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and Carsten Carlberg4,5†

1Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of
Warmia and Mazury in Olsztyn, Olsztyn, Poland, 2Institute of Oral Biology, Faculty of Dentistry,
University of Oslo, Oslo, Norway, 3Department of Human Physiology and Pathophysiology, School of
Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 4Institute of Animal
Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland, 5School of Medicine,
Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth

factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2).

From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the

23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a

critical role in regulating gonadotropin secretion, ovarian tissue responsiveness

to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It

inhibits the transition from primordial to primary follicles and is considered the

best marker of ovarian reserve. Therefore, measuring AMH concentration of the

hormone is valuable in managing assisted reproductive technologies. AMH was

initially discovered through its role in the degeneration of Müllerian ducts in male

fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it

has also garnered interest in oncology. For example, antibodies targeting AMHR2

are being investigated for their potential in diagnosing and treating various

cancers. Additionally, AMH is present in motor neurons and functions as a

protective and growth factor. Consequently, it is involved in learning and

memory processes and may support the treatment of Alzheimer’s disease. This

review aims to provide a comprehensive overview of the biology of AMH and its

role in both endocrinology and oncology.
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1 Introduction

AMH, also known as a Müllerian inhibiting factor or Müllerian inhibiting substance,

has a mani-fold and complex effect on the development and the function of a variety of

human tissues. AMH is a glycoprotein belonging to the transforming growth factor beta

(TGFb) superfamily (1). This family of signaling proteins includes 32 other peptides, such
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as activins, inhibin A and B, bone morphogenic factors (BMPs) and

growth differentiation factors (GDFs) like myostatin (2, 3). The

AMH protein composed of a N-terminal prodomain and a C-

terminal growth factor (GF) domain (Figure 1), which is encoded by

a gene consisting of 5 exons and 4 introns, located on the short arm

of human chromosome 19 (4). The regulatory regions of the AMH

gene contain binding sites for multitude of transcription factors,

such as SOX9 (SRY-box transcription factor 9) and NFkB (nuclear

factor kappa B) (5, 6).

There are seven type 1 and five type 2 receptors for all 33

members of TGFb superfamily (5, 7). AMH is binds exclusively to

the type 2 receptor - AMHR2 (8). Therefore, only cells expressing

AMHR2 are able to respond to direct AMH stimulation (9). The

AMHR2 protein is encoded by a gene located on the long arm of

human chromosome 12, comprising 11 exons and 10 introns. The

first three exons encode the extracellular domain, the fourth exon

the transmembrane domain, while the remaining seven exons

encode the intracellular serine/threonine kinase domain (10). The

AMHR2 gene responds to similar regulatory signals as the AMH

gene (5). Due to the orientation of the N-terminus to the

extracellular space, AMHR2 is classified as a type 1 membrane

protein (11). After ligand binding, AMHR2 acts as a

transmembrane serine-threonine kinase and activates AMH type

1 receptors (5, 11, 12) (Figure 1). The latter are signal enhancement

molecules, which also exhibit serine-threonine kinase activity. The

AMH signaling pathway uses three types of activin receptor-like

kinases (ALKs), ALK2, ALK3, ALK6, in different types of tissues,

with ALK2 and ALK3 acting as positive regulators in signal

transduction and ALK6 mainly as an inhibitor (5, 12–14). The

AMH-AMHR2-ALK complex phosphorylates regulatory members

of the SMAD (SMA- and MAD-related protein) family, SMAD 1, 5
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and 8, which after translocating to the nucleus, they regulate

together with SMAD4 and other supporting transcription factors

the expression of AMH target genes (3, 5, 12, 15, 16).

Multiple studies indicated that AMH is expressed in Sertoli cells

of the testes, granulosa cells (GCs) of the ovaries (preantral and

small antral follicles), the endometrium of women in the

reproductive age, motoneurons, gonadotropin-releasing hormone

(GnRH) neurons and the hippocampus as well as in endometrial

cancer (EC), sex cord-stromal tumors and granulosa cell tumors

(17–24). In addition, traces of AMH are found in skeletal muscles,

the sciatic nerve, the spinal cord and the mouse brain (23). In vitro

studies and animal models revealed that AMH induces cell cycle

inhibition and apoptosis in some cancer cell lines (25–27).

Moreover, AMH also shows an additive or synergistic effect in

combination with typical chemotherapeutic agents in serous

ovarian cancer cells that express AMHR2 (28). A large number of

reports found AMHR2 expression in cells of the Müllerian ducts,

ovarian follicles (preantral and small antral), the pituitary gland, the

hypothalamus, the endometrium, the adrenal glands, lactiferous

ducts, Leydig cells, the prostate, motor neurons, the hippocampus

and some of the human cancers that include endometrial, ovarian,

prostate, breast, and cervix (21, 23, 25–27, 29–36). Based on the

epithelial-mesenchymal transition (EMT) process, AMHR2 could

be expressed also in some solid tumors (29, 37–39). So far, AMHR2

expression has been confirmed, among others, in non-small cell

lung cancer and ocular melanoma (29, 40).

The publicly available dataset (https://gtexportal.org) of the

GTEx (Genotype-Tissue Expression) project is the gold standard

for comparing tissue-specific gene expression (41). Based on 54

tissues obtained from 948 post-mortem donors the expression of

the AMH gene is highest in testis, pituitary gland and cerebellum,
FIGURE 1

Principles of AMH signaling. Dimeric AMH peptides activate the receptor AMHR2, which then together with ALKs activate the regulatory SMAD
proteins 1, 5 and 8. The latter translocate to the nucleus and act together with SMAD4 and other supporting transcription factors (TFs) as regulators
of the expression of AMH target genes.
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but most other investigated tissues also show some expression of the

gene (Figure 2A). In contrast, the expression of the AMHR2 gene is

far more restricted to adrenal gland, ovary, testes, spleen and

pancreas (Figure 2B).

The serum concentration of AMH in healthy women of the

reproductive age is in the range of 1.5-4.0 ng/mL (42). Tumors

originating from sex cord cells and ovarian GCs produce AMH and

in those cases the serum concentration often exceeds the reference

value up to 1000 times (17, 43) (Figure 3). For example, a AMH

concentration of 3205 ng/mL was found in a patient diagnosed with

metastatic sex cord tumor (17). It is worth emphasizing here that

there are several commercial laboratory tests (kits) for assessing

AMH concentration. They differ significantly in sensitivity, intra-

assay and inter-assay variation coefficient (44). Hence, when

interpreting AMH test results in different studies or meta-

analyses, it is worth considering which ELISA (enzyme-linked

immunosorbent assay) kit was used (44). This is also clinically

important, for example when comparing AMH rate of change. It

would be best to do this with the same laboratory test. Decreasing

AMH levels are the evidence of the effectiveness of treatment in this
Frontiers in Endocrinology 03
type of cases (Figure 3). Interestingly, increased levels of AMH do

not cause any toxic effects (45). For this reason, it is postulated that

AMH has a remarkably beneficial profile and may be useful in the

treatment of tumors expressing AMHR2 (45). The aim of this

narrative review is to systematize knowledge about the expression of

AMH and AMHR2 in various tissues, in order to gather

information on the mechanism of action of AMH in physiological

and various medical conditions, especially concerning

malignant tumors.
2 Methods

A literature review on the discussed topic was conducted by

searching for keywords/phrases in publicly available databases as:

PubMed, Google Scholar, ScienceDirect. Those keywords included:

