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Diabetic wound healing is a complex physiological process often hindered by the

underlying metabolic dysfunctions associated with diabetes. Despite existing

treatments, there remains a critical need to explore innovative therapeutic

strategies to improve patient outcomes. This article comprehensively examines

the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long

non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key

phases of the wound healing process: inflammation, angiogenesis, re-

epithelialization, and tissue remodeling. Through a deep review of current

literature, we discuss recent discoveries of ncRNAs that have been shown to

either promote or impair the wound healing process in diabetic wound healing,

which were not covered in earlier reviews. This review highlights the specific

mechanisms by which these ncRNAs impact cellular behaviors and pathways

critical to each healing stage. Our findings indicate that understanding these

recently identified ncRNAs provides new insights into their potential roles in

diabetic wound healing, thereby contributing valuable knowledge for future

research directions in this field.
KEYWORDS

diabetic wound, diabetic foot ulcer, non-coding RNA, microRNA, long non-coding RNA,
circular RNA
1 Introduction

Skin repair is a tightly regulated biological procedure, comprising: hemostasis,

inflammation, proliferation, and remodeling (1, 2). Hemostasis initiates when the

vascular endothelium is damaged, leading to the formation of a platelet plug and a fibrin

clot to stop bleeding, a process that takes minutes. The inflammatory phase starts right after

hemostasis, this phase begins with an influx of neutrophils, followed by the arrival of
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monocytes that differentiate into macrophages within the tissues to

clear away any remaining cellular remnants and expended

neutrophils, lasting between three to five days (3, 4). In the next

proliferation phase, the process encompasses the generation of new

stromal structures by fibroblasts, the beginning of angiogenesis,

extracellular matrix (ECM) formation, and collagen synthesis (5).

During the final remodeling phase, the structure of the tissue is

refined through the final formation of the ECM and further

neovascularization. This phase sees significant contributions from

fibroblasts, which produce fibroblast growth factors (FGF), and

from vascular endothelial cells (ECs). The remodeling process,

pivotal for restoring tissue integrity, can last up to two years (6–

8) (Figure 1).

In comparison to acute wounds, chronic wounds often exhibit

pathological irregularities and impairments in different cell

functions, such as those of neutrophils, macrophages, ECs,

fibroblasts, and keratinocytes (6, 9). Non-healing wounds pose a

major challenge to public health (10). Diabetic skin exhibits

increased infiltration of inflammatory cells and reduced

granulation tissue formation compared to normal skin. The

primary factors that complicate diabetic wound healing, in

contrast to normal wound healing, include elevated glucose levels,

hypoxia, and high levels of reactive oxygen species (ROS) (11, 12).

Elevated glucose levels hinder the transition from pro-inflammatory

M1 macrophages to anti-inflammatory M2 macrophages, thereby
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disrupting the resolution of inflammation. Additionally, high

glucose concentrations provide increased nutrient availability,

promoting bacterial growth and proliferation, which escalates the

risk of infection. Furthermore, diabetic wounds often exhibit

dysregulated cytokine release by neutrophils during the

inflammatory phase, thereby creating a favorable environment for

wound infection (13). Beyond this elevated glucose levels rigidify

cell membranes and constrict blood vessels, thereby reducing blood

flow and decreasing the availability of nutrients and oxygen at the

wound site (14). Elevated glucose levels promote the overexpression

of matrix metalloproteinases (MMPs) such as MMP-9 and MMP-2,

leading to excessive ECM degradation, impaired proliferation of

keratinocytes and fibroblasts, and hindered angiogenesis. However,

certain MMPs, like MMP-8, can be beneficial for diabetic wound

healing (15). Elevated blood glucose levels, a key characteristic of

diabetic wound environments, represent the primary barrier to

effective healing. Thus, the primary focus in the clinical treatment of

diabetic wounds is to manage blood sugar levels effectively (14).

Hypoxia in diabetic patients results from restricted oxygen

supply and increased oxygen consumption in the wound.

Vascular dysfunction and neuropathy limit oxygen delivery to the

wound site. Reduced blood oxygen levels lead to decreased

expression of hypoxia-inducible factor-1a (HIF-1a) and its target

genes, impairing the cellular response to hypoxia. This disruption

affects angiogenesis, resulting in delayed wound healing (16).
FIGURE 1

Comparative analysis of normal and diabetic wound healing phases. The figure compares normal wound healing with diabetic wound healing in the
Hemostasis/Inflammation, Proliferation, and Remodeling phases. (A) Hemostasis/Inflammation phase: In normal wound healing, this phase is
characterized by a balanced inflammatory response. In contrast, diabetic wound healing shows an increased presence of neutrophils and mast cells.
M1 macrophage polarization is observed in diabetic wounds, leading to prolonged inflammation and impaired healing. (B) Proliferation phase: In
normal wound healing, keratinocytes and fibroblasts proliferate and migrate effectively, and angiogenesis progresses normally. However, in diabetic
wounds, there is impaired proliferation and migration of keratinocytes and fibroblasts. Angiogenesis is also impaired due to dysfunctional ECs. (C)
Remodeling phase: In normal wound healing, this phase results in the final formation of the ECM and the completion of angiogenesis. Conversely, in
diabetic wound healing, both ECM formation and angiogenesis remain impaired. Endothelial cells (ECs); extracellular matrix (ECM).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1465975
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aghayants et al. 10.3389/fendo.2024.1465975
Hypoxic environments negatively affect various cells, including

ECs, macrophages, keratinocytes, and fibroblasts. Consequently,

hyperbaric oxygen therapy has been extensively used in the

treatment of diabetic foot ulcers (DFUs), although the exact

mechanisms of hyperbaric oxygen treatment remain unclear (17).

Oxidative stress arises from an overproduction of ROS and

insufficient antioxidant defenses. Hyperglycemia is a key

mechanism for inducing oxidative stress, and ROS are crucial

regulators of several phases of wound healing (12). Low levels of

ROS are necessary to defend against external damage (18).

However, excessive oxidative stress and reduced antioxidant

capacity are major contributors to non-healing diabetic wounds

(19). These factors disrupt normal healing stages by causing

abnormalities and as a result, wounds can experience impaired

healing progression, leading to numerous clinical complications (6,

20, 21). Importantly, diabetic ulcers stand as the primary reason for

lower limb amputations (22). Currently, 10.5% of the global adult

population between the ages of 20 and 79 have diabetes, amounting

to 537 million people worldwide. Estimates suggest this figure will

escalate to 643 million by the year 2030 and further increase to 783

million individuals living with diabetes by 2045 (23, 24). Current

basic treatments for diabetic wound healing include blood sugar

control, debridement, and infection control using topical or

systemic antibiotics. Advanced therapies also play a significant

role, including the development of skin substitutes, negative

pressure wound therapy, and hyperbaric oxygen therapy.

Additionally, new wound dressings that incorporate growth

factors and bioengineered tissues are being utilized to enhance the

healing process (25, 26).

Despite the availability of treatments for wound healing in

diabetic patients, the persistently elevated rate of negative outcomes

underscores the critical necessity for pioneering therapeutic

methods. In this review, we focused on the role of non-coding

RNAs (ncRNAs), including microRNAs (miRNAs), long non-

coding RNAs (lncRNAs), and circular RNAs (circRNAs) in

diabetic wound healing explaining their roles in this specific

process to enhance our comprehension of the complex

mechanisms behind DFUs and to devise novel approaches to

facilitate the restoration of wounds in diabetic individuals.
2 Non-coding RNAs

NcRNAs, making up 99% of the RNA content in cells, play a

pivotal role in influencing specific cellular responses. NcRNAs

achieve this by modifying the expression or function of a wide

array of downstream targets (27). Depending on the size of their

nucleotide sequences, ncRNAs are categorized into two main

groups: short ncRNAs comprising less than 200 nucleotide units,

and lncRNAs, which are composed of nucleotide chains exceeding

200 units in length (28). NcRNAs operate via diverse molecular

processes, such as regulating the expression of specific genes,

affecting protein function and activity, and interacting with

relevant signaling pathways. Any abnormalities in their

expression can lead to the onset of numerous diseases (29, 30).

NcRNAs demonstrate connections to numerous disorders linked to
Frontiers in Endocrinology 03
diabetes mellitus (DM), including DFUs, diabetic nephropathy,

diabetic cardiomyopathy, and diabetic peripheral neuropathy,

through their interactions with proteins. Despite this, the specifics

of how ncRNAs operate and exert their effects remain largely

unknown, leaving many questions about their mechanisms of

action unanswered (31–33). While all three types of ncRNAs have

both beneficial and detrimental effects at different stages of diabetic

wound healing, there are some major differences among them.

LncRNAs, in contrast to miRNAs, are longer (over 200 nucleotides

in length) and regulate gene expression at various levels, including

chromatin modification, transcription, and post-transcriptional

processing. They can also interact with and act as sponges for

miRNAs to regulate gene expression (34). CircRNAs are unique

among these three types due to their closed-loop structure, which

gives them resistance to degradation, making them more stable and

potentially better biomarkers for different diseases (35). Beyond

their role in diabetic wound healing, ncRNAs serve as important

resources for diagnosing and potentially treating a range of diseases.

