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Metabolomic disorders caused
by an imbalance in the gut
microbiota are associated with
central precocious puberty
Chunjie Liu †, Shasha Zhou †, Yan Li, Xiaoqin Yin and Pin Li*

Department of Endocrinology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai, China
Background: Central precocious puberty (CPP) is characterized by the

premature activation of the hypothalamic-pituitary-gonadal axis, resulting in

early onset of sexual development. The incidence of CPP has been rising in

recent years, with approximately 90% of cases lacking a clearly identifiable

etiology. While an association between precocious puberty and gut microbiota

has been observed, the precise causal pathways and underlying mechanisms

remain poorly understood. The study aims to investigate the potential

mechanisms through which gut microbiota imbalances may contribute to CPP.

Methods: In this study, clinical information and fecal samples were collected

from 50 CPP patients and 50 healthy control subjects. The fecal samples were

analyzed by 16S rDNA sequencing and UPLC−MS/MS metabolic analysis.

Spearman correlation analysis was used to identify the relationships between

gut microbiota and metabolites.

Results: The gut microbiota composition in CPP patients was significantly

different from that in healthy controls, characterized by an increased

abundance of Faecalibacterium and a decreased abundance of Anaerotruncus.

Additionally, significant differences were observed in metabolite composition

between the CPP and control groups. A total of 51 differentially expressed

metabolites were identified, with 32 showing significant upregulation and 19

showing significant downregulation in the CPP group. Furthermore, Spearman

correlation analysis indicated that gut microbiota dysbiosis may contribute to

altered metabolic patterns in CPP, given its involvement in the regulation of

several metabolic pathways, including phenylalanine and tyrosine biosynthesis

and metabolism, the citrate cycle (TCA cycle), glyoxylate and dicarboxylate

metabolism, and tryptophan metabolism.
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Conclusions: The study revealed the gut microbial andmetabolite characteristics

of CPP patients by integrating microbiome and metabolomics analyses.

Moreover, several key metabolic pathways involved in the onset and

progression of CPP were identified, which were regulated by gut microbiota.

These findings broaden the current understanding of the complex interactions

between gut microbial metabolites and CPP, and provide new insights into the

pathogenesis and clinical management of CPP.
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1 Introduction

Precocious puberty is defined as the onset of secondary sexual

characteristics in girls before the age of 8 and in boys before the age of

9. According to its pathogenesis, precocious puberty can be classified

into the following three types: central precocious puberty (CPP),

peripheral precocious puberty (PPP) and partial precocious puberty.

Most cases of CPP are categorized as idiopathic CPP (ICPP), as they

lack identifiable predisposing factors. CPP results from the premature

activation of hypothalamic-pituitary-gonadal (HPG) axis due to

increased secretion of gonadotropin-releasing hormone (GnRH)

from the hypothalamus, leading to earlier sexual development. In

recent years, the prevalence of CPP has risen significantly, up to 0.5-

2% in China, with a higher incidence in girls than in boys (1–3). CPP

seriously affects the growth and mental health of children and has

attracted attention in both society and the medical community.

Therefore, conducting research on the etiology and pathogenesis of

ICPP will help us to better understand the disease and establish a

foundation for its early diagnosis and treatment.

The pathogenesis of ICPP is complex and multifaceted, which

may be the result of a combination of genetic, metabolic and

environmental factors. Previous studies have shown that genetic

factors play an significant role in the onset and progression of ICPP.

Kisspeptin, encoded by the KISS1 gene, interacts with hypothalamic

GnRH neurons via binding to the G protein-coupled receptor

GPR54. This interaction stimulates GnRH-dependent secretion of

luteinizing hormone (LH) and follicle-stimulating hormone (FSH),

initiating the onset of puberty (4, 5). Other known genes associated

with ICPP, such as thyroid-specific transcription factor-1 (TTF1)

and cut homeobox-1 (CUX1), were identified in our previous

studies (6, 7). TTF1 encodes a transcription termination factor.