“anti-Müllerian hormone receptor type 2,” “AMHRII” or

“AMHR2,” “anti-Müllerian hormone receptor type 1, “anti-

Müllerian hormone,” “AMH,” “MIS”, “anti-Müllerian hormone

and cancer,” “anti-Müllerian hormone and PCOS,” “anti-
FIGURE 2

Gene expression based on data of the GTEx project. Expression of the genes AMH (A) and AMHR2 (B) in 54 different human tissues. Normalized RNA
sequencing data are shown in TPM (transcripts per million), where all isoforms were collapsed into a single gene. Box plots display the median as
well as 25th and 75th percentiles. Points indicate outliers that are 1.5 times above or below interquartile range. Data are based on GTEx analysis
release V8 (dbGaP Accession phs000424.v8.p2).
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Müllerian hormone and endometriosis,” “anti-Müllerian hormone

and ovarian function,” “anti-Müllerian hormone and pituitary

gland function” “anti-Müllerian hormone and hypothalamus”,

“anti-Müllerian hormone and artificial reproductive technology”,

“anti-Müllerian hormone and menopause”. Only articles in English

and Polish were taken into account. Additionally, publications were

searched for manually on the basis of references provided in the

selected papers. The data analyzed came from published articles and

a chapter of one book regarding the main theme and related topics.
3 AMH in fetal life, childhood
and puberty

Mammals bi-directionally differentiate their reproductive organs

during early embryonic development. The Müllerian ducts give rise

to the upper third of the vagina, the cervix, the body of the uterus,

uterine tubes and the ovarian tunica albuginea (25). The Wolffian

ducts differentiate into seminal vesicles, the vas deferens and the

epididymis (46). The genesis of one set of ducts, along with the

atrophy of the other, is controlled by hormones AMH and

testosterone. In female embryos, the lack of testosterone is
Frontiers in Endocrinology 04
responsible for the atrophy of the Wolffian ducts. In male embryos,

the presence of AMH results in the regression of structures derived

from the Müllerian ducts (46). This process acts mainly via

intracytoplasmic accumulation of b-catenin in mesenchymal cells,

which finally activates apoptosis of type I and type II in epithelial cells

(12, 47, 48), and takes place in the cranial-caudal direction so that the

density of AMHR2 increases (47, 48). Degeneration of the Müllerian

ducts ends with EMT of epithelial cells, which previously have not

entered the apoptosis process (47, 48). The regression of Müllerian

ducts occurs in human male embryos after the 8th week of gestation

(47, 49–52) (Figure 4). In fetal life, AMH also affects other types of

cells. It can have disadvantageous effects on the maturation of type II

pneumocytes, which explains the more frequent occurrence of

respiratory distress syndrome in prematurely born male infants (53).

AMH is synthesized both in the testes and the ovaries but with a

different timing. During development of the male fetuses, AMH is

expressed in the Sertoli cells of gonads as early as 8 weeks of

pregnancy (48 days post conception) (54–56), and then it reaches

high serum values (~50 ng/mL) (45, 57). In postnatal males, the

AMH level is inversely proportional to the testosterone level (58).

Thus, AMH secretion is under negative control of testosterone,

while the expression of androgen receptor increases in Sertoli cells
FIGURE 3

The utility of the assessment of AMH concentration on the different fields of medicine. As the AMH concentration increases 2-12 times in the PCOS
women group, its level should be taken into account while diagnosing PCOS. Based on mathematical modeling of the decreasing AMH levels with
age, a concentration below 0.1 ng/mL means menopause. The AMH level enables a correct diagnosis between gonadal dysgenesis and androgen
insensitivity syndrome in 46, XY individuals with incorrect appearance of their genitalia. AMH concentration facilitates diagnostics and helps evaluate
the treatment of the cancers producing AMH. As AMH level is the best marker of ovarian reserve, it should be assessed before and after
oncotherapy, before cryopreservation and after retransplantation of ovarian tissue. Moreover, in the infertility treatment clinic the AMH level is useful
as the factor evaluating the chance of live birth and allowing the use of the appropriate dose of recombinant FSH.
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during childhood and puberty (5, 55, 59). During the first month

after birth, the AMH serum concentration increases about 1.9-fold

and within the next 11 months it still increases, yet more slowly.

Starting from the first year of life, the AMH level slowly decreases,

reaching half of its maximal value between age 6 and 8, till puberty

(60). At that point, the AMH level drops to the baseline values (57).

Male mice with elevated AMH levels simultaneously present Leydig

cell hypoplasia, decreased testosterone level and, as a consequence,

incorrect virilization (61). Conversely, mice with a null mutation of

the AMH or AMHR2 gene exhibit Leydig cell hyperplasia (62).

Since AMHR2 is expressed on the surface of Leydig cells, AMH

inhibits the production of testosterone (34, 63) (Figure 4).

In newborns or young boys possessing correct male karyotype

but presenting symptoms of incorrect virilization, the AMH level

allows the distinction of gonadal dysgenesis and androgen

insensitivity syndrome (64–66) (Figure 3). In boys with the

persistent Müllerian ducts, AMH function is compromised due to

defects or mutations within the AMH or AMHR2 gene, so its serum

level is helpful in making a correct diagnosis (64, 67, 68) (Figure 3).

Also, in individuals with a 46,XX karyotype but pathological

appearance of internal and external genitalia, AMH concentration

provides information concerning the presence of testicular tissue in

those cases (64, 69).

In female fetuses, AMH gene expression starts in GCs of

preantral ovarian follicles (35) at 36 weeks of gestation (56), and
Frontiers in Endocrinology 05
AMH proteins are not detected in the serum until the 37th week of

gestation (60). In contrast, a more recent study indicated that AMH

gene expression on GCs started from 23 weeks of gestation and

serum AMH levels are detectable in female newborns born after 25

weeks and 6 days of pregnancy (70). Precise regulation of the AMH

synthesis and its concentration is necessary to maintain proper

oocyte resources. Female mice with AMH-chronic expression

during pregnancy (at a similar level to male fetuses) had fewer

germ cells at birth than those with normal AMH levels, entirely

losing them 16 days after parturition (61). Primordial follicles of

AMH-/- mice were recruited earlier for maturation and had more

preantral and antral follicles than wild type mice, but their pool was

depleted significantly earlier (71).

Shortly after parturition, the AMH level drops and increases

again around the age of 2 years, to decline once again between the

age of 8 and 12 (72). At puberty, the AMH level increases, reaching

the baseline values and peaks at 24.5 years of age. From this point,

the AMH concentration gradually lowers to a non-detectable level

at menopause (42, 45, 72). Importantly, the concentration of AMH

does not depend on the phase of the menstrual cycle (73, 74). AMH

level in the short period of time, which is the menstrual cycle, seems

to be more or less constant. AMH is produced by several cohorts of

developing follicles at different stages of maturation in both ovaries,

which are the subject to specific cyclic regulations. However, some

researchers have noticed a dependence of AMH concentration on
FIGURE 4

Known biological function of AMH in the different types of the tissues. Details are described in the text; below are the main facts. AMH is involved in
the migration of GnRH neurons to the target site at the early stages of human embryological development. AMH is produced by Sertoli cells and
inhibits the development of Müllerian ducts. AMH synthetized by granulosa cells of the ovary negatively influences FSH action at the level of the
ovary. AMH is engaged in the apoptosis of the epithelial cells of mammary ducts after the lactation period. AMH inhibits testosterone synthesis and
positively impacts the secretion of gonadotropins under the influence of GnRH. AMH is engaged in memory and learning processes in the
hippocampus. AMH is present in motor neurons and acts as a protective and growth factor. AMH inhibits RANKL-dependent
osteoclast differentiation.
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the phase of the cycle (75). A meta-analysis conducted on 733

healthy women showed that the difference in AMH concentration

between the follicular and luteal phase is about 11.5% in favor of the

follicular phase (44). This seems to be important in the context of

preconception counselling in the infertility clinics or when planning

in vitro fertilization (IVF) procedures (44). Moreover, only GCs of

preantral and small antral ovarian follicles produce AMH and

exhibit AMHR2 (35). AMH reduces the activity of the aromatase

enzyme, and its production is inhibited by the increasing

concentration of estrogen (71, 76).