These include various types of cancer, cardiovascular diseases,

rheumatoid arthritis, tuberculosis, kidney stones, and eye

disorders (36–41).
3 Mi-RNAs

MiRNAs belong to a class of endogenous, small molecules of

ncRNAs, which serve as the main modulators in the post-

transcriptional regulation of gene expression. These molecules carry

out their regulatory roles by specifically interacting with the three prime

untranslated regions (3’-UTR) of target messenger RNAs (mRNAs)

(42, 43), leading to mRNA cleavage, translational repression, or mRNA

deadenylation. This intricate mechanism allows miRNAs to control a

wide array of biological processes, making them crucial components in

the cellular regulatory networks (44–47). The examination of miRNAs

expression levels can significantly contribute to the diagnosis of various

diseases (48, 49). For instance, the expression of miR-129 and miR-335

is notably reduced in the skin tissues of patients suffering from DM

(50). Similarly, miR-296-5p expression is substantially reduced in DM

tissues, compared to normal tissues (51). Furthermore, miR-488-3p

levels are reduced within the wound tissues of individuals afflicted with

DM (52). Conversely, upregulation of miR-222-3p has been obtained

from individuals diagnosed with Type 2 diabetes mellitus (T2DM), and

a decrease of miR-126-3p within circulating plasma has been

documented among individuals suffering from diabetes mellitus (53,

54). In addition, miRNAs play a significant role in modulating the

functionality of b-cells, adjusting the expression of genes crucial for

maintaining pancreatic b-cell homeostasis (55, 56).
3.1 Inflammation

At the inflammatory stage, macrophages are the key

contributors and exhibit significant flexibility, being able to

differentiate into diverse phenotypic cells based on the

environmental shifts they encounter (57). In diabetic wound

healing the process is often impeded at the inflammatory phase
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due to the impaired shift from M1 to M2 macrophage (58, 59). Pro-

inflammatory M1 macrophages are predominant in diabetic wound

environments, with minimal presence of anti-inflammatory M2

macrophages. M1 macrophages release pro-inflammatory

cytokines, including IL-1b, IL-6, IL-12, IL-18, IL-23, and TNF,

which impede diabetic wound healing. In contrast, M2

macrophages produce anti-inflammatory cytokines such as IL-10

and IL-12, as well as growth factors like TGF-b, which facilitate

wound healing. Therefore, maintaining a balance between M1 and

M2 macrophages is crucial in the diabetic wound healing process

(13). Unlike macrophages, neutrophils that evolve into neutrophil

extracellular traps (NETs) exacerbate the wound’s inflammatory

reaction, adversely affecting diabetic wound healing (60). Here we

explore the molecular processes through which various types of

miRNAs exert regulatory control over the inflammatory phase.

Multiple research endeavors have reported a reduction in miR-

146a levels within macrophages of diabetic patients, underscoring

the pivotal function miR-146a plays in regulating the inflammatory

stage of impaired wound repair processes (61, 62). This functional

significance is noted in the regulation of nuclear factor-kappa B

(NF-kB) activation and the interleukin-1 receptor-associated kinase

1 (IRAK1) pathway (63, 64). Investigations into the therapeutic

potential of conjugating cerium oxide nanoparticles (CNP) to miR-

146a have demonstrated significant benefits in diabetic wound

repair (61, 65). Li et al. explored a novel dressing approach by

encapsulating miR-146a within exosomes and incorporating these

exosomes into a silk fibroin patch (SFP). This innovative dressing

demonstrated efficacy in downregulating the expression of IRAK1,

Tumor Necrosis Factor-Alpha (TNF-a), Interleukin-1 beta (IL-1b),
and Interleukin-6 (IL-6) in vitro in HaCaT cells, as well as IRAK1,

and phosphorylated NFkB-p65 in diabetic mice, thereby promoting

wound healing (66). Zhou et al. discovered that EXO-miR-146a

shifts of macrophages toward the anti-inflammatory M2

macrophage by reducing TNF Receptor Associated Factor 6

(TRAF6) expression under high glucose conditions (67). In

summary, miR-146a promotes diabetic wound healing by

targeting and regulating key inflammatory molecules and pathways.

Research findings have indicated that miR-145a-5p exerts a

beneficial influence on the wound repair processes in diabetic

conditions promoting the polarization towards M2 macrophage (68,

69), through modulating the activity of the p21-Activated Kinase 7

(PAK7) and influencing b-catenin signaling in hyperlipidemia (69).

The research conducted by Su and colleagues revealed that miR-145-

5p, transferred through extracellular vesicles (EVs), directly modulates

the expression of the cyclin-dependent kinase inhibitor 1A (CDKN1A),

consequently activating the Erk/Akt, thus promoting wound healing in

high glucose (HG)-induced human dermal fibroblasts as well as in

murine models of diabetes mellitus in vivo (70). Contrarily, Wang and

colleagues demonstrated that miR-145-5p exerts a detrimental

influence on HG-induced impairment in human foreskin fibroblasts

and hinders wound repair proven in murine models of diabetes

mellitus. Furthermore, they showed that suppressing the expression

of miR-145-5p facilitates an improvement in cellular functionality

within fibroblast cultures and promotes the wound repair processes

in DFUs mouse models through upregulating platelet-derived growth

factor D (PDGFD) expression (71). These studies suggest that miR-
Frontiers in Endocrinology 04
145a-5p exhibits both beneficial and detrimental effects on diabetic

wound healing.

Ban et al. revealed that treatment with miR-497 leads to a

decrease in IL-1b, IL-6, and TNF-a levels thereby facilitating the

wound healing process (72). MiR-21 was found to have an

inhibition effect on the inflammatory response triggered by

lipopolysaccharide (LPS) and increases IL-10 production by

interacting with phosphatase and tensin homolog (PTEN) and

programmed cell death 4 (PDCD4) genes (73). In other words,

these miRNAs promote diabetic wound healing by regulating pro-

inflammatory and anti-inflammatory cytokines.

NF-kB serves as a crucial regulator of the inflammatory

response by controlling the expression of genes related to pro-

inflammatory proteins such as cytokines, chemokines MMPs,

growth factors, and proteins involved in apoptosis. Dysregulation

of NF-kB leads to the development of inflammatory diseases (74).

Consequently, targeting the NF-kB pathway has been proposed as a

promising therapeutic strategy for managing diabetic

complications. miR-185-5p and miR-132 have been found to have

beneficial effects in diabetic wound healing by targeting NF-kB.
Wang et al. observed a downregulation of miR-185-5p in the wound

tissues of both DFU patients and diabetic rats, with the

administration of miR-185-5p mimics shown to accelerate wound

repair by inhibiting the expression of NF-kB and intercellular

adhesion molecule 1 (ICAM-1) in diabetic rat wound tissue (75).

Furthermore, The study by Ge et al. suggests that miR-132-exo

promotes diabetic wound healing and improves the viability of skin

flaps by facilitating M2 macrophage polarization and enhancing

angiogenesis. The M2 macrophage polarization induced by miR-

132-exo may be mediated by inhibiting the NF-kB signaling

pathway through the suppression of p65 (76). Yang et al. revealed

that miR-203a-3p targets inhibitor of cytokine signaling 3 (SOCS3),

thereby activating the JAK2/STAT3. This activation leads to M2

macrophage polarization and subsequently enhances diabetic

wound repair (77).
3.2 Angiogenesis

Angiogenesis, which involves generating novel blood vessels from

existing ones, is a process that demands a carefully controlled mix of

signals that either stimulate or inhibit (78–80). Diabetic wounds often

have an impaired blood supply due to insufficient angiogenesis (81).

Several proangiogenic factors, notably VEGF, FGF, and Epidermal

Growth Factor (EGF), serve vital functions in angiogenesis (82, 83).

VEGF plays a crucial role in regulating angiogenesis and vascular

permeability. In diabetic patients, VEGF levels in the serum and

vitreous are associated with blood glucose control (84).

Vascular Endothelial Growth Factor A (VEGFA) is the most

studied member of the VEGF family. Research revealed an elevated

presence of miR-195-5p and miR-205-5p in EVs from DFU wound

fluid, and these miRNAs inhibit angiogenesis by directly targeting

the 3′-UTR region of VEGFA mRNA, thereby regulating VEGFA

expression (85). MiR-135a-3p negatively regulates angiogenesis,

controlling the VEGF-induced activation of the p38MAPK

pathway by targeting huntingtin interacting protein 1(HIP1) (86).
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MiR-615-5p was identified as a key inhibitor of angiogenesis in ECs

by impacting the VEGF-AKT/eNOS and specifically interacting

with the insulin-like growth factor 2 (IGF2) and Ras association

domain-containing protein 2 (RASSF2) genes (87). Wang et al.

detected upregulated levels of miR-199a-5p in the wound tissues of

patients with DFUs. Subsequently, they demonstrated that in

diabetic rats, the suppression of miR-199a-5p enhanced the

VEGFA expression and Rho-associated protein kinase 1

(ROCK1), thereby promoting wound healing (88). In contrast,

Zhou et al. demonstrated that the inhibition of hsa-miR-199a-5p

by SNHG12/NFYC-AS1 promotes diabetic wound healing via the

hsa-miR-199a-5p-S100A8/S100A7/XDH pathway (89).

Under diabetic conditions, HIF-1 upregulates the expression of

VEGF highlighting the critical role of HIF-1 regulation in

angiogenesis (90). Xiao et al. demonstrated that overexpression of

miR-1248 promotes wound healing by targeting Cbp/p300-

interacting transactivator 2 (CITED2) and subsequently modulating

the activity of HIF-1 (91). HIF-1 has been also found to be associated

with miR-31-5p in its mechanism of promoting angiogenesis in

diabetic wound healing. Several studies have underscored the

significant contribution of miR-31-5p in promoting angiogenesis by

targeting factor-inhibiting HIF-1 (HIF1AN) (92, 93). Furthermore, it

was successfully demonstrated that miR-31-5p encapsulated in

exosomes promotes diabetic wound healing by enhancing

angiogenesis (94). In patients with DFU, the expression of miR-

15a-3p was found to be upregulated in foot skin compared to control

subjects without the condition. miR-15a-3p appears to modulate the

NOX5/ROS signaling pathway, suggesting a specific mechanistic

pathway through which miR-15a-3p impacts diabetic wound

healing (95).

There are multiple studies introducing the beneficial role of

miR-221-3p in different phases of diabetic wound healing including

angiogenesis. MiR-221-3p promotes angiogenesis by directly

targeting homeodomain-interacting protein kinase 2 (HIPK2),

utilizing both in vitro experiments with HUVECs and in diabetic

mice skin tissues (96). Similarly, Hu et al. demonstrated that miR-

221-3p enhances skin wound healing by mitigating the negative

effects of HG on apoptosis and angiogenesis, specifically through

targeting thrombospondin 1 (THBS1) (97). MiR-200b was observed

to be upregulated in HUVECs treated with HG, and miR-200

inhibition was found to promote angiogenesis in HUVECs

through the interaction with the neurogenic locus notch homolog

protein 1 (Notch1) (98). The Wnt/b-catenin signaling pathway is

critical for diabetic wound healing, regulating essential processes

such as cell proliferation, migration, and differentiation of

keratinocytes and fibroblasts, while also promoting the activity of

ECs. However, in diabetic wounds, the significant decrease in b-
catenin pathway activity leads to impaired wound closure and

chronicity, largely due to reduced cytokine production and

dysfunctional intracellular signaling that hinders the functionality

of key cell types (57, 99). MiR-488-3p accelerates wound healing by

activating the cytochrome P450 1B1 (CYP1B1)-mediated Wnt4/b-
catenin through targeting MeCP2, thereby promoting the

angiogenic response of HUVECs (52).

