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3b-Hydroxysteroid dehydrogenases (3b-HSDs) catalyze the oxidative conversion

of delta (5)-ene-3-beta-hydroxy steroids and ketosteroids. Human 3b-HSD type

2 (HSD3B2) is predominantly expressed in gonadal and adrenal steroidogenic

cells for producing all classes of active steroid hormones. Mutations in HSD3B2

gene cause a rare form of congenital adrenal hyperplasia with varying degree of

salt wasting and incomplete masculinization, resulting from reduced production

of corticoids and androgens. Therefore, evaluation of the HSD3B2 enzymatic

activity in both pathways for each steroid hormone production is important for

accurately understanding and diagnosing this disorder. Using progesterone

receptor (PR)- and androgen receptor (AR)-mediated transactivation, we

adapted a method that easily evaluates enzymatic activity of HSD3B2 by

quantifying the conversion from substrates [pregnenolone (P5) and

dehydroepiandrosterone (DHEA)] to (progesterone and androstenedione).

HEK293 cells were transduced to express human HSD3B2, and incubated

medium containing P5 or DHEA. Depending on the incubation time with

HSD3B2-expressing cells, the culture media progressively increased luciferase

activities in CV-1 cells, transfected with the PR/AR expression vector and

progesterone-/androgen-responsive reporter. Culture media from human and
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other mammalian HSD3B1-expressing cells also increased the luciferase

activities. HEK293 cells expressing various missense mutations in the HSD3B2

gene revealed the potential of this system to evaluate the relationship between

the enzymatic activities of mutant proteins and patient phenotype.
KEYWORDS
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Introduction

Steroid hormones are produced from cholesterol via serial

enzymatic reactions catalyzed by cytochrome P450 hydroxylases

(CYPs) and hydroxysteroid dehydrogenases (HSDs) (1, 2). Among

these enzymes, 3b-HSDs belong to the short-chain dehydrogenase/

reductase superfamily of proteins, which requires NAD(P)+ as a co-

factor in the reactions (3). With CYP11A1, a rate-limiting enzyme of

steroidogenesis, they are essential for producing all classes of steroid

hormones by catalyzing 3b-hydroxysteroid dehydrogenation and D5-
to D4-isomerisation of the D5-steroid precursors. 3b-HSDs synthesize
an active steroid and its precursors by converting pregnenolone (P5),

17a-pregnenolone (17-OHP5) and dehydroepiandrosterone (DHEA)

into progesterone (P4), 17a-progesterone (17-OHP4) and

androstenedione (A4), respectively. Although P4 itself is an active

steroid hormone that strongly activates progesterone receptor (PR), it

also acts as a precursor of mineralocorticoid (aldosterone) for

regulating blood pressure through sodium reabsorption. 17-OHP4

and A4 are the precursors for glucocorticoid (cortisol) and androgen

(testosterone) (4), respectively.

Multiple types of HSD3B/Hsd3b exist in species-specific

manner (3). In human, there are two isozymes, HSD3B1 and

HSD3B2 (5). Human HSD3B1 is mainly expressed in placenta

and involved in the production of progesterone for maintaining the

pregnancy (3, 6). It is also expressed at minor extent in other tissues,

such as skin, breast and prostate. Although some single nucleotide

polymorphisms (SNPs) are likely involved in prostate and breast

cancers (7–13), deficiency of HSD3B1 has not been reported. In

contrast, HSD3B2 is almost exclusively expressed in primary

steroidogenic tissues, such as adrenal gland and gonads (testis

and ovary) (3, 14). Deficiency caused by the mutations in

HSD3B2 gene results in congenital adrenal hyperplasia (CAH)

with salt-wasting (SW) and ambiguous genitalia, due to the

reduction of glucocorticoid, mineralocorticoid and androgen (15).