Ovarian reserve (OR) is a pool of primordial follicles (77–79),

and AMH is one of the factors to estimate the remaining OR

(Figure 3). Although AMHR2 seems not be expressed in primordial

follicles, AMH may have an autocrine effect on GCs of preantral

and small antral ovarian follicles. There was a simplified

assumption that those follicles under the influence of AMH

release factors regulating primordial follicle recruitment (71). It

has also been shown that adding AMH to ovarian tissue cells

inhibits the growth of primordial follicles (80). It turned out that

the regulation of autophagy is responsible for the recruitment of

primordial follicles. At various stages of the transformation of

primordial follicles towards the ovulatory follicle and then the

corpus luteum, autophagy plays a significant role (76). Autophagy

is a process thanks to which the cell has a chance to repair damaged

organelles, maintain homeostasis in unfavorable environmental

conditions, remove toxic compounds and possibly directs the cell

towards apoptosis (76, 81–84). Furthermore, autophagy in the

oocyte reduces oxidative stress and regulates the functionality of

the proteome (76, 85, 86). Hence, abnormal autophagy can cause

infertility (76, 87).

AMH being secreted by preantral and small antral follicles (up

to 8 mm in diameter) as a paracrine factor inhibits the transition of

primordial follicles into the primary follicle (71, 76, 88, 89). The

effect of AMH is opposite to that of other members of the TGFb
family, such as GDF and BMPs, which promote primordial follicles

transition into primary follicle (90). Phosphorylation of the

transcription factor FOXO3 (forkhead box O3) promotes the

conversion of primordial follicles into primary follicle, while

AMH inhibits FOXO3 phosphorylation and induces autophagy in

the oocyte (91) (Figure 4). However, AMH is not the only signal

controlling oocyte autophagy, which is also promoted by inhibition

of the PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/AKT

serine/threonine kinase/mammalian target of rapamycin)

resulting in increased expression of the genes MAP1LC3B

(microtubule associated protein 1 light chain 3 beta), BECN1

(beclin 1) and ATG (autophagy-related) (76, 92, 93). Interestingly,

chronic expression of AMH in early stages of female fetal

development may exercise a harmful effect on primordial follicles

leading to apoptosis via autophagy (76).
4 AMH action in the pituitary gland

There seems to be a feedback loop between the gonads and the

pituitary gland, in which AMH increases follicle-stimulating

hormone (FSH) and luteinizing hormone (LH) synthesis in the
Frontiers in Endocrinology 06
pituitary gland, while FSH reduces the production of AMH in the

ovaries (94–96) and increases in the testes (5, 6, 55, 64). In males FSH

positively controls AMH secretion by activating the AMH promoter

through phosphorylation of different transcription factors, like NFkB,
SF1 (steroidogenic factor 1) and SOX9 (5, 6, 55, 64). FSH may inhibit

AMH synthesis in ovarian GCs by increased activity of aromatase

and higher concentrations of estradiol, thus stimulating ESR2

(estrogen receptor 2) (95), but this is inconsistent with other

studies (97, 98). The discrepancies result largely from the adopted

research model, human or animal, in vivo or in vivo (98). Since

AMHR2 is prominently expressed in the pituitary gland, AMH seems

to have a regulatory role in the gland (80, 94, 99). For example, FSH

serum levels in female AMH-/- mice are significantly lower than in

wild type mice (71), while male mice with AMH overexpression had

elevated plasma levels of LH (8-fold) and FSH (1.5-fold) (34).

Together with GnRH, AMH increases the expression of the genes

FSHB (follicle stimulating hormone subunit beta) and LHB

(luteinizing hormone subunit beta) in both sexes (94). This is

consistent with the suggestion that AMH induces LH secretion by

affecting GnRH neurons in the hypothalamus (100) (Figure 4).

However, AMH has no effect on the expression of the GnRH

receptor but GnRH regulates the expression of AMHR2 in the

pituitary gland at different moments of the menstrual cycle and

before the puberty (94, 99, 101, 102). It is worth adding that in cases

of male and female hypogonadotropic hypogonadism which was not

caused by a defect in AMH synthesis, increased AMH concentrations

were observed compared to the group of healthy people (103, 104).

Gonadotropin therapy lowers this elevated AMH concentration

(103). On the other hand, in a group of women with idiopathic

hypogonadotropic hypogonadism with initially low AMH levels,

gonadotropin therapy increases its concentration indicating proper

response of ovarian tissue to stimulation (105).
5 AMH and the hypothalamus

At early stages of human and murine embryological

development AMH is expressed in GnRH neurons (24). By

activating the MAPK (mitogen-activated protein kinase) pathway,

AMH acts in a paracrine manner and is involved in the migration of

GnRH neurons to their target sites (24) (Figure 4). Accordingly,

mutations of the genes AMH or AMHR2 are associated with

hypogonadotropic hypogonadism (24).

AMHR2 is expressed in the cortex hippocampus and

hypothalamus of adult mice, as well as in non-neuronal cells

belonging to the median eminence, such as endothelial cells and

tanycytes (100). Moreover, AMHR2 is expressed in GnRH neurons

of murine and human fetuses as well as in adult individuals of those

species (24, 100). Specifically, in more than half of GnRH neurons

in adult mice and humans AMHR2 expression was found in the

preoptic region, including the organum vasculosum of the lamina

terminalis and in rostral aeras in the septum and diagonal band of

Broca. Therefore, approximately 50% of murine GnRH neurons

responding to AMH, in both males and females, regardless of the

phase of the cycle, although the duration of the response to AMH

stimuli is significantly shorter in diestrus animals (100).
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Interestingly, the secretion of GnRH under the influence of

exogenous AMH occurs even after ovariectomy. However, this

reaction is specific to AMH, while TGFb1 has no effect on GnRH

release from GnRH neurons (100). Obviously, the secretion of

GnRH is not dependent only on AMH (99, 106, 107).

The effect of AMH on GnRH neurons can be very prompt, e.g.,

when it is administered to the lateral ventricles of female dioestrus

mouse, and is not conducted by the canonical SMAD proteins,

whose activation takes several hours, but via a rapid non-genomic

pathway (100). This nontypical route uses AMHR2 signaling and

utilizes GnRH receptors in the pituitary gland, since both an ALK 2/

3/6 inhibitor and the GnRH antagonist cetrorelix prevents any LH

surge (100).

In rats, AMH affects sexual dimorphism of the central nervous

system structures (medial preoptic area) and appears to be a

regulator of neural network formation, because AMHR2 is

expressed in this region (100, 108). Calbindin 1 (CALB1) positive

neurons located in the medial preoptic area respond to AMH

during fetal life, which correlates with the density of these

neurons observed in both sexes in the prepubertal period and in

adulthood between AMH-/- and wild type animals (108). These

CALB1+ neurons play a protective role on dopaminergic neurons

via the PI3K/AKT/mTOR signaling pathway (109, 110). They also

create diversity of social behaviors, fear memory and Calb1

knockout mutation leads to exhibiting less anxiety in various

situations (110, 111). CALB1+ neurons change hippocampal

excitatory pathway due to early-life stress and disturb stress-

related memory (110, 112).
6 AMH and other neurons

The proper development of the spinal cord motor neurons and

their appropriate response to damaging factors is regulated by a

variety of signals. In addition to cardiotrophin-1 (113), TGFb2
(114) and GDNF (glial cell derived neurotrophic factor) (115) also

AMH contributes to it (23). Interestingly, 13-15-day-old mouse

fetuses and 5-8-week-old adult mice showed that AMH determines

physiological densification of neurons during fetal life. In adult

mice, AMH ensures proper autocrine and paracrine functions,

especially in the case of neuron damage (23, 116). Accordingly, in

motor neuron disorders AMH has a protective effect and could be

therapeutically advantageous (23). AMH gene expression is highest

in in motor neurons with levels comparable to that in Sertoli cells

and ovarian GCs (23) (Figure 4).