Blood glucose levels regulate the expression of PTEN,

predominantly present in epithelial cells, and it triggers signaling
Frontiers in Endocrinology 05
pathways influencing angiogenesis (46). Xu et al. demonstrated that

the levels of PTEN are downregulated in individuals with diabetes,

and that suppression of miR-152-3p can elevate PTEN levels, thereby

improving ECs functions critical to angiogenesis (100). Moreover,

sEVs engineered with miR-17-5p, when encapsulated in GelMA

Hydrogel, promote diabetic wound healing by stimulating

angiogenesis and collagen buildup through PTEN and p21

pathways (101). MiR-17-5p belongs to the miR-17-92 cluster,

which regulates ECs functions and modulates angiogenesis through

various pathways. However, the roles of the miR-17-92 cluster are not

always beneficial (102, 103). Another member of the miR-17-92

cluster, miR-17-3p, has been found to negatively control fetal liver

kinase 1 (Flk-1) expression. The miR-17-3p/Flk-1 interaction has a

detrimental effect on angiogenesis under diabetic conditions (104).

Similarly, miR-92a, another member of the miR-17-92 cluster, has

been associated with detrimental effects on angiogenesis. Inhibition of

miR-92a has been found to have a beneficial effect on angiogenesis,

thereby improving diabetic wound healing. Lucas et al. demonstrated

that light-activated antimir-92a improves angiogenesis under diabetic

conditions (105, 106). Furthermore, another study demonstrated that

a synthetic miR-92a inhibitor (MRG-110) promotes angiogenesis and

granulation tissue formation, thereby accelerating wound healing in

both mice and pigs (106). These results suggest that the regulatory

role of the miR-17-92 cluster is complex and varied, necessitating

further research to fully understand their mechanisms in

angiogenesis and harness their potential for therapeutic purposes.

The research by Wang and colleagues showed that miR-503

from M1 macrophage-released EVs inhibits insulin-like growth

factor 1 receptor (IGF1R) expression in HUVECs, thereby

impeding the wound healing process in individuals with diabetes

(107). Elevated levels of miR-409-3p were noted in nonhealing skin

wound samples from patients relative to uninjured skin tissues.

Additionally, miR-409-3p was shown to impair the angiogenic

capabilities of HUVECs under high glucose conditions, indicating

that miR-409-3p exerts a detrimental effect on wound healing in

hyperglycemic environments by altering the BTG2/mTOR

signaling pathway (108).
3.3 Re-epithelialization and
ECM remodeling

Re-epithelialization and ECM remodeling are key processes in

the regenerative phase. Re-epithelialization, essential for restoring

intact skin, is primarily facilitated by keratinocytes through their

migration, proliferation and differentiation, thereby maintaining

and repairing skin function (109). The formation of the ECM holds

significant importance in diabetic wound healing (58). In healthy

skin, fibroblasts migrate to the injury site to restructure the ECM

and remodel dermal collagen. However, in diabetic skin, under

glycemic conditions, these cells exhibit decreased proliferation and

migration, leading to the impairment and fragmentation of collagen

fibers (110).

MiR-155 has been found to be overexpressed in HaCaT cells

under high glucose (HG) conditions and in the exosomes of M1

macrophages. Gondaliya et al. demonstrated that MSC-derived
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exosomes loaded with a miR-155 inhibitor promote wound healing

in vitro with HaCaT cells and in vivo in diabetic mice, primarily by

restoring FGF-7 levels, thus enhancing keratinocyte migration and

re-epithelialization (111). FGF, including FGF-7, play a crucial role

in accelerating the healing process of diabetic wounds. However,

despite their potential, the clinical application of FGF in treating

diabetic wounds is limited, highlighting the need for improved

delivery methods and further research into their long-term effects

(112). Relatedly, Moura et al. demonstrated that in hyperglycemic

conditions, an miR-155 inhibitor promotes wound closure and re-

epithelialization in vitro by facilitating scratch closure and

upregulating FGF7 expression (113). In their experiments, Dallas

et al. utilized an antisense oligonucleotide (antimiR) to inhibit miR-

210, mitigating its negative impact on keratinocyte growth and

proliferation and thus promoting re-epithelialization (114).

Multiple studies have identified the role of miR-145-5p in

various stages of diabetic wound healing. Wang et al. showed that

miR-145-5p adversely impacts HG-induced impairment in human

foreskin fibroblasts by elevating PDGFD expression, consequently

hindering wound healing (71). Conversely, Su et al. found that EVs

from placental mesenchymal stem cells counter apoptosis and

enhance the proliferation and migration in diabetic wounds by

delivering miR-145-5p. MiR-145-5p targets CDKN1A directly,

consequently upregulating the Erk/Akt cascade, and thus

promoting diabetic wound healing (70). MiR-4645-5p, derived

from human bone marrow stem cells (hyBMSCs), was discovered

to promote autophagy in HaCaT cells by suppressing the

MAPKAPK2-induced AKT-mTORC1, consequently aiding

diabetic wound healing (115).

MMPs play a crucial role in the regulation of keratinocytes, and

thereby in re-epithelialization and ECM remodeling (116). Li et al.

discovered that inhibiting PPARG, targeted by miR-182-5p, results

in reduced MMP1 expression and elevated fibronectin 1 (FN1)

expression. This suggests that exosomes from human endothelial

progenitor cells improve the proliferation, migration, and adhesion

of HaCaT cells in HG conditions via the miR-182-5p/PPARG

signaling pathway (117). Furthermore, another study by Wang

and colleagues found that the upregulation of miR-129 and miR-

335 inhibits MMP-9 expression by interacting with specificity

protein 1 (Sp1) in keratinocytes and in diabetic rats, thereby

promoting diabetic wound healing (50).

Different members of the miR-21 family have been found to

positively affect the functions of keratinocytes and fibroblasts,

thereby promoting diabetic wound healing. MiR-21-5p loaded in

engineered exosomes enhances the proliferation and migration of

HaCaT cells via the Wnt/b-catenin pathway in vitro and enhanced

diabetic wound healing by promoting collagen remodeling, and

vascularization in diabetic rats (118). Furthermore miR-21-5p was

found to be involved in wound repair through Centella Asiatica and

its compound Asiaticoside. The study by Liu et al. concludes that

Asiaticoside-nitric enhances diabetic wound healing by modulating

the miRNA-21-5p/TGF-b1/SMAD7/TIMP3 cascade (119). Wu

et al. found that miR-21-3p plays a positive role in fibroblast

function by downregulating sprouty homolog 1 (SPRY1) and

accelerates wound healing (120). Neuro-oncological ventral

antigen 1 (NOVA1) has been identified as a direct target of miR-
Frontiers in Endocrinology 06
27-3p in fibroblasts, and inhibiting miR-27-3p could promote

diabetic wound healing by restoring fibroblast viability (121). We

summarized the regulatory mechanism of several key miRNAs in

diabetic wound healing (Table 1, Figure 2).
4 Long non-coding RNA

LncRNAs are sequences of RNA with a length exceeding 200

nucleotides and have many features in common with genes that

encode mRNAs, yet they are incapable of synthesizing proteins

(122, 123). LncRNAs exert a crucial regulatory influence on the

processes of gene transcription and expression through a variety of

molecular mechanisms, initially thought to act locally at their

synthesis sites to influence nearby gene activity. These transcripts

are involved in numerous mechanisms, such as protein synthesis,

RNA maturation, stability, and transport, as well as activating or

silencing transcriptional genes by modifying chromatin structure

(124, 125). Furthermore, lncRNAs exert their influence on gene

expression through mRNA splicing, translation, transcription, and

genomic imprinting, showcasing their extensive regulatory capacity

(125, 126). The link between lncRNAs and diseases, particularly

chronic conditions like diabetes, cancer, and cardiovascular

diseases, is clear and well-defined (127–130).
4.1 Inflammation

During the inflammatory stage, lncRNAs can serve a regulatory

function by various pathways, including the M1 to M2 macrophage

polarization (131). LncRNA H19 is the most extensively studied

among all lncRNAs. It has been discovered by various studies that

lncRNA H19 is significantly decreased in diabetic wounds

compared to normal ones (132). Li and colleagues showed that

exosomal lncRNA H19 targets miR-130b-3p, regulating PPARg/
STAT3 to promote M2 macrophage polarization. This process aids

in promoting fibroblast proliferation and migration, and ECs

angiogenesis, thus accelerating the wound healing process (133).

Hu et al. first detected that lncRNA GAS5 triggers the activation

of the STAT1 in macrophages, and STAT1 is necessary for the

expression of M1 marker genes. Furthermore, they demonstrated

that the silencing of lncRNA GAS5 promotes diabetic wound

healing. Taken together, their study suggests that a reduction in

the levels of lncRNA GAS5 will promote impaired diabetic wound

healing by facilitating M2 macrophage polarization (134).

Kuang et al. showed that miR-1914-3p targets milk fat globule-

EGF factor 8 protein (MFGE8), influencing macrophage

polarization through the TGFB1/SMAD3. Concurrently, miR-

1914-3p is targeted by MALAT1, which binds miR-1914-3p

competitively to suppress the TGFB1/SMAD3 pathway’s activity.

Further studies revealed that KCs-Exo carrying MALAT1

modulates macrophage activities through the TGFB1/SMAD3 and

enhances diabetic wound healing in mice (135). LncRNA Lethe has

been identified to be involved in the control of ROS generation in

macrophages by adjusting NADPH oxidase 2 (NOX2) gene

expression through NF-kB signaling (136).
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TABLE 1 Role of miRNAs in the regulation of diabetic wound healing.

miRNAs Expressions Animal models Regulation
mechanisms

References

miR-31-5p Significant downregulation
of miR-31-5p compared
with nondiabetic wounds

1) Mice were intraperitoneally injected with STZ (50 mg/kg) for 5
days. Full-thickness excision wound at a diameter of 8 mm was
performed on the back of all mice
2) Rats were injected STZ dissolved in 0.1 M phosphate-citrate
buffer a dose of 55 mg/kg. Full-thickness skin wounds were
generated (diameter = 2.0 cm)

Promotes Angiogenesis
proliferation and re-
epithelialization by inhibiting
HIF-1

1) (92)
2) (94)

miR-19a/b
and
miR-20a

Lower in chronic ulcers
than in acute wounds at the
proliferative phase

Mice received multiple injections of low-dose STZ to
induce diabetes.