Although HSD3B2 deficiency is a rare autosomal recessive disorder,

the clinical presentation of SW and genitalia is heterogenous among

different mutations (3, 15, 16). In particular, SW phenotype ranges

from no symptoms to severe forms. Therefore, the evaluation of

HSD3B2 enzymatic activities is important for understanding and

diagnosing this disorder. However, as mentioned above, because

HSD3B2 catalyzes multiple steps in the production of various
02
steroid hormones, evaluation of the enzymatic activities using the

traditional methods like radioactive isotopes and liquid

chromatography-mass spectrometry-mass spectrometry (LC–MS/

MS) is complicated. We recently reported a method that easily

evaluates the activities of testosterone-producing enzyme HSD17B3

using androgen receptor (AR)-mediated transactivation in cultured

cells (17). Based on this methodology, we established a method in

this study to evaluate HSD3B2 activities in converting substrates

(P5 and DHEA) into the precursors (P4 and A4) of important

steroid hormones (aldosterone and testosterone) relevant to each

clinical symptom. Using this system, we evaluated the enzymatic

activities of various missense mutants of HSD3B2 proteins-derived

from the patients with or without SW symptom.
Materials and methods

Cell culture, transfection and
luciferase assay

CV-1 and HEK293 cells were cultured in DMEM supplemented

with 10% fetal bovine serum (FBS). Cells were transfected using

HilyMax (Dojindo Laboratories, Kumamoto, Japan). One day before

transfection, cells were seeded on 48-well plates and cultured with

DMEM supplemented with 10% Hyclone Charcoal/Dextran treated

FBS (GE Healthcare UK Ltd, Buckinghamshire, England). At 24 h

post-transfection, the cells were treated with vehicle (EtOH), each

steroid, or supernatant of culture media for 24 h. Luciferase assays were

performed as described previously (18, 19). Each data point represents

the mean of at least four independent experiments.
Western blotting analysis

Extraction of total proteins from cultured cells and subsequent

quantification were conducted as described previously (20, 21).

Equal amounts of protein (30 mg) were resolved using 12.5% SDS-

PAGE and transferred to polyvinylidene difluoride membranes.

Western blot analyses of HSD3B2, FLAG and GAPDH were

performed using antibodies directed against HSD3B2 (67572-1-Ig,

Proteintech Group, Inc., Rosemont, IL, USA), FLAG (Clone
frontiersin.org
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871701, R&D Systems, Inc., Minneapolis, MN, USA) and GAPDH

(14C10; Cell Signaling Technology, Inc.), respectively. Clarity

Western ECL Substrate (Bio-Rad Laboratories Inc., Hercules, CA,

USA) were used for detection.
Plasmids

The pCMV-2B expressing human HSD3B1 and HSD3B2 were

generated by cloning the open reading frame (ORF) of each gene

into a pCMV-2B vector (Invitrogen, Carlsbad, CA, USA). The

pQCXIP expressing ovine HSD3B1 and guinea pig Hsd3b1 were

generated by cloning the ORF of each gene into a pQCXIP vector.

Constructs having mutations in HSD3B2 gene were prepared by the

QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla,

CA, USA) with each primer (Supplementary Table 1). The pcDNA3

expressing human PR was generated by cloning the ORF of human

PR into a pcDNA3 vector. A Slp-ARU/Luc reporter and pQCXIP/

human AR were prepared as described (22).
Measurements by liquid chromatography-
tandem spectrometry

P5, P4, DHEA and A4 in culture media were quantified using

LC-MS/MS are based on methods as we previously described (23).

As internal standards, P5, P4, DHEA and A4 were added to a

medium diluted with distilled water. The steroids were extracted

with methyl tert-butyl ether (MTBE). After evaporating the MTBE

layer to dryness, the extract was dissolved in 0.5 mL of methanol

and then diluted with 1 ml of distilled water. The sample was

applied to OASIS MAX cartridge which had been successively

conditioned with 3 ml of methanol and 3 ml of distilled water.