The expression strength of AMHR2 is 30 times higher in motor

neurons than in other parts of the brain, the spinal cord or muscles

(23). AMHR2 is also a prominently expressed receptor in motor

neurons of the spinal cord with levels 40 times higher than the type

2 receptor for TGFb (23) and 5 times higher than the GDNF

receptor (117). Interestingly, there are no gender differences in

AMHR2 expression. Thus, AMH can be considered as a neuronal

growth factor, since in in vitro culture of motor neurons it increased

the survival rate of nerve cells and the growth of neurites with a

similar effect as the use of classical neuronal growth factor like

GDNF (23) (Figure 4).
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When the level of AMH expression in women with epilepsy that

have frequent seizures are compared those that are free from

seizures for some period of time and those that are healthy (118),

it was found that AMH concentration is higher in the group of

women without seizures within the last nine or more months than

those with seizures (118). Therefore, AMH may be considered a

protective factor against seizures (118).

Interestingly, single nucleotide polymorphisms (SNPs) of the

AMH gene affect male cognitive function (119). An increased AMH

level is connected to worse episodic memory, reaction time and

reduced reasoning scores, but has no influence on executive skills

and complex processing speed (119). There is a slight negative

correlation between the level of AMH and specific characteristics of

boys’ autism, such as social interaction and communication.

However, total concentrations of AMH in healthy boys compared

with boys having autism spectrum disorders are similar although

the SMAD pathway may be engaged in autism spectrum disorders

(120). On the other hand, AMH levels reflect different drawing skills

of boys and girls at the age of 5-6 years, in favor of girls in an

inversely dependent manner in comparison to the concentration of

AMH (121). This suggests that autistic boys may have greater

artistic abilities (122).

The Amh gene is expressed in the mouse hippocampus (CA1:

cell body and dendrites CA3: only the cell body) and it is the only

known source of cerebrum- derived AMH found in cerebrospinal

fluid (21). AMH is present in both female and male individuals’

hippocampus, with discordance 1.7-fold higher in favor of females.

AMHR2 levels are comparable between sexes within these brain

regions. Exogenous AMH increases long-term synaptic plasticity

and synaptic transmission of the hippocampus neurons (21). These

two features of the hippocampus neurons are impaired in

Alzheimer’s disease and accelerated aging (123, 124). Thus, AMH

is considered a factor regulating the synaptic transmission in the

hippocampus and with its paracrine/autocrine function it may

influence processes, such as learning and memory (21) (Figure 4).
7 AMH, the ovary and PCOS

AMH inhibits FSH-dependent follicular growth (80), since

AMH influences factors increasing the sensitivity of GCs to FSH

(9). AMH levels decrease in healthy women as the follicle grows,

which increases the sensitivity of GCs to FSH (9) (Figure 4).

Furthermore, AMH lowers the activity of gonadotropin-

dependent aromatase in human GCs by inhibiting FSHR (follicle

stimulating hormone receptor) gene expression (9). However, based

on a more recent study using infantile mice, AMH does not alter

FSHR expression, but in its presence FSH cannot stimulate

aromatase (96). Surprisingly, AMH has no effect on inhibin A

and VEGF (vascular endothelial growth factor), which are

controlled by LH (9, 125, 126). At high concentrations, AMH

does not affect inhibin B in GCs obtained from small and large

follicles, although at low concentration it increases inhibin B

production in GCs of small follicles (9). Inhibin B is positively

regulated by FSH (127, 128), which may explain the

observed relation.
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LH has no effect on the AMH gene expression level in normo-

ovulatory women but induces it in luteinized GCs of women with

PCOS (129). In healthy women, LH reduces the AMHR2 gene

expression in luteinized GCs but has no effect on women with

PCOS (129). Also, a difference in AMH concentrations has been

observed during the ovulatory cycle and anovulatory cycle in

healthy eumenorrheic women (130). AMH was significantly

higher in women undergoing anovulatory cycles at corresponding

times of the cycle (130).

AMH appears to play an important role in the pathogenesis of

PCOS (9), which is characterized by chronic anovulation,

hyperandrogenism and distinctive ovarian morphology (9, 131)

(Figure 5). In women with PCOS, the plasma concentration of

AMH is 2-3 times higher (132) or even 12 times more than the

norm (133) (Figure 3). The concentration of AMH increases in line

with the number of ovarian follicles (133). Hence, the concentration

of AMH inside the ovarian follicle is higher in patients with PCOS

(134). Diabetes is a factor reducing AMH levels in women with

PCOS, possibly because of vascular damage of OR (135, 136).

In women with PCOS, there is a positive correlation between

the AMH concentration and the LH/FSH ratio as well as the level of

LH, testosterone, dehydroepiandrosterone sulfate (DHEA-S), total

cholesterol, low-density lipoprotein (LDL) and the FAI (free

androgens index), which is the quotient of free testosterone and

sex hormone binding globulin (SHBG), fasting insulin level and

HOMA-IR (homeostasis model of assessment-insulin resistance)
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(133, 137, 138). A correlation between the AMH concentration and

BMI (body mass index), FSH and fasting plasma glucose level was

not found (137, 138). Moreover, some studies do not confirm the

correlation between AMH and HOMA-IR (139).

AMH levels vary significantly across the four PCOS

phenotypes which are distinguished by the presence of features,

such as anovulation, hyperandrogenism, and polycystic ovarian

morphology (138, 140). When all of the above features are

present, it indicates phenotype A (138, 140). The absence

of hyperandrogenism in the presence of anovulation and

characteristic ovarian morphology means phenotype D (138, 140).

The highest value of AMH is observed in patients with all symptoms

of PCOS (phenotype A), while the lowest in phenotype D, in which

no hyperandrogenism is observed (138).

As AMHR2 is expressed in the adrenal gland (29), there may

be a connection between the AMH concentration and androgens

in PCOS. However, it is difficult to find a clear connection between

these facts. There are groups among PCOS patients, especially

those with lower BMI, that exhibit lower concentrations of

androgens and still high levels of AMH (141, 142). On the other

hand, women with PCOS that show lower levels of androgens

more often need the help from specialized infertility clinics than

their peers with higher levels of these hormones (141, 142). This

may be related to increased engagement of small follicles in

development by androgens (133, 143, 144). It was postulated

that elevated levels of AMH may play a crucial role in the
FIGURE 5

The influence of the increasing levels of AMH on women with PCOS. Increasing levels of AMH in PCOS women inhibit the enzyme aromatase,
increase the production of LH by the pituitary gland and decrease the influence of FSH on ovarian tissue, thus leading to irregular menstrual cycle
and infertility. IVF procedures among patients with elevated AMH concentration may result in a higher clinical pregnancy rate and a more frequent
ovarian hyperstimulation syndrome. Pregnant women with PCOS showing a high level of AMH are at risk of preterm labor in the third trimester as
compared to the group of healthy women. Breastfeeding is impaired in the group of women with PCOS because not decreasing AMH concentration
impairs the preparation of the breast tissue for the lactation period. Young daughters (age 4-16) of PCOS women show abnormal concentration of
FSH, AMH, testosterone and FAI, in comparison to the offspring of healthy women. The level of vitamin D is inversely proportional to the
concentration of AMH and positively correlated to the level of testosterone, DHEA-S and FAI in the PCOS women group.
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course of PCOS. Therefore, it is worth considering the use of

AMH antagonists in the treatment of infertile women with PCOS

(145). The proposed mechanism of increasing AMH levels of in

PCOS women is based on the direct excitability of GnRH neurons

(100). AMH could cross the blood–brain barrier at the level of the

organum vasculosum of the lamina terminalis and the median

eminence (100). An indirect effect could occur at the level of the

median eminence through tanycytes and vascular endothelial cells

(100). This may result in a specific pattern and frequency of the

released GnRH and could lead to LH secretion in much higher

concentrations than normally (100).