Combinatory treatment with
miR-19b and miR-20a decrease
TLR3-mediated NF-dB
activation by targeting SHCBP1
and SEMA7A, respectively,
reducing the inflammation

(103)

miR-
199a-5p

Significantly Increased in
wound tissues of patients
with diabetic foot ulcers
compared with
nondiabetic wounds

Rats received injection with a dose of 5 mL/kg through the
abdominal cavity. piece of 2 cm round whole-layer skin was removed
from both sides of the back

Inhibition of miR-199a-5p
rescued impaired proliferation
and migration of HG induces
cells by enhancing the
expression of VEGFA
and ROCK1

(88)

miR-129-
2-3p

MiR-129-2-3p in diabetic-
derived neutrophils was
downregulated to less than
one-third of the level in
nondiabetic-
derived neutrophils

Male mice aged 8 to 12 weeks were used. Full-thickness excisional
dorsal wounds (4 mm) were created using a biopsy punch.

Influences the behavior of
neutrophils, affecting
inflammatory responses and
apoptosis by regulating Casp6,
Ccr2, and Dedd2

(197)

miR-1248 Decreased in the hADSCs of
DM patients

Rats were administered a single intraperitoneal injection of 60 mg/kg
body weight of STZ dissolved in citrate buffer (0.1 mol/L, pH 4.5). A
wound was created with a 1-cm circular diameter and a depth
reaching the hypodermis.

Promotes angiogenesis and
proliferation by targeting
CITED2 and regulating HIF-
1a expression

(91)

miR-23c 1.5-fold increase in patients
with infected DFU

N/A Inhibits Angiogenesis by
targeting SDF-1a

(198)

miR-
152-3p

Overexpressed in
DFU patients

1. A high-fat diet combined with intraperitoneal injection of STZ (50
mg/kg) for 5 consecutive days. Rectangular wounds (2 mm × 5 mm)
were made on the right instep surface
2. Full-thickness cutaneous skin wound (10 mm in diameter) was
produced on male diabetic mice (db/db) mice

1. MiR-152-3p suppression
inhibited the apoptosis of
fibroblasts and promoted their
migration by activating the
FBN1/TGF-b
2. Impedes angiogenesis by
Increasing PTEN levels

1) (199)
2) (100)

miR-26a Increased levels in ECs
treated with D-glucose

Db/db mice with a full-thickness skin wound (1cm2) Inhibition of miR-26a promotes
angiogenesis through BMP/
SMAD1-ID1 signaling pathway

(200)

miRNA-
497

Significantly downregulated
in diabetic wounds on mice
compared to the
normal wounds

Diabetes was induced by intraperitoneal injection of STZ (100mg/kg)
in 0.01 M citrate buffer (pH 4.5) twice a week during the fasting
state. Full-thickness excisional wounds were created on the dorsal
skin of mice with an 8-mm biopsy punch

Decreases the levels of pro-
inflammatory cytokines by
reducing the levels of IL-1b, IL-
6, and TNF-a

(72)

miR-
185-5p

Downregulated in wound
tissues of diabetic
foot patients

After two weeks of adaptive feeding, the rats were accepted 40 mg/
kg STZ by intraperitoneal injection. A 1.0 cm diameter full-thickness
circular wound was made on the dorsal skin

Inhibits prolonged
inflammation by suppressing
NF-kB and ICAM-1

(75)

miR-146a Decrease in miR-146a
expression in the
macrophages of patients
with diabetes

1) Db/db mice with full-thickness wounds on the back.
2) Mice were intraperitoneally injected with 1% STZ. A deep
incision was made in the front midline of the back of the mice

1) Promotes anti-inflammatory
response by targeting IRAK1
and inhibiting NF-kB
2) Promotes M2 macrophage
polarization by inhibiting the
TLR4/NF-kB

1) (66)
2) (62)

miR-129
and
miR-335

Both are downregulated in
diabetic skin tissues

Diabetes was induced through 50 mg/kg of STZ intra-abdominal
injection after 12 h without provision. Then, full-thickness excision
wounds were created on the middle of the back of each Rat

Promotes keratinocyte
proliferation, migration and
recovered collagen content by
Inhibiting Sp1-Mediated MMP-
9 Expression

(50)

(Continued)
F
rontiers in En
docrinology
 07
 frontiersin.org

https://doi.org/10.3389/fendo.2024.1465975
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aghayants et al. 10.3389/fendo.2024.1465975
TABLE 1 Continued

miRNAs Expressions Animal models Regulation
mechanisms

References

miR-21-3p Decreased in patients with
diabetes as compared with
those in the healthy control

Full-thickness cutaneous skin wounds (10 mm diameter) were
created on male db/db mice

Promotes fibroblast
proliferation and migration by
downregulating SPRY1

(120)

miR-
221-3p

Overexpression at the
wound edge of normal mice

1) A diabetic mouse model was created by administering STZ
intraperitoneally at a dose of 50 mg/g per day for 5 consecutive days.
Full-thickness skin wounds with a diameter of 6 mm were then
created.2) Mice received an injection of STZ (50mg/kg) for 5
consecutive days. Two full-thickness dermectomy wounds were
symmetrically generated near the dorsal midline using a 6mm biopsy
punch
3) Mice were injected intraperitoneally with STZ (50 mg/kg body
weight) daily for 5 days. 6 mm biopsy punch was used to produce
two full-thickness dermal excisional wounds

1) Targets HIPK2 and
promotes viability, migration,
and tube formation of
HUVECs
2) Inhibits apoptosis in HaCaT
cells, and enhanced
angiogenesis in HUVECs by
targeting THBS1
3) Inhibits the inflammatory
response of keratinocytes by
modulating DYRK1A/STAT3
signaling pathway

1) (96)
2) (97)
3) (201)

miR-
145-5p

Downregulated during the
tissue formation stage.
Decrease in hyperlipidemia
rat models.

1) Rats were daily fed a normal or 2% cholesterol along with 0.25%
cholate-enriched rat chow for a continuous 12 weeks
2) Db/db mice with full-thickness excisional skin wounds on the
dorsum (10 mm in diameter)

1) Promotes M2 macrophage
polarization by targeting PAK7
and regulating b-catenin
signaling
2) Inhibits apoptosis and
induces proliferation and
migration of fibroblasts by
targeting CDKN1A and
activating the Erk/Akt
signaling pathway.

1) (69)
2) (70)

miR-195-
5p and
miR-
205-5p

Upregulated in in DF-EVs Male rats with a wound in the dorsal skin Inhibits angiogenesis by
suppressing the expression
of VEGFA

(85)

miR-
15a-3p

MiR-15a-3p levels in foot
skin were higher in DFU
patients compared to the
control group

Male six-week-old mice weighing 20-30g. Full-thickness excisional
skin wound (10 mm in diameter) was produced on the upper back
of each mouse

Impairs HUVEC functionality
by targeting the NOX5/ROS
signaling pathway

(95)

miR-27-3p Overexpressed in cutaneous
fibroblasts of
diabetic patients

6–8-week old mice with full-thickness dorsal wounds (10 x 10 mm2) Suppresses proliferation and
migration of fibroblasts by
targeting NOVA1

(121)

miR-24-3p Upregulated in
diabetic exosomes

The upper back of mice (weighing 25‐35 g and 8 weeks old) was
given one full‐thickness skin excision with a diameter of 10 mm

Inhibits HUVEC proliferation,
migration, and angiogenesis by
targeting PIK3R3

(202)

miR-155 Enhanced miR-155 levels in
HaCaT cells under HG
conditions as compared to
normal glucose conditions.
Highly expressed in
M1 exosomes

1) Male mice were administered a low dose of STZ, 50 mg/kg, for 5
consecutive days. The wound was created using a 4 mm biopsy
punch
2) Two 6mm excisional wounds 2 cm apart were created on mice by
using a punch biopsy tool
3) Two full-thickness wounds extending through the panniculus
carnosus were created on the dorsum on each side of midline of db/
db mice

1) MiR-155-inhibitor-loaded
MSC-derived exosomes
promote re-epithelialization
and angiogenesis by
modulating the expression
levels of FGF-7, VEGF, and
matrix metalloproteinases
2) MiR-155 inhibitor enhanced
scratch closure in
hyperglycemic conditions by
increasing FGF7 expression,
promoting re-epithelialization
and wound closure
3) Suppresses endothelial cell
functions and angiogenesis by
targeting growth differentiation
factor 6 (GDF6)

1) (111)
2) (113)
3) (203)

miR-
615-5p

Increased in wounds of
diabetic mice, in plasma of
human subjects with acute
coronary syndromes, and in

8–10 weeks old, db/db mice with full thickness skin wounds Inhibits angiogenesis by
targeting IGF2 and RASSF2
and suppressing VEGF-AKT/
eNOS pathway

(87)

(Continued)
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4.2 Angiogenesis

Multiple research findings have highlighted functional links

between lncRNAs and the process of angiogenesis. Some

nanomaterial delivery systems have played important advantages

in drug delivery and therapy (137, 138). Tao et al. explored a new

nano-drug delivery system targeting lncRNA using high-yield

extracellular vesicle-mimetic nanovesicles (EMNVs), focusing on

the effects of EMNVs enriched with lncRNA-H19 (H19EMNVs).

Their findings revealed that H19EMNVs enhanced ECs functions,

which were previously hindered by HG levels (132). LncRNA

HOTAIR, carried by MSC-derived EVs, was observed to enhance

angiogenesis in HUVECs in vitro through VEGF upregulation.

Additionally, it facilitated the vascularization of the wound bed

and improves wound healing in diabetic mice (139).

Under diabetic conditions HIF-1 enhances the expression of

VEGF, indicating that the regulation of the HIF-1/VEGF pathway

is crucial for diabetic wound healing. Additionally, multiple lncRNAs

have been found to exert regulatory effects on this pathway (122).