After the cartridge was washed with 1 ml of distilled water, 1 ml of

methanol/distilled water/acetic acid (45:55:1,v/v/v), and 1 ml of 1%

pyridine solution, the steroids were eluted with 1 ml of methanol/
Frontiers in Endocrinology 03
pyridine (100:1,v/v). After evaporation, the residue was reacted with

50 ml of mixed solution (80 mg of 2-methyl-6-nitrobenzoic

anhydride, 20 mg of 4-dimethylaminopyridine, 40 mg of picolinic

acid and 10 ml of triethylamine in 1 ml of acetonitrile) for 30 min at

room temperature. After the reaction, the sample was dissolved in

0.5 ml of ethyl acetate/hexane/acetic acid (15:35:1, v/v) and the

mixture was applied to HyperSep Silica cartridge which had been

successively conditioned with 3 mL of acetone and 3 ml of hexane.

The cartridge was washed with 1 mL of hexane, and 2 mL of ethyl

acetate/hexane (3:7, v/v). P5, P4, DHEA and A4were eluted with 2.5

ml of acetone/hexane (7:3, v/v). After evaporation, the residue was

dissolved in 0.1 ml of acetonitrile/distilled water (2:3, v/v) and the

solution was subjected to a LC-MS/MS.
Statistical analyses

Data are presented as the mean ± SEM or the mean ± SD.

Differences between groups were assessed by the Student’s t-test or

the one-way ANOVA followed by Tukey’s multiple comparison test

using EZR (Easy R, Saitama Medical Center, Jichi Medical

University, Saitama, Japan), a graphical user interface for R (The

R Foundation for Statistical Computing, Vienna, Austria) (24). p-

Values less than 0.05 were considered significant.
Results

Establishment of a method to evaluate
enzymatic activities of HSD3B2 using cell-
based assays

To establish a novel system for evaluating the enzymatic

activities of HSD3B2 in multiple pathways (Figure 1), we

compared the potential for PR- and AR-mediated transactivation

between substrates (P5 and DHEA) and products (P4 and A4) at
FIGURE 1

The enzymes and pathways for the synthesis of steroid hormones from cholesterol in human. The pathways involved in this study are showed by
bold letters and arrows.
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various concentrations in CV-1 cells (Figure 2). PR-mediated

transactivation was markedly increased from 10-9 M by P4,

whereas the transactivation was not increased by P5 at any

concentration (Figure 2A). The ratio of P4 to P5-induced activity

was also elevated from 10-9 M and the peak value was observed at

10-8 M. DHEA almost completely unaffected the AR-mediated

transactivation in all the examined concentrations (Figure 2B). In

contrast, A4 increased it from 10-8 M. Consistent with this, the ratio

of A4 to DHEA-induced activity was significantly elevated at 10-8

and 10-7 M (Figure 2B). Based on these results, we selected 10-8 M in

following experiments as optimal concentration to discriminate

between substrates and products in the PR- or AR-mediated

transactivation system.

Next, expression vectors of GFP and human HSD3B2 genes

were transfected into HEK293 cells (Figure 3A). Two days post-

transfection, P5 or DHEA was added to the culture medium at 10-8

M for 3h. Then, the supernatants were collected at each time point,

and transfer to culture plates of CV-1 cells that were transfected

with PRE reporter/human PR expression vector or ARE reporter/

human AR expression vector. Each culture medium-derived from

HSD3B2-transfected HEK293 cells increased PR- and AR-mediated

transactivation in CV-1 cells in a time-dependent manner after the

substrate addition (Figures 3B, C). PR-mediated transactivation in

CV-1 cells reached plateau in the medium cultured for 30 min with

P5, whereas AR-mediated transactivation in CV-1 cells was reached

plateau in the medium cultured for 2h with DHEA. Consistent with
Frontiers in Endocrinology 04
these results, P5 and DHEA were markedly converted to P4

(Figure 3D) and A4 (Figure 3E), respectively, at the end of

incubation, despite these products were undetectable at the

beginning of incubation (data not shown). In contrast, culture

media-derived from GFP-transfected HEK293 cells did not

induce the luciferase activities at all time points. These results

indicate that HSD3B2-mediated conversion of P5 into P4, and

DHEA into A4, in culture media are able to evaluate by PR- and

AR-mediated transactivation in this system. It can also evaluate the

activities of human HSD3B1 that was transiently expressed in

HEK293 cells (Figure 4; Supplementary Figure 1). Activities of

human HSD3B1were higher than the activities of HSD3B2, despite

statistically not significant. In addition to human proteins, the

activities of ovine HSD3B1 and guinea pig Hsd3b1 were

detectable using this system (Supplementary Figures 2A, B).
Enzymatic activities of various missense
mutations in the HSD3B2 gene

We applied the above system to evaluate the enzymatic activities

of four HSD3B2 mutants with or without SW (Figure 5). Although

these missense mutants are identified within a decade (25–28), the

enzymatic activities of mutant proteins had not been defined.