It is likely that the abnormal design of follicular development

has a genetic component (146, 147). Prepubertal daughters of

women with PCOS (newborns and 4-7 years of age) show

increased AMH and reduced FSH levels compared to their

healthy peers (146) (Figure 5). Peripubertal daughters (age 8-16)

of PCOS mothers have an increased level of AMH, testosterone and

FAI, in comparison to the offspring (with the same body mass

index, age and breast Tanner stage) of healthy women (147)

(Figure 5). Also, the average ovarian volume is higher in the

group of peripubertal girls who are daughters of PCOS

mothers (147).

The regulatory SNP rs 2002555 is located at a binding site of

transcription factors MYB (MYB proto-oncogene, transcription

factor) and MYC (MYC proto-oncogene, BHLH transcription

factor) in the regulatory region of the AMHR2 gene (148). It was

suggested that this SNP may be responsible for the development of

PCOS. However, the conducted pooled analysis (3 studies, 5

different loci) did not show any significance in the context of

predisposition to the development of PCOS in the case of the

SNP within AMHR2 gene regulatory region (132). Only PCOS

women who are the homozygotes at SNP rs 2002555 (GG) have

decreased LH and prolactin levels and a lower LH/FSH ratio than

other PCOS women (149). There is also no association (in the

pooled analysis) between the SNP gene and the development of

PCOS (4 studies, 5 different loci) (132). Genome-wide association

studies (GWAS) assessing the genetic predisposition to the

development of PCOS in the Chinese Han population identified

20 SNPs, 5 of which have been shown to be closely correlated (150,

151), within 11 GWAS loci, but none of them were located in

relation to the genes AMH or AMHR2 (150–153). Similarly, among

loci predisposing women to the development of PCOS in the

European population, a significant correlation was detected for 4

SNPs, but again none of them were located close to the AMH or

AMHR2 gene (154, 155).

Pregnant women diagnosed with PCOS, after the ovulation

induction with letrozole or clomiphene (but non-IVF procedure)

and a high AMH concentration in the first trimester (especially > 9.3

ng/mL), are at risk of preterm labor in the third trimester as

compared to the group of women who underwent the induction of

the ovulation but PCOS was not recognized (156, 157) (Figure 5). A

similar relation with childbirth before 37 weeks of gestation is

observed for increased AMH levels at the turn of the first and

second trimester (158). This may be justified with a limitation in

stretching of the uterus caused by the inhibitory effect of AMH on

myometrial cells, as well as a direct negative impact of a high AMH
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concentration on decidualization or placentation (156, 158). During

normal pregnancy of healthy women, the concentration of AMH

decreases gradually until delivery, while in women with PCOS, the

decrease is insignificant, maintaining notably higher values

throughout pregnancy (159, 160). As it is known that the

preparation of the breast to the lactation period depends on the

decreasing level of AMH, it is not surprising that breastfeeding is

impaired in the group of women with PCOS (27, 161, 162) (Figure 5).
8 AMH and menopause

AMH plays a role in regulating the recruitment of primordial

follicles (148), i.e., the hormone may influence the time of

menopause. Even though SNPs of the AMH gene (Ile49Ser;

rs10407022) and AMHR2 gene (482 A→G; rs2002555) are

associated with a higher concentration of estradiol in the

follicular phase of healthy normo-ovulatory women (163), it is

difficult to find a strong correlation between the time of menopause

and genetic variations of the AMH gene. However, the SNP of the

AMHR2 gene with the SNP rs20025555 (G/G) means an earlier (on

average by 2.6 years) menopause than with the A/A genotype (148).

Nonetheless, this is true only in the normo-ovulatory nulliparous

group of women (148).

On the other hand, a simulation model for female hormonal

regulation based on 16 non-linear differential equations with 66

parameters indicates that exogenous AMH may delay menopause

(164). Thus, mathematically confirmed the administration of

exogenous AMH in a dose of 5 ng/mL between the age 25 and 35

delays the time of menopause by 2 years (164). An increased dose of

AMH (20 ng/mL) postpones the menopause even by 5 years (164).

This is another proof of stabilization of the pool of primordial

follicles by AMH. A different study suggests it is possible to predict

the onset of menopause based on a cut-off point of AMH levels

(below 0.1 ng/mL) using mathematical modeling of the AMH level

decreasing with age (165) (Figure 3). The topic of calculating the

time to menopause seems to be more controversial. There are

studies indicating the uselessness of AMH decline rate for

predicting early menopause (166). However, in the literature on

the subject, the usefulness of AMH concentration determinations is

more often indicated. AMH rate of change estimated together with

AMH baseline level in healthy premenopausal women is

particularly important in predicting early menopause in the age

group of 35-39 years (167). In the context of predicting not only

early menopause but menopause in general, the advantage of

multiple AMH concentration determinations over a single

measurement is emphasized (168).
9 AMH, artificial reproductive
technologies and cryopreservation of
ovarian tissue

In women of the reproductive age, AMH is a measure of OR,

and its concentration is the most reliable indicator of the success of
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artificial reproductive technology (ART) (169–171) (Figure 3). IVF

procedures among patients with elevated (5-10 ng/mL) and

ultrahigh (> 10 ng/mL) AMH levels show a higher number of

good quality embryos, a higher clinical pregnancy rate and a more

frequent ovarian hyperstimulation syndrome (OHSS) (133)

(Figure 5). Perhaps this phenomenon is related to a significantly

higher serum concentration of androgens which usually is observed

in the group of women with higher AMH levels (133, 143, 144).

Androgens are responsible for the potential and maturation of

preantral and small antral follicles (while they are still acquiring the

ability to respond to FSH), which are the main source of AMH in

women (133, 143, 144). Therefore, it seems that androgens, among

others, are responsible for an increase in AMH levels (133). In an

animal model of primates, androgen administration increases FSHR

gene expression in GCs (143). Hence, it can be concluded that AMH

is a determinant of greater sensitivity of ovarian follicles to

gonadotropins. It is not surprising that AMH as a pretreatment

agent before triggering superovulation increases antral follicle count

(AFC), (as it was demonstrated in a mouse model) and protects

against follicle atresia (172).

Although it would seem that the AMH level is a more objective

measurement than the AFC, the superiority of AMH determinations

over AFC in the desired ovarian response in IVF protocols could not

been confirmed (173, 174). Also, the concentration of AMH in the

blood is unlikely to be related to embryo quality (EQ), but a higher

concentration of AMH in the follicular fluid seems to be a favorable

prognostic factor for top-quality blastocyst and live birth ratio (175,

176). A prospective observational multicenter study revealed that the

cut-off value of AMH predisposing to achieving the criteria for hCG

(human chorionic gonadotropin) triggering was 4 pM (0.56 ng/mL)

but with the live birth ratio only 5.7% per each started cycle (177)

The lowest serum concentration of AMHwhich positively correlated

with the live birth was 1.3 pM (0.18 ng/mL) (177). However, this is

not the basis for not attempting to use ART at concentrations of

AMH below those thresholds (177). Hence, AMH alone should not

be the only factor considered when deciding to initiate ART

procedures (178). It is important to individualize each case and

correlate AMH with AFC and biometric features (178) (Figure 3).

However, the usefulness of AMH concentration assessment together

with body weight in the prevention of OHSS in ART protocols is

confirmed when daily doses of follitropin delta (a recombinant FSH)

depend on the factors mentioned above (179) (Figure 3).

