroidism characterized by undetectable radioiodide

accumulation in a eutopic thyroid gland, as well as in the salivary

glands, suggestive of an iodide transport defect phenotype.

The p.G543R NIS variant was previously identified in

homozygosity in a patient with goitrous congenital hypothyroidism

(29). In addition, another variant in the same residue, p.G543E, was

detected in homozygosity in two siblings with goitrous congenital

hypothyroidism who showed minimal radioiodide accumulation in

the thyroid gland (33). Functional characterization of the G543R/E

variants revealed that they impair NIS exit from the endoplasmic

reticulum, apparently due to a folding defect, thus reducing NIS-

mediated iodide accumulation (30). The novel variant reported here,

p.L562M, severely reduced normal iodide accumulation by repressing

NIS transport to the plasma membrane. Of note, the functional

evaluation supported the classification of the p.L562M NIS variant as

likely pathogenic (PS3 criteria added), thus our data highlight the

importance of interpreting congenital hypothyroidism-associated

variants with caution according to consensus guidelines.

The residue L562 is located in the intracellularly-facing

carboxy-terminus, which is required for the expression of NIS at

the basolateral plasma membrane in the thyroid follicular cell (8).
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Underscoring the significance of the carboxy-terminal region, the

missense p.S547R and p.G561E variants and the nonsense p.R636*,

which generates a truncated protein missing the last eight amino

acids, identified in patients with congenital dyshormonogenic

hypothyroidism causes the intracellular retention of the mutant

protein (34–36). Of note, the molecular characterization of the

iodide transport defect-causing p.G561E NIS variant, which is

adjacent to the p.L562M variant reported here, revealed the

importance of a highly conserved [L/M]xW[D/E] tryptophan-

acidic sorting motif involved in NIS transport to the plasma

membrane (36). The p.G561E variant shifts the equilibrium of the

adjacent unstructured tryptophan-acidic motif towards a structured

alpha-helical conformation reducing its recognition by the kinesin-

1 subunit kinesin light chain 2, thereby interfering with NIS

maturation beyond the endoplasmic reticulum, and reducing

iodide accumulation (36).

Considering that NIS-mediated iodide accumulation is the first

step in the synthesis of iodine-containing thyroid hormones, our

results suggest that the pair of compound heterozygous missense

NIS variants p.G543R and p.L562M impairs normal iodide

accumulation by interfering with NIS maturation and transport to

the plasma membrane. Notably, the in vitro data correlate with

clinical findings of impaired radioiodide accumulation in the

thyroid when the patient was evaluated by thyroid scintigraphy.

Therefore, the consequent lack of sufficient NIS molecules at the

basolateral plasma membrane of thyroid follicular cells reveals the

mechanism underlying the deficient iodide accumulation leading to

congenital dyshormonogenic hypothyroidism.
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FIGURE 3

L562M reduces NIS exit from the endoclasmic reticulum. (A) Representative Western blot analysis of total lysates from transiently transfected HeLa
cells probed with anti-human NIS and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibodies. Labels indicate the electrophoretic
pattern of the corresponding NIS polypeptides (A: partially glycosylated; B: fully glycosylated) depending on glycosylation status. Quantification of
fully glycosylated NIS polypeptides (band B) expressed as percent of total NIS is shown. Results are expressed as the mean ± SEM (n=3). *p<0.05
(ANOVA, Student’s t-test). (B) Representative merged immunofluorescence analysis of transiently transfected HeLa cells probed with anti-human NIS
(green) and anti-human Calnexin (red) antibodies under permeabilized conditions. Cell nuclei were stained with DAPI (blue). Scale bars: 10 µm.
(C) PSI/TM-Coffee-generated multiple amino acid sequence alignment of NIS orthologues from different metazoan species surrounding the amino
acid L562 of human NIS. Sequence logo was generated using WebLogo 3 (https://weblogo.threeplusone.com).
frontiersin.org

https://weblogo.threeplusone.com
https://doi.org/10.3389/fendo.2024.1465176
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Carro et al. 10.3389/fendo.2024.1465176
Ethics statement

The studies involving humans were approved by Ethics Committee

of the Hospital de Niños Dr. Ricardo Gutierrez (Buenos Aires,

Argentina). The studies were conducted in accordance with the local

legislation and institutional requirements. Written informed consent

for participation in this study was provided by the participants’ legal

guardians/next of kin. Ethical approval was not required for the studies

on animals in accordance with the local legislation and institutional

requirements because only commercially available established cell lines

were used.
Author contributions

GC: Formal analysis, Investigation, Writing – original draft,

Writing – review & editing. MM: Formal Analysis, Investigation,

Writing – original draft, Writing – review & editing. SS: Formal

Analysis, Investigation, Writing – review & editing. VP:

Methodology, Writing – review & editing. RG: Methodology,

Writing – review & editing. FM: Methodology, Writing – review

& editing. CB: Methodology, Writing – review & editing. VR:

Methodology, Writing – review & editing. MEM: Methodology,

Writing – review & editing. AM-R: Conceptualization, Resources,

Writing – review & editing. PP: Methodology, Writing – review &

editing. MT: Conceptualization, Funding acquisition, Writing –

review & editing. AC: Conceptualization, Funding acquisition,

Resources, Writing – original draft, Writing – review & editing.

JN: Conceptualization, Funding acquisition, Resources,

Supervision, Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Fondo para la Investigación Cientı ́fica y

Tecnológica - Agencia Nacional de Promoción Cientı ́fica y
Frontiers in Endocrinology 07
Tecnológica (grants number PICT-2018-1596, PICT-2019-1772,

PICT-2021-0005, and PICT-2021-0409 awarded to JN and PIDC-

2019-0007 awarded to MT, AC, and JN), Secretarıá de Polıt́icas
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