Therefore, we transfected these amino acid substituted enzymes

in HEK293 cells, and compared the enzymatic activities with wild
FIGURE 2

PR- and AR-mediated transactivation by substrates (P5 and DHEA) and products (P4 and A4) of HSD3B2 in CV-1 cells. (A) CV-1 cells were transfected
with the PRE-Luc vector and the human PR-expression vector. At 24 h post-transfection, cells were incubated with or without increasing concentrations
of each steroid for 24 h. Data represent the mean ± sem of at least four independent experiments. (B) Comparison for the potentials of PR-mediated
transactivation between P5 and P4 at each concentration. Values of P5 were defined as 1. Values marked by the different letters (a, b, c) are significantly
different with each other (P < 0.05). (C) CV-1 cells were transfected with the ARE-Luc vector and the human AR-expression vector. At 24 h post-
transfection, cells were incubated with or without increasing concentrations of each steroid for 24 h. Data represent the mean ± sem of at least three
independent experiments. (D) Comparison for the potentials of AR-mediated transactivation between DHEA and A4 at each concentration. Values of
DHEA were defined as 1. Values marked by the different letters (a, b, c) are significantly different with each other (P < 0.05).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1480722
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yazawa et al. 10.3389/fendo.2024.1480722
type protein using the above system (Figure 6A). Consistent with

patient symptoms (genitalia dysgenesis), AR-mediated

transactivation by culture media adding DHEA in each mutant

gene-transfected cells were markedly decreased compared with

those in wild type protein transfected cells (Figure 6C). C72R,

S124G and M225V completely disappeared the enzymatic activities,
Frontiers in Endocrinology 05
whereas V299I had some residual activities (19.9% versus wild

type). In contrast to AR-mediated transactivation, PR-mediated

transactivation by culture media in each mutant gene-transfected

cells showed some difference between mutants (Figure 6B). It was

never induced by culture media from C72R-, S124G- and M225V-

transfected cells, whereas culture media from V299I transfected
FIGURE 4

Evaluation of the enzymatic activities of human HSD3B1 and HSD3B2 using culture media from each gene-transfected HEK293 cells. Activation of
human PR- and AR-mediated transcription by HSD3B1 and HSD3B2 using culture media from each gene-transfected HEK293 cells. CV-1 cells were
transfected with PRE-Luc/human PR-expression vectors (A) and ARE-Luc/human AR-expression vectors (B). At 24 h post-transfection, cells were
incubated for 24 h with vehicle (lane -), P5 (10 nM), P4 (10 nM), DHEA (10 nM),A4 (10 nM), culture medium from GFP or each HSD3B-expressing
HEK293 cells collected at 2 h and 3 h after addition of P5 (10 nM) and DHEA (10 nM), respectively. Values of the vehicle were defined as 1. Data
represent the mean ± sem of at least four independent experiments. Values marked by the different letters (a, b, c) are significantly different with
each other (P < 0.05).
FIGURE 3