Also, in terms of the decision to qualify the patient for the

procedure of ovarian tissue cryopreservation before cancer therapy,

the serum AMH level is one of the main factors taken into

consideration (180) (Figure 3). It is worth remembering that the

clear relationship between AMH level and OR applies only to patients

over 25 years of age (181). Methods of ovarian tissue cryopreservation

are expected to improve in the future, in order to increase the viability

of the retransplanted ovarian tissue, maintaining the appropriate

concentration of sex hormones affecting the quality of life as well as

increasing the chances of achieving pregnancy and live birth

(182, 183). Based on the role of AMH in stabilizing the pool of

primordial follicles, AMH could become a useful substance in

cryopreservation procedures of the ovarian tissue in the future

(Figure 6). In an animal model, AMH shows a protective and
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positive effect on OR, before the use of chemotherapy, such as

carboplatin, doxorubicin or cyclophosphamide, which is toxic to

the ovarian tissue (180, 184). In ex vivo studies, ovarian tissue exposed

to the toxic metabolite of cyclophosphamide shows greater resistance

to the chemotherapeutic agent when AMH is added (185) (Figure 6).
10 AMH, AMHR2, cell cycle
and cancer

The presence of AMHR2 in the tissue is a crucial aspect of the

modern approach to targeted oncological therapy using the anti-

cancer properties of AMH. A promising direction for the use of

AMHR2 in diagnostics and therapy is the application of conjugated

anti-AMHR2 antibodies with the radioactive isotope zirconium

(89Zr) in the detection of intraperitoneal EC metastases and in

radioimmunotherapy of EC with the radioactive isotopes lutetium

(177Lu) and bismuth (213Bi) (136) (Figure 6).

In the tumor microenvironment, a low fucosylated antibody

against AMHR2, murlentamab (GM102), switches the pro-cancer

nature of tumor-associated macrophages (TAMs) towards the anti-

cancer action by activating immunological mechanisms leading to the

destruction of tumor cells (186–189) (Figure 6). Initially, TAMs

contribute to the tumor progression by producing anti-

inflammatory chemokines. However, reprogrammed by GM102,

they acquire the features of M1-type anti-cancer macrophages by

stimulating cytotoxic T cells (CD8+), antibody-dependent cell-

mediated cytotoxicity (ADCC) and antibody-dependent cellular

phagocytosis (ADCP) (189–191). The promising effect of GM102

on AMHR2-expressing tumors was already reported in a preclinical

study in cynomolgus monkeys using a xenograft of human ovarian

cancer (192). GM102 used in phase I clinical trial in a group of

women with ovarian cancer had an impact on the proportion of

subsets of monocytes in peripheral blood (193). Then, in the first-in-

class trial among 27 women with gynecological cancers expressing

AMHR2, it was shown that GM102 is well tolerated at all doses and

decreases the tumor growth rate in 47% of patients (194). This effect

was achieved through the activation of monocytes, neutrophils and

lymphocytes (194). The next first-in-class trial of GM102 with

cisplatin and paclitaxel was conducted on the group of patients

with ovarian, cervical and endometrial cancers. However, better

response was noted for treatment combined with cisplatin and

paclitaxel when compared with GM102 alone (195). No dose-

related toxicity and only weak side effects related to applications of

GM102 were observed. The activation of classical monocytes, T cells

and neutrophils in blood was detected together with changes in

TAMs (195). Phase II trial of GM102 alone or in combination with

trifluridine/tipiracil (FTD/TPI) was conducted on patients with

colorectal adenocarcinomas (196). Better response to treatment

increased and was associated with a higher number of cancer cells

with AMHR2 expression (196). Paired biopsies revealed the

activation of tumor immune microenvironment (CD16

macrophage) and phagocytosis. GM102 together with FTD/TPI

activated antigen-presenting cells (CD86) and CD8+ T cells (196).

In peripheral blood, GM102 stimulated monocytes (CD69+) and

neutrophils (CD64+) as a single factor or with FTD/TPI (126). Taking
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into account phase I and phase II clinical trials of patients with

colorectal and ovarian cancer treated with GM102, it was shown that

in the case of colorectal cancer the number of blood monocytes

CD69+ increases, while the number of CD69+ activated-regulatory T

cells decreases (189). Also, the blood concentration of two substances

presented as critical immune modulators and survival predictors,

such as the interferon-inducible chemokines CXCL (C-X-C motif

chemokine ligand) 9 and 10, increases (189, 197). Paired biopsies

revealed that GM102 changes the proportion of macrophages in favor

of cells engaged in the ADCC/ADCP process with activation of

natural killer (NK) cells and CD8+ cells (189). In the case of ovarian

cancer, the number of CD8+ T cells expressing inducible co-

stimulator molecule increases (189). An experiment conducted in

vitro with the culture of human ovarian cells with the presence of

AMHR2 and microenvironment with TAMs showed that GM102

polarizes the CD4+ T cells towards TH (T helper) 1 cells and CD8+ T

cells profile (189). Interestingly, in vitro GM102 positively cooperates

with pembrolizumab, an anti-PDCD1 (programmed cell death 1)

antibody, which is useful in cancers with microsatellite instability

(Lynch syndrome) with profiling lymphocytes towards TH1 cells

(189, 198). In the animal model, GM102 together with
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pembrolizumab promote changes observed in the ADCC/ADCP

process. Thus, it may be advisable to combine the treatment of

specific cancers (expressing AMHR2 and microsatellite instability)

with these two agents (189, 198) (Figure 6).

Apart from the development of tissues and organs as well as

wound healing, cancers are the major cause of EMT (39, 199).

Theoretically, during EMT AMHR2 could be present on non-

gynecological solid tumor cells. It was confirmed that AMHR2 is

expressed in hepato-carcinomas (HCC), colorectal (CRC), non-

small-cell lung (NSCLC) and renal cancer cells (RCC) (29).

AMHR2 expression was also detected in melanoma and head

and neck cancer cells. Interestingly, in NSCLC AMHR2

expression was more common in women (67%) than in men

(30%) (29). The studies conducted in animal models comparing

the efficacy of GM102 and standard treatment of HCC and CRC,

sorafenib and irinotecan, respectively, revealed that GM102 has

similar efficacy to sorafenib and irinotecan, but treatment with

GM102 shows better tolerability (29) (Figure 6).

Not only the targeting of specific antibodies against AMHR2

in tumor tissue should be considered in future oncotherapy, as the

anti-proliferative activity of AMH manifests in two aspects the
FIGURE 6

Possible future utilities of AMH and antibodies against AMHR2. AMH has the potential to inhibit the cell cycle and induce apoptosis in the cells of the
different types of cancers possessing AMHR2. Antibodies conjugated with a radioactive isotope and targeting AMHR2 destroy cancer cells in an
animal model. Also, a monoclonal antibody against AMHR2 (murlentamab), switches the pro-cancer nature of TAMs towards the anti-cancer action
by activating specific immunological mechanisms destroying tumor cells (phase I and II clinical trials). Conjugated anti-AMHR2 antibodies with the
radioactive isotope zirconium are useful in the detection of intraperitoneal EC metastases (animal model). Also, in an animal model, AMH shows a
protective and positive effect on the ovarian reserve, before the use of chemotherapy, which is toxic to the ovarian tissue. As AMH stabilizes the pool
of the primordial follicles, it could increase the resistance of ovarian tissue to the harmful condition of cryopreservation procedures.
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influence on the cell cycle and the regulation of apoptosis. Thus,

AMH plays a regulatory role in endometriosis cells and other

gynecological neoplasms (25–27, 30–32). AMHR2 is expressed in

nearly 70% of human ovarian endometriomas cells (30). Other

benign ovarian tumors express AMHR2 in approximately 45% of

all cells (200). Following the addition of AMH to the culture of

endometrial cells, the survival of those cells is significantly

reduced to 68%, compared to the control samples (30). An

increase in the percentage of cellular DNA from the G0G1 and

sub-G0G1 phases indicates that AMH has an inhibitory effect on

the cell cycle by suppressing cells in the G1 phase of the cell cycle

(30). Interestingly, AMH increases the level of the cyclin-

dependent kinase (CDK) inhibitor p21, the Rb family factors

p107 and p130 as well as the transcription factor E2F2 (30). On

the other hand, the level of E2F1 decreases after AMH

administration (30). Short peptides of cyclin binding domains of

the proteins p21, p107 and p130 compete in binding to CDK2,

causing its inhibition (30, 201, 202). E2F1 and E2F2 are

transcription factors with a dual nature, since they promote the

cell cycle progression but also regulate apoptosis and DNA repair

(203–205). An increased level of the apoptosis-inducing factor

(AIF), the active form of caspase 9, cleaved PARP (poly ADP-

ribose polymerase) and a decreased level of caspase 3 after AMH

addition to endometriosis cells may prove the apoptotic activity of

AMH (30). However, it seems that the mechanism of the pro-

apoptotic action of AMH is different in endometriosis and

gynecological malignancies.
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In the ovarian cancer cell line OVCAR-8, AMH acts mainly

through a mechanism that depends on the CDK inhibitor p16 (31).