LncRNA GAS5 promotes diabetic wound healing by interacting with
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TATA-binding protein-associated factor 15 (TAF15) and triggering

the HIF1A/VEGF in diabetic mice, while also enhancing the

proliferation of HG-induced HUVECs in vitro (140). LncRNA

ANRIL was found to be downregulated in DFU. Furthermore,

ANRIL overexpression was shown to rescue the HG-impaired

function of endothelial progenitor cells (EPCs) by regulating

HIF1A mRNA stability through interaction with FUS. It was also

discovered that alterations in ANRIL or HIF1A regulate VEGFA

expression both in EPCs and in diabetic mice (141). The study by

Han and colleagues revealed that lncRNA KLF3-AS1 enhances cell

growth and tube formation, while simultaneously suppressing

apoptosis in HUVECs under HG conditions, through the reduction

in the expression levels of microRNA-383. Additionally, their

research identified VEGFA as a direct target of miR-383. Moreover,

KLF3-AS1 was found to significantly promote cutaneous wound

healing in a diabetic mouse (142). Fu and colleagues explored how

keratinocyte-derived exosomal lncRNA LINC01435 influences

diabetic wound healing by affecting vascular ECs. Their research

indicates that LINC01435 impedes the migration and tube formation

capabilities of HUVECs, thereby restraining angiogenesis via the
TABLE 1 Continued

miRNAs Expressions Animal models Regulation
mechanisms

References

plasma and skin of human
subjects with
diabetes mellitus

miR‐
488‐3p

Lower in wound tissues
of diabetics

Rats received an intraperitoneal injection of 50 mg/kg STZ. A full-
thickness skin wound was created

Promotes proliferation and
migration as well as angiogenic
response of HUVECs through
Wnt/b-catenin pathway by
targeting MeCP2

(52)

miR-
204-3p

Reduced expression in DFU
patients and HG-
treated HUVECs

N/A Promotes HG-mediated
proliferation, apoptosis,
migration of HUVEC by
targeting HIPK2

(204)

miR-
409-3p

Increased in the nonhealing
skin wounds of patients
with type 2 diabetes
compared to the non-
wounded normal skin

The dorsal skin of the mice, along the median and 5–8 cm inferior
to the skull, was abducted 1.25 cm using a pair of flat forceps and
biopsied through to the dish with a 6-mm steel punch

Impairs the angiogenic
capabilities of HUVECs by
altering the BTG2/mTOR
signaling pathway

(108)

miR-503 Upregulated in EVs derived
from M1
polarized macrophages

Mice were given an injection of 50 mg/kg STZ. Two 8-mm full-
thickness excisional wounds were made on the dorsum of
each mouse

Inhibits the expression of
IGF1R, leading to
HUVEC dysfunctions

(107)

miR‐17‐3p Increased in patients with
DFUs who received maggot
debridement therapy (MDT)

N/A Inhibits tube formation
through the downregulation of
Flk‐1

(104)

miR-
181b-5p

Upregulated in exosomes
from DFU

Mice were fed a high-glucose and high-fat diet and intraperitoneally
injected with STZ (45 mg/kg). Full-thickness excisional skin wound
was inflicted on the upper backs of the mice

Promotes cell senescence and
inhibits angiogenesis by
regulating NRF2/HO-1

(205)

miR-138 Increased in DFU group rats
compared with the
control group

Diabetic rats were induced by single intraperitoneal injection of 60
mg/kg STZ dissolved in citrate buffer solution (0.1 M, pH 4.5). 4 × 4
mm wound depth reached fascia was made on the hind foot of the
diabetic rats

Down-regulation of miR-138
alleviates inflammation by
activating PI3K/AKT pathway
and human telomerase reverse
transcriptase (hTERT)

(86)

miR-200b Upregulated in high
glucose-treated HUVECs

N/A Inhibition of miR-200b
promotes angiogenesis by
targeting Notch1

(98)
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LINC01435/YY1/HDAC8 signaling pathway (143). Elevated levels of

lncRNA DLEU1 were detected in the serum of patients with DFUs.

Subsequent investigations revealed that miR-96-5p acted as a

mediator in the detrimental effects of lncRNA DLEU1 on

angiogenesis. Collectively, the findings indicated that lncRNA

DLEU1 exerts its negative impact on HUVECs by suppressing cell

proliferation, enhancing apoptosis, and increasing oxidative stress

through its interaction with miR-96-5p (144).
4.3 Re-epithelialization and ECM formation

LncRNAs are involved in re-epithelialization and ECM

remodeling, exerting regulatory control over the activities of

keratinocytes and fibroblasts. Specifically, lncRNA-H19 has been

demonstrated to enhance the proliferation and migration of HaCaT

cells, which were pre-treated with 30 mM glucose for 24 hours, and

to inhibit pyroptosis by inhibiting NOD-like receptor family pyrin

domain-containing 3 (NLRP3) activation (145). Another study

found that lncRNA-H19, particularly enriched in PDGFRa+
dermal fibroblasts, promotes fibroblast proliferation through the
Frontiers in Endocrinology 10
modulation of the p53-controlled cell cycle and modulates immune

cell infi ltration by reducing fibroblast-derived growth

differentiation factor 15 (GDF15). Additionally, it was discovered

that exosomes from Adipocyte Progenitor Cells (APCs) transport

lncRNA-H19 to the injury sites in type 2 diabetes mice, thereby

enhancing wound healing that was previously impaired (146). Li

et al. found that lncRNA H19 recruits SRF to upregulate connective

tissue growth factor (CTGF) levels, which enhances wound healing

by promoting fibroblast proliferation and ECM remodeling, thereby

accelerating wound healing in diabetic rats through the lncRNA

H19/SRF/CTGF pathway (147). Silencing lncRNA H19 inhibits the

functions of fibroblasts, with reduced fibrillin-1 (FBN1) but

upregulates miR-29b. This led to poor expression of transforming

growth factor-beta 1 (TGF-b1), Smad3, fibronectin (FN), and Col-

1, and reduced ECM accumulation (148). Qian and colleagues

showed that lncRNA-H19 sponges miR-19b by targeting SRY-

related high-mobility-group box 9 (SOX9). This activation of

SOX9 initiates the Wnt/b-catenin pathway, resulting in enhanced

proliferation, migration, and invasion of human skin fibroblasts,

thus facilitating wound healing (149). Guo et al. demonstrated that

lncRNA H19 could recruit enhancer of zeste homolog 2 (EZH2)
FIGURE 2

Roles of miRNAs in key phases of diabetic wound healing. MiRNAs modulate key pathways to promote wound healing. The inhibition of NF-kB and
activation of the PI3K/AKT signaling pathway are critical, with signal transducer and activator of STAT3 playing a pivotal role in promoting M2
macrophage polarization through pathways such as DYRK1A/STAT3 and JAK2/STAT3. VEGF regulation is crucial, involving pathways like HIF1A/VEGF,
VEGF-AKT/eNOS, and VEGF-induced activation of the p38MAPK signaling pathway, which facilitates blood vessel formation. The Wnt/b-catenin
pathway is essential for the proliferation and migration of keratinocytes and fibroblasts, crucial for effective re-epithelialization of the wound. MMPs
such as MMP-9 and MMP-1 play dual roles in diabetic wound healing. Their effects can be beneficial or detrimental depending on the healing phase.
PDGFD is highlighted for its positive impact on fibroblast proliferation and migration, contributing to effective ECM remodeling. Blue denotes
miRNAs promoting specific processes, while red indicates those impairing them. Micro RNAs (miRNAs); signal transducer and activator of
transcription 3 (STAT3); phosphatidylinositol-3 kinase-AKT (PI3K-AKT); signal transducer and activator of transcription 3 (STAT3); nuclear factor-
kappa B (NF-kB); matrix metalloproteinase-1 (MMP-1); matrix metalloproteinase-9 (MMP-9); platelet-derived growth factor D (PDGFD); extracellular
matrix (ECM); vascular endothelial growth factor (VEGF); epidermal growth factor (EGF); fibroblast growth factor (FGF).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1465975
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aghayants et al. 10.3389/fendo.2024.1465975
mediated histone methylation and regulate HIF-1a to enhance

fibroblast activation, leading to the improvement of diabetic

wound healing (150). Apart from the beneficial properties of

lncRNA-H19, research conducted by Ji and colleagues discovered

that reducing H19 levels could promote HaCaT cell proliferation

and migration. This effect occurs as H19 competitively interacts

with miR-17-5p, leading to an increase in RUNX1 expression (151).

It was detected that lncRNA CASC2 is downregulated in wound

tissues of DFU patients. In vitro, lncRNA CASC2 facilitates wound

healing by enhancing fibroblast migration, and in vivo, it accelerates

wound healing in DFU mice. Furthermore, He et al. demonstrated

that lncRNA CASC2 facilitates wound healing in DFU by

promoting fibroblast migration and inhibiting apoptosis through

the miR-155/HIF-1a pathway (152).

In recent studies, the functions of MALAT1 in regulating the

epithelial-mesenchymal transition (EMT) of HaCaT cells have been

elucidated. Zhang et al. demonstrated that the suppression of

MALAT1 significantly decreases EMT induced by TGF-b1 (153).

Additionally, they found that MALAT1 was involved in

hyperglycemia-induced EMT in human HaCaT cells by

interacting with miR-205 and promoting the levels of Zinc Finger

E-box Binding Homeobox 1 (ZEB1) (154). The results indicate that

MALAT1 could be a target for diseases characterized by aberrant

EMT. Moreover, Shi et al. proposed using MALAT1 as a sponge for

miR-142 to indirectly upregulate Sirt1 and nuclear factor erythroid

2-related factor 2 (Nrf2) for treating DFUs in elderly individuals

(155). MALAT1 also enhances the activities of keratinocytes by

functioning as a competing endogenous RNA (ceRNA), which

involves competitive interactions with miR-106a-5p. Furthermore,

zinc finger protein 148 (ZNF148)-activated MALAT1 upregulates

ZNF148 levels through its competitive interaction with miR-106a-

3p, creating a positive feedback loop that further boosts

keratinocyte activity (156). Hong et al. demonstrated that the

downregulation of lncRNA XIST levels suppresses the

proliferation and migration of HG-induced HaCaT cells through

the miR-126-3p/EGFR pathway (157).