Development of a novel method to detect enzymatic activity of HSD3B2 by cell-based assay. (A) Western blot analyses were performed with the
antibodies against HSD3B2 and GAPDH using lysates derived from GFP- or HSD3B2-expressed HEK293 cells. (B) Activation of human PR-mediated
transcription by culture media from GFP- or HSD3B2-expressed HEK293 cells. CV-1 cells were transfected with PRE-Luc and human PR-expression
vectors. At 24 h post-transfection, cells were incubated with each culture medium collected at indicated time after P5 (10 nM) addition for 24 h.
Values for P5 (10 nM) addition in PRE-Luc vector-and human PR-expression vector-transfected CV-1 cells were defined as 1. Data represent the
mean ± sem of at least four independent experiments. Differences between GFP and HSD3B2 groups in each time point are indicated by **p < 0.01.
(C) Activation of human AR-mediated transcription by culture media from GFP- or HSD3B2-expressing HEK293 cells. CV-1 cells were transfected
with ARE-Luc and human AR-expression vectors. At 24 h post-transfection, cells were incubated with each culture medium collected at indicated
time after DHEA (10 nM) addition for 24 h. Values for DHEA (10 nM) addition in ARE-Luc vector-and human AR-expression vector-transfected CV-1
cells were defined as 1. Data represent the mean ± sem of at least four independent experiments. Differences between GFP and HSD3B2 groups in
each time point are indicated by *p < 0.05 and **p < 0.01. (D, E) Concentrations of P5/P4 (D) and DHEA/A4 (E) in culture medium from HSD3B2-
expressed HEK293 cells at 2 h and 3 h after addition of P5 (10 nM) and DHEA (10 nM), respectively. Each column represents the mean ± SEM of
three independent experiments.
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cells induced the luciferase activities despite some lesser than those

from wild type gene transfected cells (67.3% versus wild type).

These results indicate that heterogeneity of the clinical presentation

in SW is caused by the effects of mutation on the substrate-

dependent enzymatic activities.
Frontiers in Endocrinology 06
Discussion

We established a method to easily evaluate enzymatic activity of

HSD3B2 to multiple substrates using the reporter assays in cultured

cells. This system is highly sensitive and rapidly detects the
FIGURE 5

Missense mutations in HSD3B2 genes investigated in this study. (A) Schematic structure of the human HSD3B2 gene and substitution of amino acids.
The numbered box indicates exons 5’ and 3’-untranslated regions are indicated by white bars. (B) Clinical symptoms and enzymatic activities of each
mutation in the HSD3B2 gene.
FIGURE 6

Enzymatic activities of missense mutations in HSD3B2 gene. (A) Expression of wild-type and mutant HSD3B2 enzymes. Western blot analyses were
performed with the antibodies against HSD3B2 and GAPDH using lysates of GFP-, wild-type HSD3B2- and each mutant HSD3B2-expressed HEK293
cells. (B) Activation of human AR-mediated transcription by culture media from wild-type and mutant HSD3B2-expressing HEK293 cells. CV-1 cells
were transfected with PRE-Luc and human PR-expression vectors. At 24 h post-transfection, cells were incubated with each culture medium
collected at 2 h after P5 (10 nM) addition for 24 h. Values for vehicle addition in PRE-Luc vector-and human PR-expression vector-transfected CV-1
cells were defined as 1. Data represent the mean ± sem of at least four independent experiments. Values marked by the different letters (a, b, c, d)
are significantly different with each other (P < 0.05). (C) Activation of human AR-mediated transcription by culture media from wild-type and mutant
HSD3B2-expressing HEK293 cells. CV-1 cells were transfected with ARE-Luc and human AR-expression vectors. At 24 h post-transfection, cells
were incubated with each culture medium collected at 3 h after DHEA (10 nM) addition for 24 h. Values for vehicle addition in ARE-Luc vector-and
human AR-expression vector-transfected CV-1 cells were defined as 1. Data represent the mean ± sem of at least four independent experiments.
Values marked by the different letters (a, b, c) are significantly different with each other (P < 0.05). Values marked by the different letters (a, b, c, d)
are significantly different with each other (P < 0.05).
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conversion of substrates, due to a strong response to P4 and A4

from ectopic expression of PR and AR in CV-1 cells, which have a

low background activity of C3 group nuclear receptors (29). Using

this assay, we defined the effects of various missense mutations on

enzymatic activities of human HSD3B2 to both P5 and DHEA.