Increased expression of p16, p21 and E2F1 proteins as well as

decreased levels of p130 have been demonstrated (31). One of the

most convincing evidence of the anti-tumor activity of AMH is its

additive effect on ovarian serous cancer with paclitaxel and cisplatin

and its synergistic effect with rapamycin and doxorubicin (28)

(Figure 6). Also, exogenous AMH concentrations beyond the

physiological values reduce the cell survival of the high-grade

serous adenocarcinoma of the ovary (206) (Figure 7) Taken

together, recombinant human AMH inhibits cell colony growth

in most advanced ovarian cancer cell lines (207) (Figure 7).

Physiological concentrations of endogenous AMH play a

surprising role in the context of oncology as they increase the

survival rate of the cell colonies of the high serous adenocarcinoma

of the ovary tumor, sex cord-stromal tumor and the granulosa cell

tumor (206) (Figures 6, 7). This mechanism involves inducing

phosphorylation of the PI3K/AKT/mTOR pathway through

ALK2 recruitment (207) (Figure 7). Even partial AMH depletion

or inhibition by specific antibodies reduces the viability of cells of

ovarian cancers, decreasing phosphorylation of the PI3K/AKT/

mTOR cascade and increasing PARP and caspase 3 cleavage

(207). However, a supraphysiological concentration of exogenous

AMH engages the ALK3 pathway and decreases the survival of

ovarian cancer cells (208) (Figure 7). Similarly, to the phenomenon

described above, the physiological and supraphysiological AMH

concentrations affect the survival of Sertoli cells (209). The use of
FIGURE 7

Effect of different AMH concentrations on ovarian cancer cells. The opposite effect of physiological and supraphysiological AMH concentration on
the survival of the ovarian cancer cells. In physiological concentration, AMH works through ALK2 recruitment thus increasing the survival rate of the
cell colonies of the high serous ovarian adenocarcinoma. Meanwhile, supraphysiological concentration of AMH activates ALK3 resulting in apoptosis
of ovarian cancer cells.
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bispecific antibodies against ALK2 and AMHR2 appears to be more

potent in the context of anti-cancer activity than bispecific

antibodies ALK3 and AMHR2 (208) (Figure 6).

Apart from ovarian cancer, EC, the most common neoplasm of

the female reproductive organs, also appears to be a suitable target

for the use of AMH (25, 45). In the cell line AN3CA of EC, the

inhibitory effect of AMH on proliferation is confirmed by increased

levels of p130 and p107 (25) (Figure 8). Incubation of EC cells with

AMH results in a reduced levels of the transcription factor E2F1, yet

it does not affect the level of E2F2, E2F3 or E2F4 (25). Moreover,

AMHR2 is present in all types of histopathological EC (33).

AMHR2 is also found in all EC stages according to FIGO

classification (33). The expression of AMHR2 in EC is not

influenced by BMI, the patient’s age, their parity, the mass of

newborns, breastfeeding time, number of miscarriages, number of

menstrual years, hormonal status, use of hormonal replacement

therapy or the presence of arterial hypertension. The only factor

reducing AMHR2 gene expression in EC is type 2 diabetes (33).

Interestingly, women with type 1 diabetes also have decreased AMH

levels compared to non-diabetic women (210).

Another issue is the unclear role of intracellular AMH

expression in EC. Among the different types of EC, the presence

of AMH in EC tissue was confirmed in approximately 10% of cases,

diagnosed only after the menopause and never before this moment

in female life (22). This applies to EC with a good prognosis well

(G1) and moderately (G2) differentiated endometroid

adenocarcinoma and clear cell cancer that is characterized by
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poor prognosis (22). In the latter type of EC, in every case with

AMH presence, the neoplastic process is always limited to a

maximal ½ thickness of the myometrium (22) (Figure 8) A long

mean period of lactation (more than 10 months) and a period of

sex-hormone activity (time from the first to the last menstruation)

longer than 40 years, have a positive effect on the expression of

AMH in EC (22). Neither age nor BMI, parity, the mass of the

newborn, total breastfeeding time, tumor stage or comorbidities like

chronic hypertension or type 2 diabetes affects the expression of

AMH in EC (22). Perhaps the intracellular presence of AMH limits

the expansion of EC with a poor prognosis (Figure 8).

In the C33A cell line of cervical cancer, the pro-apoptotic

effect of AMH is manifested by an increase in the levels of p16,

p130, p107 and E2F1 proteins (32) (Figure 6). AMH also inhibits

the growth of the cell line A431 of human vulvar epidermoid

carcinoma (211) (Figure 6). AMH reducing effect on lung

metastases of the human eyeball malignant melanoma cell line

OM431 was demonstrated in the mouse model (Figure 6). On the

other hand, AMH does not inhibit the growth of cell lines of

human bladder transitional cell papilloma (RT-4) and human

hepatocellular carcinoma (Hep 3B) (211).

AMHR2 expression has been also confirmed in cells originating

from healthy breast and prostate tissue, breast fibroadenomas and

various breast and prostate cancers as well as their cell lines

(26, 27, 212). During pregnancy, epithelial cells of rat mammary

ducts proliferate intensively and undergo apoptosis once lactation

has finished (26). This process depends, among other factors, on
FIGURE 8

Crosstalk between AMH and endometrial cancer. The putative interaction between local endometrial expression of AMH and ovarian source of AMH
on the development of EC. AMH from two sources acting simultaneously: the endometrium (auto/paracrine activity) and the ovaries (endocrine
activity) protects against EC. When endometrial origin AMH is not produced even in the presence of ovarian origin AMH, the disease may develop.
When there is a lack of ovarian source AMH, but the endometrium still produces AMH, the EC is limited to a maximal ½ thickness of the
myometrium. All figures were created with BioRender.com.
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AMH (Figure 4). The Amhr2 gene expression in the rat mammary

gland decreases during pregnancy, is at its lowest during the

lactation period and increases once again shortly after weaning (26).

The growth of the proximal part of the murine prostate gland

occurs in the early stages of development and is dependent on

androgens to a limited extent (213, 214). Expansion of the distal

part of the prostate takes place after the 15th day of embryonic

development, when the AMH level declines (213, 214). This appears

to be an androgen-dependent process. AMH inhibits testosterone

synthesis in vitro and in vivo by reducing the expression of the

CYP17A1 (cytochrome P450 family 17 subfamily A member 1)

gene, which encodes for a 17a-hydroxylase that converts

progesterone to androstenedione (34, 58, 63, 215).