A significant elevation in the expression of circulating lncRNA

NEAT1 was observed in individuals with T2DM, exhibiting a 5.28-

fold increase compared to healthy subjects (158). LncRNA NEAT1

plays a crucial regulatory role in various diabetes-related

complications, including diabetic retinopathy, diabetic

nephropathy, and impaired wound healing associated with

diabetes. The study by Yang et al. revealed that NEAT1 can

modulate SOX4, thereby influencing the EMT in diabetic

retinopathy through its interaction with miR-204. This finding

offers a novel perspective and potentially identifies a valuable

therapeutic target for addressing diabetic retinopathy (159).

Furthermore, the study by Wang et al. demonstrates that lncRNA

NEAT1 plays a significant role in the pathogenesis of diabetic

nephropathy by modulating extracellular matrix proteins and

EMT through the miR-27b-3p/ZEB1 axis (160). Complementary

research has demonstrated the capacity of NEAT1 to promote

diabetic nephropathy progression via activation of the Akt/mTOR

signaling pathway. Considering these findings in conjunction with

our results, NEAT1 holds significant potential as both a diagnostic

biomarker and a therapeutic target in the management of diabetic
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nephropathy (161). The key lncRNAs in diabetic wound healing are

systematically summarized (Table 2, Figure 3).
5 Circular RNAs

CircRNAs, identified as key regulators of cell proliferation,

metabolism, apoptosis, and inflammation, present as closed loops

without poly A tails (162), establishing their significant involvement

in diseases such as diabetes, cardiovascular disease, neurological

disorders, and autoimmune disease (163–165). The primary roles of

circRNA include serving as transcriptional regulators, functioning

as miRNA sponges, acting as biomarkers for clinical diagnosis and

treatment, and interacting with RNA-binding proteins (166–168).

Circ-Snhg11 has been identified to have regulatory effects at

various stages of diabetic wound healing. Tang et al. demonstrated

that circ-Snhg11 in BMSC-Exos improves angiogenesis and

promotes diabetic wound healing by targeting miR-144-3p and

enhancing SLC7A11/GPX4-mediated anti-ferroptosis signals (169).

Furthermore, it was found that increasing levels of circ-Snhg11

counteracts the impaired function of EPCs and enhances M2

macrophage polarization under HG conditions. The study

suggests that the upregulation of circ-Snhg11 inhibits ECs

damage and promotes M2 macrophage polarization through the

miR-144–3p/HIF-1a/VEGF pathway (170). Yin et al. demonstrated

that circRps5, carried by ADSCs, promotes diabetic wound healing

in diabetic mice by modulating macrophage polarization.

Furthermore, miR-124-3p has been identified as a downstream

target of circRps5. Thus, circRps5 delivered by ADSC-derived

exosomes enhances M2 polarization, thereby facilitating diabetic

wound healing through the regulation of miR-124-3p (171).

EPCs play a vital role in diabetic wound healing by proliferating

and differentiating to form new blood vessels at sites of injury.

However, a high glucose environment leads to EPC dysfunction,

and multiple studies have found that circRNAs impact the

regulation of EPC functions (172). The study by Shang et al.

found that hypoxic pretreatment of EPCs promotes their survival

and enhances diabetic wound healing by increasing autophagy

through the overexpression of circ-Klhl8. MiR-212-3p was

identified as the target of circ-Klhl8, and the downregulation of

miR-212-3p promotes SIRT5 expression, thereby facilitating

diabetic wound healing (173). In vitro, experiments have shown

that exosomes derived from circ-Astn1-modified ADSCs play

crucial roles in restoring the function of EPCs by reducing

apoptosis under HG conditions. Furthermore, Wang et al.

demonstrate that circ-Astn1 in ADSC-derived exosomes

promotes diabetic wound healing by targeting miR-138-5p and

upregulating SIRT1, which in turn decreases FOXO1 expression

(174). mmu_circ_0000250 was also found to regulate EPC

functions. Exosomes derived from mmu_circ_0000250-modified

ADSCs plays a crucial role in restoring EPC function by

activating autophagy, targeting miR-128-3p, and increasing SIRT1

levels (175). Tang et al. demonstrated that both exosomes from

ADSCs and those from hypoxic pretreated ADSCs promote wound

healing in diabetic mice, however, the exosomes from hypoxic

pretreated ADSCs exhibit a greater therapeutic effect, with circ-
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Erbb2ip playing a significant role in this process. Bioinformatics

analyses indicated that miR-670-5p is a target of circ-Erbb2ip, and

further revealed that Nrf1 is a downstream target of miR-670-5p.

These findings suggest that exosomes derived from hypoxic

pretreated ADSCs enhance diabetic wound healing by delivering

circ-Erbb2ip, which activates the miR-670-5p/Nrf1 signaling

pathway. This pathway, in turn, reduces ROS levels and
Frontiers in Endocrinology 12
inflammatory cytokine expression while restoring the angiogenic

function of EPCs (176).

Multiple studies have introduced the roles of circRNAs in the

regulation of keratinocyte functions. Levels of circRNA-080968

were observed to be considerably elevated in DFUs samples

relative to skin from diabetic patients without DFUs.

Additionally, it was discovered that circRNA-080968 inversely
TABLE 2 Role of lncRNAs in the regulation of diabetic wound healing.

lncRNAs Expressions Animal models Regulation mechanisms References

lncRNA
H19

Significantly decreased
in diabetic wounds
compared to
normal wound

1) Mice were intraperitoneally injected with STZ solution (140
mg/kg, dissolved in 0.1 M sodium citrate buffer) and HF diet
for an additional four weeks. Full-thickness excisional wound
measuring 0.8 cm × 0.8 cm on the dorsal skin of each mouse
2) Male mice were intraperitoneally injected with 0.45% STZ.
Full-thickness wounds (10 mm diameter) were made on the
back
3) For inducing T2D mice were maintained on a high-fat diet
for 12 weeks, and the dorsal skin at the midline of the mouse
shoulder was excised for a full-thickness wound with a 6 mm
biopsy punch
4) Mice were rendered diabetes by intraperitoneally injected of
0.45% STZ.
5) 0.45% STZ diluted by 0.1 mmol/L sterile sodium citrate
buffer solution (45 mg/kg) was injected intraperitoneally to the
rats. A mark (6 mm × 6 mm) was created on foot of rat with a
sterile perforator, and the whole skin of the mark was excised
6) Adult male mice between 4 and 6 weeks old

1) Promotes the proliferation and
migration of HaCaT cells by suppressing
the activation of the NLRP3
inflammasome
2) Suppresses apoptosis, promotes the
proliferation and migration of fibroblasts
by interacting with miR-152-3p via
PTEN-mediated PI3K/AKT signaling
pathway
3) Promotes dermal fibroblast
proliferation and macrophage infiltration
by repressing fibroblast derived GDF15
4) Promotes the proliferation and
migration of fibroblasts by binding miR-
29b and upregulating FBN1.
5) Promotes fibroblast proliferation,
ECM remodeling an angiogenesis by
recruiting SRF and elevating CTGF levels
6) Promotes M2 polarization by targeting
miR-130b-3p and regulating
PPARg/STAT

1) (145)
2) (206)
3) (146)
4) (148)
5) (147)
6) (133)

lncRNA
GAS5

Downregulated in
diabetic skin.

1) Diabetes was induced in mice by administering STZ (50 mg/
kg) every other day.
2 Diabetes was induced by the intraperitoneal administration
of STZ (45 mg/kg body weight in 0.1 M citrate buffer, pH 4.5)
for five consecutive days. 3 mm × 4 mm wounds on the dorsal
surface of the foot of each mouse
3) Genetically diabetic mice were given a full-thickness dorsal
wound using an 8-mm punch biopsy

1) Promotes lymphangiogenesis by
sponging miR-217 and up-regulating
Prox1
2) Promotes HUVEC functions thereby
enhances angiogenesis by binding to
TAF15 and activating the HIF1A/VEGF
3) Inhibition of GAS5 promotes
M2 polarization

1) (207)
2) (140)
3) (134)

MALAT1 Upregulated in diabetic
mouse wounds
compared to non-
diabetic wounds

1) Healthy mice fed with a high-glucose and high-fat diet for 4
weeks and intraperitoneally injected with 0.45% STZ. Full-
thickness wounds (10 mm diameter)
2) Genetically diabetic mice. A single dorsal full-thickness
wound was made with an 8 mm punch biopsy

1) Promotes M2 polarization by
suppressing miR-1914-3p to activate
MFGE8
2) MALAT1 decreased TGF-b1-induced
EMT in HaCaT cells.

1) (135)
2) (153)

lncRNA
ANRIL

Downregulated in
peripheral blood
samples of DFU
patients, and in skin
tissues of DFU mice

Mice were administered STZ (45 mg/kg) intraperitoneally for 5
days. Full-thickness wounds (10 mm diameter) were made on
the back of feet

Promotes angiogenesis by modulating
HIF1A/VEGFA

(141)

lncRNA
CASC2

Poorly expressed in
wound tissues of
DFU patients

Mice received an intraperitoneal injection of STZ (50 mg/kg).
The skin of the mice feet (4 cm2) was removed

Promotes fibroblasts migration,
proliferation, and inhibited apoptosis
through miR-155/HIF-1a pathway

(152)

lncRNA
XIST

Reduced in the skin
tissues of rats with
diabetic ulcers

Rats were injected with 1% STZ (40 mg/kg) after being fed a
high-sugar and high-fat diet for one month

Promotes proliferation and migration of
HaCaT cells miR-126-3p/EGFR pathway

(157)

lnc-URIDS Upregulated in Diabetic
Skin and Dermal
Fibroblasts Treated
With AGEs

Rats were intraperitoneally injected with 60 mg/kg STZ and
allowed to manifest hyperglycemia for 4 weeks before making a
cutaneous wound

Dysregulates collagen production by
targeting PLOD1

(208)

lncRNA
SNHG16

Increased in DFU
tissue samples

N/A Inhibition of lncRNA SNHG16 promotes
proliferation and migration of HDF by
Sponging miR-31-5p

(93)
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affects the expressions of miR-326 and miR-766-3p by facilitating

their breakdown, which in turn suppresses keratinocyte migration

and promotes cell proliferation in DFUs (177). The levels of

Circ_PRKDC at the wound edge were found to decrease

significantly both 1 day and 7 days after the injury occurred. In

vitro studies indicated that circ_PRKDC inhibits human epidermal

keratinocyte (HEKs) migration by targeting and reducing miR-31

levels in keratinocytes, with FBN1 being a target of miR-31.