Human PR was activated by P4 from 10-9 M. This

concentration is lesser than plasma progesterone concentration in

men and women at follicular phase, whereas it elevates to over 10

nM at luteal phase (30). Therefore, this concentration acts as a

critical point for the actions of progesterone in menstrual cycle and

early pregnancy, despite it continues to increase additional several

tens-fold for maintaining the pregnancy until late phase (31–33). In

contrast, A4 strongly activated human AR from 10-8 M. Because

plasma concentrations of A4 is just less than this value in both men

and women throughout the life (30), these facts are consistent with

the concept that A4 represents as an important intermediate for sex

steroids, such as testosterone and estrogens (34, 35). However, it

was reported that A4 exceeds this concentration in the deficiency of

some steroidogenic genes, such as HSD17B3 (36, 37) and CYP21A2

(38, 39). Although it is possible that A4 acts as an androgen in these

patients, the action is insufficient for complete masculinization.

This is due to the necessity of 5a-dihydrotestosterone converted

from T by 5a-reductase in peripheral tissues for the male sexual

differentiation (40, 41). Nevertheless, it is not ruled out that elevated

A4 contributes to the partial virilization in CYP21A2-deficient

female patients, even though 11-oxygenated androgens, such as

11-ketotestosterone, are likely most important (38, 42), Further

detail studies are necessary to reveal the characteristics of this weak

androgen in sexual development.

It is interesting that conversion of DHEA into A4 was markedly

reduced in all mutants, whereas conversion of P5 into P4 was

markedly reduced in three mutants (C72R, S124G and V225D).

Although the conversion was also reduced in V299I, the activity was

maintained at far more than 50% compared to wild type. This result

is consistent with the clinical phenotypes; all the patients have

ambiguous genitalia, whereas SW was observed in all the patients

except for V299I (25–28). As far as we know, this is the first report

revealing the different effects of amino-acid substitution of HSD3B2

on enzymatic activities by the substrates. V299 is the component of

the putative membrane spanning domains that are possibly

involved in the substrate-specificity (43). Therefore, it is probable

that other mutation in these domains show the fluctuation of

enzymatic activity dependent on the substrates as V299I.

However, enzymatic activities of mutant proteins have been often

evaluated using only one substrate in previous studies (44–47)

Because the clinical manifestation of HSD3B2 gene mutations is

heterogenous between patients, evaluation of enzymatic activities

using multiple substrates is necessary for accurate diagnosis.

To resolve the problems of ambiguous genitalia by HSD3B2

deficiency, testosterone replacement therapy have been performed in

the male patients, including C72R and V225D patients (27, 28, 48).

This treatment attenuates microphallus by promoting the penile

growth. In contrast, V299I patient suffered from premature pubarche

with rapid axially/public hair and phallic enlargement at 7 years of age,

despite he also showed ambiguous genitalia at birth (25). Consistent
Frontiers in Endocrinology 07
with the clinical features, plasma testosterone concentration was

markedly increased. It was also reported in previous studies that

parts of male patients with HSD3B2 mutations spontaneously enter

puberty (45, 49–53). Although contribution of peripheral HSD3B1with

aid of HSD17B5 is predicted in such patients (44), it is also possible

from our results that elevation of testosterone levels is caused by the

residual enzymatic activities and up-regulation of adrenal HSD3B2

expression through the elevation of ACTH in CAH (54). In fact,

various mutant proteins sustain the residual activities (44). Therefore, it

is conceivable again that evaluation of the enzymatic activities of

mutant proteins is essential for the accurate diagnosis in this disease.

In summary, we developed a method to evaluate the enzymatic

activity of 3b-HSDs to multiple substrates. It provides a useful

method for comprehensive analyses of HSD3B2 mutant proteins

that cause heterogenous clinical features. In addition, this system

could also be useful for evaluating the enzymatic activities of

HSD3B1 to develop new drugs. Although the mutations in

HSD3B1 have not been linked to any genetic diseases, it was

reported that its SNPs are associated with breast and prostate

cancers (7–13). Therefore, it could be one of the therapeutic

targets for preventing the progression of these diseases. Because

the present system can easily examine the effects of added

compounds through cell-based reporter assay, it could be applied

to identify the compounds to suppress its activity and

disease progression.
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