In AMHR2 signal transduction in BC and PC, three distinct

subtypes of type I receptors for AMH are involved ALK2, ALK3 and

ALK6 (26, 27) AMH inhibits the growth of BC cells that express

ESRs (e.g., T47D) and those that do not (e.g., MDA-MB-231) (26)

(Figure 6). Flow cytometry revealed an increase in the number of

cells in the G1 phase by 10-16%, compared to cells that were not

incubated with AMH or treated with biologically inactive AMH

(26, 27). In addition to disrupting the cell cycle, AMH induces

apoptosis in T47D cells (26) (Figure 8). There was a 3-fold increase

in the concentration of caspase 3 and a 3-fold increase in the early

apoptosis marker annexin V, compared to the cells there were not

treated with AMH (26, 27). In AMH-treated BC (T47D) and PC-

LNCaP (ce l l s of androgen-sens i t ive human prostate

adenocarcinoma) cells, the NFkB signal transduction pathway is

activated (27, 216). In addition to AMH, this pathway is also

activated also by free radicals, UV radiation, antigens and pro-

inflammatory cytokines like TNF (tumor necrosis factor) and IL1b
(interleukin 1b) (217). In both BC and PC, p50/p65 heterodimers are

induced. However, p65/p65 homodimers are activated only in the

BC line, and p50/p50 are present only in the PC cell line. In contrast,

the biologically inactive, non-cleaved form of AMH does not activate

the NFkB pathway (26, 40). T47D and LNCaP cell lines treated with

AMH show induction of the RGS1 (regulator of G protein signaling

1) gene expression (26, 27). As the promoter of the RGS1 gene has

binding sites for both NFkB and p53, it plays a regulatory role in the

context of the cell cycle, differentiation and stress response (218).

Additionally, selective expression of RGS1 splice variants were found

in T47D cells after incubation with AMH (26). There was no

expression of variant RGSL (responsible for the survival of the cell)

and anti-apoptotic NFkB-induced factors, such as A20 and c-IAP2

(26). Cells of the ESR-negative BC cell line MDA-MB-231 react

similarly to incubation with AMH. The NFkB pathway is activated,

with the presence of the p50 and p65 subunits and the RGS1 gene.

Transcripts of both splice variants: RGS1S and RGS1L have been

reported, but biologically relevant levels are reached only by RGS1S,

resulting in cell cycle inhibition in approximately 50% (26).

Interestingly, only proper regulation of NFkB with an optimal

degree of inflammation or apoptosis, including apoptosis induced

by anti-cancer drugs, leads to the desired effect from the point of

view of the organism’s interests (219, 220). Dysregulation of NFkB
signaling leads to cancer, metastasis, chronic inflammation or

autoimmune diseases (219). Upregulation of NFkB, which

happens in various cancers, is related to the presence of cytokines
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in the tumor microenvironment that activate the NFkB pathway

leading to an increase in anti-apoptotic molecules (221, 222).

Understanding the effects of NFkB in different circumstances

makes it possible to properly interpret the results of activation

and inhibition of the NFkB pathway in different types of BC.

Mammogenesis and lactogenesis are regulated, among others, by

sex hormones and modulators of their signals (223). One of them is

RANKL (receptor activator of nuclear factor kappa beta ligand)

(223–225). Excessive exposure of progesterone receptor (PGR)

positive cells to gestagens causes overproduction of RANKL,

which subsequently activates RANKL receptor in PGR negative

cells (223, 226). Ultimately, this leads to upregulation of NFkB,
downregulation of the CDK inhibitor p21 and consequently to

cancerous transformation of the breast tissue (227–230). The

usefulness of the human monoclonal antibody denosumab in

breast cancer, which blocks RANKL, has already been evaluated

(231). The above-mentioned pro-apoptotic response of BC cells to

AMH, activating NFkB and then the synthesis of RGS1S, would be

limited by excess estrogens, which reduce the density of AMHR2

preventing the beneficial activity of AMH (232). Taken together,

there is an intensive crosstalk between sex hormones and BC.

Despite anti-cancer activity of AMH and the fact that the anti-

proliferative effect of AMH on the mammary gland is gradually

reduced during physiological pregnancy to ensure proper lactation,

there is no clear evidence that increased or decreased plasma AMH

concentrations have a significant relationship with BC (161, 162,

216, 232). The literature on the subject is inconsistent and links

lower AMH concentration with a higher risk of BC as well as a

positive correlation of AMH concentration with BC, and on the

other hand, the lack of the relationship or the correspondence of BC

only with the lowest and highest quartiles of AMH level (233–236).

The relationship of AMH with BC caused by BRCA1/BRCA2

(BRCA1/2 DNA repair associated) mutation is also described

differently in various studies (237, 238). In conclusion, it appears

that plasma AMH concentrations in patients, even with PCOS, are

significantly lower than those used in the studies describing the

effect of AMH on the BC tissue in in vitro conditions (232). Thus, it

is difficult to reach a final statement on the influence of AMH serum

levels on BC (232). It is worth mentioning the significant potential

utility of AMH level assessment in the context of ovarian function

loss after chemotherapy for BC. Women with BC who are over 40

years of age and who have undergone anthracycline- and taxane-

based chemotherapy and have undetectable AMH levels after 6

months of treatment have very likely irreversibly lost ovarian

function (239). Analysis of AMH levels in this group of patients

would allow avoiding therapy with a GnRH agonist aimed at

inhibiting estradiol production, which is associated with serious

side effects (239).

There is also another connection between RANKL, NFkB and

AMH. AMH inhibits RANKL-dependent osteoclast differentiation

by preventing the degradation of the IkB (inhibitor of nuclear factor

kappa B) protein (240). Under the influence of AMH, the expression

of osteoclast differentiation markers (FOS, NFATC1, ACP5) is

reduced (240) (Figure 4). However, it does not affect osteoblast

differentiation dependent on BMP2, which is another member of the

TGFb family (240). There is no expression of AMH in osteoclasts
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and osteoblasts (240). Taking into account the inhibition of

osteoclast differentiation, the usefulness of AMH in premenopausal

and perimenopausal age as a marker of low bone mineral density is

considered (241–243). Therefore, there may be a functional crosstalk

between vitamin D and AMH. The serum level of 25-

hydroxyvitamin D3 is inversely proportional to the concentration

of AMH and positively correlated with SHBG. However, this applies

mainly to women with PCOS (244) (Figure 5). On the other hand,

vitamin D3 supplementation in normo-ovulatory women and

women with reduced OR increases the AMH level, having a

positive effect on the AMH gene expression, without affecting the

number of antral follicles (245, 246).
11 Concluding remarks

In summary, the mechanism of action of AMH as well as

involved the signal transduction pathways are tissue-specific.

Despite numerous studies and the knowledge gained, further

investigations concerning this glycoprotein are needed, since the

full potential of AMH is still obscure. However, the modulating

effect of AMH on the recruitment of ovarian follicles and the effect

of its concentration on the result of IVF is of great interest to

fertility specialists. Also, being aware of its important role in the

process of the cell cycle inhibition and inducing apoptosis, AMH

and its receptor AMHR2 raise great hopes for future applications

in oncology.
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4. Cohen-Haguenauer O, Picard JY, Mattéi MG, Serero S, Van Cong N, de TandMF,
et al. Mapping of the gene for anti-müllerian hormone to the short arm of human
chromosome 19. Cytogenet Cell Genet. (1987) 44:2–6. doi: 10.1159/000132332

5. Josso N, Picard JY. Genetics of anti-Müllerian hormone and its signaling pathway.
Best Pract Res Clin Endocrinol Metab. (2022) 36:101634. doi: 10.1016/j.beem.2022.101634

6. Lasala C, Schteingart HF, Arouche N, Bedecarrás P, Grinspon RP, Picard JY, et al.
SOX9 and SF1 are involved in cyclic AMP-mediated upregulationof anti-Müllerian
gene expression in the testicular prepubertal Sertoli cell line SMAT1. Am J Physiol
Endocrinol Metab. (2011) 301:539–47. doi: 10.1152/ajpendo.00187.2011
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