Considering the role of FBN1 in promoting apoptosis and

inhibiting fibroblast proliferation, it contributes to slower healing

in DFU. Han et al. concluded that circ_PRKDC inhibition enhances

wound healing by stimulating keratinocyte migration through the

miR-31/FBN1 pathway (178). It was initially discovered that

hsa_circ_0084443 expression was elevated in DFU, compared to

normal wounds, and that this circRNA inhibits keratinocyte

migration but promotes their proliferation through various gene

regulatory networks (179). Huang et al. demonstrated that

circCDK13 is a promising therapeutic agent for diabetic wound

healing. They found that circCDK13 cooperates with IGF2BP3, and

together they synergistically promote the proliferation and
Frontiers in Endocrinology 13
migration of human dermal fibroblasts and HEKs by enhancing

the expression of c-MYC and CD44. Furthermore, to maximize the

potential application of circCDK13 in wound healing and tissue

regeneration, a delivery method was established. CircCDK13 loaded

into small EVs promotes the proliferation and migration of human

dermal fibroblasts and HEKs in vitro and accelerates diabetic

wound healing in db/db diabetic mice (180).

Meng et al. demonstrated that by competitively binding hsa-

miR-1273h-5p, hsa_circ_0008500 effectively neutralizes its ability

to suppress ETS transcription factor ELK1 (ELK1) expression,

playing a crucial role in inhibiting the apoptosis of ADSCs (181).

Another study by Meng et al. investigated that circARHGAP12

promotes autophagy against MSC apoptosis under HG conditions

by targeting miR-301b-3p and boosting the levels of autophagy-

related 16-like 1 (ATG16L1) and unc-51 like autophagy activating

kinase 2 (ULK2), thereby facilitating diabetic wound healing (182).

Chen et al. demonstrated that exosomes overexpressing circ-ITCH

promote wound healing in DFUs mice by alleviating ferroptosis and

promoting angiogenesis in HG-treated HUVECs by recruiting

TAF15 and activating the Nrf2 (183). Exosomal circHIPK3 has
FIGURE 3

Role of lncRNAs in main phases of diabetic wound healing. The lncRNAs depicted include H19, MALAT1, GAS5, HOTAIR, ANRIL, and KLF3-AS1. H19
participates in all phases of wound healing. It promotes inflammation through the regulation of the PPARg/STAT3 pathway. In angiogenesis, H19
regulates PI3K-Akt signaling. H19 enhances the proliferation and migration of keratinocytes and inhibits pyroptosis by suppressing the activation of
NLRP3. Conversely, H19 can also inhibit keratinocyte proliferation and migration by targeting miR-17-5p and upregulating RUNX1. MALAT1 promotes
an anti-inflammatory response by targeting miR-1914-3p and activating MFGE8. Additionally, MALAT1 regulates the EMT in keratinocytes through
the regulation of TGFb1-induced EMT. GAS5 induces STAT1 to promote M1 macrophage activation, while its reduction favors M2 macrophage
polarization and benefits wound healing. It also promotes angiogenesis by activating the HIF1A/VEGFA pathway. HOTAIR, ANRIL, and KLF3-AS1 are
primarily involved in promoting angiogenesis: HOTAIR activates VEGF to enhance angiogenesis, ANRIL modulates the HIF1A/VEGFA pathway, and
KLF3-AS1 promotes angiogenesis by targeting miR-383 and upregulating VEGFA expression. Long non-coding RNAs (lncRNAs); extracellular matrix
(ECM); milk fat globule-EGF factor 8 protein (MFGE8); peroxisome proliferator-activated receptor gamma/Signal transducer and activator of
transcription 3 (PPARY/STAT3); Signal transducer and activator of transcription 1 (STAT1); hypoxia-inducible factor 1-alpha/Vascular endothelial
growth factor A (HIF1A/VEGFA); Phosphatidylinositol-3 Kinase-AKT (PI3K-Akt); Vascular endothelial growth factor (VEGF); Transforming growth
factor beta 1/Epithelial-mesenchymal transition (TGF-b1/EMT); NOD-like receptor family pyrin domain-containing 3 (NLRP3).
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been identified as advantageous for healing diabetic wounds by

enhancing angiogenesis through the miR-20b-5p/Nrf2/VEGFA

pathway (184).

The study by Yang et al. initially discovered that delivering circ-

Amotl1 enhances wound healing in mice. Furthermore, circ-

Amotl1 was found to enhance wound healing by facilitating cell

proliferation, survival, and migration through the enhanced nuclear

translocation of Stat3. Stat3 then binds to the DNA

methyltransferase 3A (Dnmt3a) promoter, reducing miR-17-5p

expression but upregulating fibronectin levels. The decreased

levels of miR-17-5p enhanced the expression of various proteins,

which facilitates cell proliferation and migration, thereby

accelerating wound repair (185). Table 3 below highlights key

circRNAs involved in diabetic wound healing.
Frontiers in Endocrinology 14
6 Limitations and perspectives

This article has reviewed the roles of different classes

of ncRNAs, including miRNAs, lncRNAs, and circRNAs,

in diabetic wound healing. The detailed examination of

these ncRNAs highlights their impact on the regulation of

critical processes such as inflammation, angiogenesis, re-

epithelialization, and extracellular matrix remodeling, which are

important for effective wound repair, particularly in diabetes

conditions, where the healing process is widely slow and often

incomplete. While most current research studies have investigated

the potential mechanisms by which ncRNAs influence diabetic

wound healing, several limitations in these studies necessitate

further investigation.
TABLE 3 Role of circRNAs in the regulation of diabetic wound healing.

circRNAs Expressions Animal models Regulation mechanisms References

circ-Snhg11 Decreased in EPCs under
HG conditions

1) Mice were injected an intraperitoneal injection
regarding 60 mg/kg in STZ dissolved in 0.1 M citrate
buffer, pH 4.5
2) Mice were injected with a single intraperitoneal
injection of 60 mg/kg STZ dissolved in 0.1 M citrate
buffer. Both had 4 mm full-thickness
excisional wound

1) Promotes M2 polarization through
miR-144–3p/HIF-1a/VEGF
2) Targets miR-144-3p and enhances
SLC7A11/GPX4-mediated anti-
ferroptosis signals and
improves angiogenesis

1) (170)
2) (169)

circ-ITCH Downregulated in in vitro and
in vivo models of DFU

Mice were injected with STZ (45 mg/kg in 0.1 M
citrate buffer, pH 4.5), and a square wound (1 × 1
cm) was created on the dorsal surface of the foot

Inhibits ferroptosis and improves
angiogenesis of HUVECs by
upregulating TAF15 and activating the
Nrf2 pathway.

(183)

circ_0080968 Significantly higher in DFU
samples compared to skins
from non-DFU diabetic
patients and normal
human wounds

N/A Inhibits wound healing by targeting
miR-326 and miR-766-3p, which
further represses the migration and
increases the proliferation
of keratinocytes

(177)

hsa_circ_0084443 Upregulated in DFU
compared to normal wounds

N/A Negatively regulates
keratinocyte migration

(179)

circ-Klhl8 Hypoxic pretreatment
promoted circ-Klhl8
expression in EPCs

Mice were injected with STZ (60 mg/kg in 0.1 M
citrate buffer, pH 4.5), and a 4 mm full-thickness
excisional wound was created on the dorsal skin

Increases the EPC therapeutic effect by
targeting miR-212-3p and promoting
SIRT5 expression

(173)

circARHGAP12 Reduction in MSCs treated
with HG

Mice with Type 1 diabetes had skin wounds of 1.2 cm
in diameter.

Enhances MSC autophagy to protect
MSCs against apoptosis by promoting
the expression of ATG16L1 and ULK2
by targeting miR-301b-3p

(182)

circ-Astn1 Increased in ADSC exosomes
compared with exosomes
from fibroblasts

Diabetes was induced in mice through a single
intraperitoneal injection of 60 mg/kg STZ dissolved in
0.1 M citrate buffer (pH 4.5), and a 4 mm full-
thickness excisional wound was created on the
dorsal skin

Restoring the function of EPCs by
reducing apoptosis under
HG conditions

(174)

circHIPK3 Upregulated in type 2
diabetes mellitus

Diabetes was induced in mice through an injection of
100 mg/mL STZ into mice at 200 mg/kg

Promotes Angiogenesis of HUVECs
by targeting miR-20b-5p and
upregulating Nrf2 and VEGFA

(184)

hsa_circ_0008500 Downregulated under
high glucose

N/A Suppresses apoptosis in ADSCs by
targeting hsa-miR-1273h-5p to
neutralize its ability to
suppress ELK1expression

(163)

circ_PRKDC Downregulated 1.2-fold 1 day
(the inflammatory phase) and
3.4-fold 7 days post wounding
(the proliferative phase)

N/A Inhibition of circ_PRKDC promotes
keratinocyte migration through miR-
31/FBN1 pathway

(178)
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Current research mostly focuses on miRNAs, with relatively less

attention given to circRNAs, lncRNAs, and other types of ncRNAs.

This imbalance might limit our understanding of unique biological

functions that these lesser studied ncRNAs could have in wound

healing for diagnosis and clinical applications.

Similarly, while much of the existing research has concentrated

on fibroblasts, keratinocytes, and ECs, there is a need for more

comprehensive studies on the role of immune cells. Immune cells

like lymphocytes, dendritic cells, and others significantly influence

healing outcomes by being involved in almost all key stages of

wound healing and it is important to coordinate the activities of

immune cells accurately (186). The imbalance of immune cells can

result in the degradation of the immune microenvironment (187). A

detailed exploration of ncRNAs’ roles in these immune cells could

unveil new mechanisms of immune regulation in diabetic wounds.

Another gap in current studies is the emphasis on the final effect

without exploring their specific roles in each phase of wound

healing. This gap leaves an incomplete understanding of the

temporal dynamics of ncRNAs action during the critical stages of

inflammation, proliferation, and remodeling. Conducting phase-

specific research could help identify new therapies that target these

specific phases, leading to optimized healing processes.

Finally, there is a lack of studies examining the complex

interactions among ECs, fibroblasts, keratinocytes, and immune

cells in the context of ncRNAs mediation. Understanding how

ncRNAs facilitate or impair cell-cell communication and

coordination in wound environments could offer valuable insights

into the mechanisms of wound healing. Despite these limitations,

the research into ncRNAs offers considerable potential for

improving the treatment of DFUs. Here we outline several future

perspectives that not only address these challenges but also lay the

foundation for major advancements in this field.

The application of ncRNAs as biomarkers for diabetic wound

healing offers a promising frontier for early diagnosis and

prognosis. Prospective studies designed to validate specific

ncRNAs as reliable biomarkers could lead to the development of

predictive tools for wound healing success or failure. Among

ncRNAs, circRNAs are particularly promising due to their unique

closed-loop structure, which, unlike linear ncRNAs, provides

enhanced stability and resistance to exonucleases (188). Future

studies should not only validate ncRNAs in retrospective settings

but also prospective analyses. This approach could accelerate the

research process, enabling quicker integration of ncRNA

biomarkers into clinical practice, thereby enhancing diagnostic

accuracy and patient management strategies.

Beyond their potential as biomarkers, ncRNAs also hold

promise as therapeutic agents in diabetic wound healing. While

current treatments for diabetic wound healing exist, ncRNA-based

therapies hold promise for more precisely targeted intervention

strategies. By selectively regulating gene expression, ncRNAs can

potentially accelerate wound repair and reduce the risk of

complications, offering an innovative approach to diabetic

wound care.

Recent advancements in nanomedicine have greatly improved

the stability, targeting precision, and therapeutic efficacy of

exogenous ncRNAs in wound healing. Nanoparticle-based
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delivery systems, such as lipid nanoparticles and polymer-based

carriers, protect ncRNAs from enzymatic degradation, enhancing

their stability, bioavailability, and longevity in the bloodstream

(189). Functionalized nanoparticles with specific ligands improve

targeting efficiency by directing ncRNAs to wound-specific cells like

fibroblasts and keratinocytes, thereby enhancing therapeutic

outcomes. Additionally, engineered nanoparticles provide

controlled, sustained release of ncRNAs, enabling precise

regulation of molecular pathways involved in inflammation,

angiogenesis, and tissue repair (190). Addressing off-target effects

remains a critical consideration in the development of effective

miRNA-based therapies, and these recent advances not only

accelerate wound healing but also address challenges like off-

target effects and long-term safety concerns. Ongoing research is

focused on improving nanoparticle biocompatibility and

developing condition-responsive systems for more precise ncRNA

delivery in clinical applications (191).

While delivering ncRNAs through various pathways can lead to

both upregulation and downregulation of ncRNA expression in

diabetic wounds, the regulation of endogenous ncRNAs is highly

complex and influenced by various metabolic abnormalities.

Hyperglycemia in diabetic patients causes an overproduction of ROS,

leading to oxidative stress (19, 192). This condition significantly

impacts the expression of ncRNAs, particularly those involved in

inflammatory responses and tissue repair. For example, in diabetic

wounds, hyperglycemia-induced oxidative stress triggers an

unregulated and prolonged unfolded protein response (UPR),

resulting in a deficiency of inositol-requiring enzyme 1 (IRE1a),
which is a key transducer of the UPR that regulates the expression of

mRNAs and miRNAs. This deficiency causes an increase in the levels

of the miR-200 family and miR-466 (193). Furthermore, inflammatory

cytokines such as TNF-a and IL-6 also influence ncRNA expression,

further complicating the regulatory processes (194). In addition to

metabolic factors, infections are another significant factor that can

regulate the expression of endogenous ncRNAs. The presence of

pathogens can induce inflammatory responses, leading to alterations

in ncRNA expression patterns (195, 196).

However, to turn this potential into reality, more clinical trials are

needed. The limited number of clinical trials testing ncRNAs

therapies underscores a significant gap in extensive clinical

investigation. To advance the field, future research should focus on

translating preclinical findings into clinical trials that evaluate the

therapeutic efficacy and safety of ncRNA-based interventions. These

trials should be comprehensive, involving multi-center collaborations

to ensure a diverse patient cohort, with long-term follow-ups to assess

both the safety and effectiveness of these therapies. By addressing

these aspects, clinical trials can bridge the gap between experimental

research and real-world medical applications.
7 Conclusion

The significance of ncRNAs in the diabetic wound healing

process cannot be overstated. Through our comprehensive review,

we have underscored the importance of miRNAs, lncRNAs, and

circRNAs in diabetic wound healing. NcRNAs serve as crucial
frontiersin.org

https://doi.org/10.3389/fendo.2024.1465975
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aghayants et al. 10.3389/fendo.2024.1465975
regulators, modulating critical aspects, such as inflammation,

angiogenesis, re-epithelialization, and ECM remodeling. Our

analysis highlights the impact of ncRNAs on the activities of

fibroblasts, ECs, and keratinocytes, which are central players in

wound healing through regulating protein interactions and

signaling pathways.

The integration of ncRNAs into clinical practice holds immense

promise, leveraging their diagnostic and therapeutic potential. The

diagnostic potential of ncRNAs as biomarkers for diabetic wounds

and related conditions offers early detection and personalized

treatment options. Furthermore, exploring the therapeutic

potential by silencing or activating ncRNAs could lead to novel

interventions that enhance diabetic wound healing outcomes.
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Glossary

(ECM) Extracellular matrix
Frontiers in Endocrino
(FGF) fibroblast growth factors
(ROS) reactive oxygen species
(ECs) endothelial cells
(VEGF) vascular endothelial growth factor
(VEGFA) Vascular Endothelial Growth Factor A
(DFUs) diabetic foot ulcers
(IDF) International Diabetes Federation
(ncRNAs) non-coding RNAs
(miRNAs) including microRNAs
(lncRNAs) long non-coding RNAs
(circRNAs) circular RNAs
(piRNAs) piwi-interacting RNAs
(snoRNAs) small nucleolar RNAs
(3’-UTR) three prime untranslated regions
(mRNAs) messenger RNAs
(DM) diabetes mellitus
(T2DM) Type 2 diabetes mellitus
(NETs) neutrophil extracellular traps
(HUVECs) Human Umbilical Vein endothelial cells
(GDF6) targeting growth differentiation factor 6
(NF-kB) nuclear factor-kappa B
(IRAK1) interleukin-1 receptor-associated kinase 1
(CNP) cerium oxide nanoparticles
(SFP) silk fibroin patch
(TNF-a) Tumor Necrosis Factor-Alpha
(IL-1b) Interleukin-1 beta
(IL-6) Interleukin-6
(TRAF6) tumor necrosis factor receptor-associated factor 6
(PAK7) p21-Activated Kinase 7
(EVs) extracellular vesicles
(CDKN1A) cyclin-dependent kinase inhibitor 1A
(PDGFD) platelet-derived growth factor D
(ICAM-1) intercellular adhesion molecule 1
(LPS) lipopolysaccharide
(PTEN) phosphatase and tensin homolog
(PDCD4) programmed cell death 4
(DYRK1A) dual-specificity tyrosine-phosphorylation-regulated

kinase 1A
(hTERT) human telomerase reverse transcriptase
(IkB) inhibitor of NF-kappa-B
(SOCS3) suppressor of cytokine signaling 3
(EGF) epidermal growth factor
(HIP1) huntingtin interacting protein 1
(IGF2) insulin-like growth factor 2
(RASSF2) Ras association domain-containing protein 2
(ROCK1) Rho-associated protein kinase 1
logy 21
(CITED2) Cbp/p300-interacting transactivator 2
(HIF-1) hypoxia-inducible factor 1
(HIPK2) homeodomain-interacting protein kinase 2
(THBS1) thrombospondin 1
(NOTCH1) neurogenic locus notch homolog protein 1
(HIF1AN) hypoxia-inducible factor 1-alpha inhibitor
(STARD13) StAR-related lipid transfer protein 13
(SPARC) secreted protein acidic and rich in cysteine
(SDF-1a) stromal cell-derived factor 1-alpha
(PIK3R3) phosphoinositide-3-kinase regulatory subunit 3
(CYP1B1) cytochrome P450 1B1
(MeCP2) methyl-CpG-binding protein 2
(STZ) streptozotocin
(db/db) diabetic mice
(Flk-1) fetal liver kinase 1
(IGF1R) insulin-like growth factor 1 receptor
(NFIC) nuclear factor I/C
(MAPKAPK2) mitogen-activated protein kinase-activated protein kinase 2
(MMP1) matrix metalloproteinase-1
(FN1) fibronectin 1
(SPRY1) sprouty homolog 1
(NOVA1) neuro-oncological ventral antigen 1
(MMP-9) matrix metalloproteinase-9
(Sp1) specificity protein 1
(ADSC) adipose-derived stem cells
(HG) high glucose
(MFGE8) milk fat globule-EGF factor 8 protein
(NOX2) NADPH oxidase 2
(EMNVs) extracellular vesicle-mimetic nanovesicles
(Es) endothelial progenitor cells
(TAF15) TATA-binding protein-associated factor 15
(NLRP3) NOD-like receptor family pyrin domain-containing 3
(GDF15) growth differentiation factor 15
(APCs) antigen-presenting cells
(CTGF) connective tissue growth factor
(FBN1) fibrillin-
(Smad3) Mothers against decapentaplegic homolog 3
(TGF-b1) transforming growth factor beta 1
(FN) fibronectin
(SOX9) SRY-related high-mobility-group box 9
(EZH2) enhancer of zeste homolog 2
(c-Myc) transcription factor
(EMT) epithelial-mesenchymal transition
(ZEB1) Zinc Finger E-box Binding Homeobox 1
(Nrf2) nuclear factor erythroid 2-related factor 2
(ZNF148) zinc finger protein 148
(ELK1) ETS transcription factor ELK1
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(FBN) fibrillin
Frontiers in Endocrino
(ELK1) ETS transcription factor ELK1
(ATG16L1) autophagy-related 16-like 1
(ULK2) unc-51 like autophagy activating kinase 2
logy 22
(Dnmt3a) DNA methyltransferase 3A
(HEKs) human epidermal keratinocyte
(UPR) unfolded protein response
(IRE1a) inositol-requiring enzyme 1
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