CUX1 encodes a member of the homeodomain family of DNA-

binding proteins. These genes are thought to regulate sexual

development by modulating the Kiss1/GPR54 system. However,

their effects appear to be transient and insufficient to fully control

the activation of GnRH neurons (6, 7). In addition, the potential

role of environmental factors, such as environmental endocrine

disruptors, in increasing the incidence of CPP by affecting the HPG
02
axis remain an important area of investigation (8). Recent findings

indicate that obese girls are at a higher risk of developing CPP,

suggesting that energy or amino acid metabolic pathways may

regulate the hypothalamic neuroendocrine network, thereby

prompting the activation of GnRH neurons and contributing to

the onset of CPP. However, the precise mechanisms underlying

these associations remain unclear, highlighting the need for further

research and exploration.

The gut microbiota refers to the collection of microorganisms

residing in the human intestine. Previous studies have shown

associations between the gut microbiota and various conditions,

including diabetes, obesity, Alzheimer’s disease, depression.

Additionally, the gut microbiota is closely connected to the

neuroendocrine system and plays a crucial role in the brain-gut-

microbiome axis (9–12). Exploring the relationship between metabolic

disorders resulting from gut microbiota imbalances and host diseases

is crucial for advancing disease prevention and treatment. In recent

years, the relationship between the gut microbiota, its metabolites and

sexual development has attracted attention from researchers (13, 14).

In our previous research, we identified that there are three major

metabolic pathways - catecholamine metabolism, serotonin

metabolism and the tricarboxylic acid cycle - that were altered in

children with CPP based on their urine sample analyses. Significant

changes were observed in the urinary levels of 4-hydroxyphenylacetic

acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-

hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group.

These findings suggested that the development of CPP may be related

to metabolic disorders resulting from alterations in the gut microbiota

(15). However, the precise causal relationships and underlying

mechanisms linking these metabolic disturbances to CPP

remain elusive.

In this study, 16S rDNA high-throughput sequencing revealed

that the main differences in gut microbiota composition between

patients with CPP and healthy controls were an increased

abundance of Faecalibacterium and a decreased abundance of

Anaerotruncus at the genus level. Metabolomic analysis further

demonstrated significant differences in metabolite composition

between the CPP and control groups. A total of 51 differentially
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expressed metabolites were identified, with 32 showing significant

upregulation and 19 showing significant downregulation in the CPP

group. Further application of Spearman correlation analysis showed

that imbalances in gut microbiota can affect the metabolic patterns

in CPP patients, as the gut microbiota is involved in regulating

phenylalanine and tyrosine biosynthesis and metabolism, the citrate

cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and

tryptophan metabolism. Our findings provide novel insights into

the mechanism underlying the onset and progression of CPP.
2 Materials and methods

2.1 Patients and samples

In our study, a total of 50 stool and serum samples were

collected from girls diagnosed with ICPP at Shanghai Children’s

Hospital, affiliated to Shanghai Jiao Tong University. Meanwhile,

stool and serum samples were collected from 50 healthy children

matched with the ICPP group by age, gender, ethnicity and region

during the same period. The study was approved by the ethics

committee of Shanghai Children’s Hospital, and informed consent

was obtained from all participants.

Fresh stool samples were immediately frozen at -80°C to

prevent degradation from repeated freeze-thaw cycles. Peripheral

blood samples (4 mL) were obtained from each participant,

centrifuged at 3000 rpm for 10 minutes, after which the serum

was collected, aliquoted into 0.5 mL portions, and stored at -80°C.
2.2 DNA extraction, polymerase chain
reaction amplification, and Illumina
MiSeq sequencing

Microbial DNA was extracted from CPP and control stool

samples using the Fast DNA Stool Mini Kit (51604, Qiagen,

Germany), according to its instruction manual. Universal primers

341F and 806R were used to amplify the V3-V4 region of the

bacterial ribosomal 16S rDNA gene. When designing specific

primers, the index sequence and connector sequence suitable for

Illumina MiSeq PE250 should be added to the 5’ end of the

universal primer. The primer sequences used are as follows:

Forward primer (5’-3’): CCTACGGGRSGCAGCAG (341F)

Reverse primer (5’-3’): GGACTACVVGGGTATCTAATC (806R)

PCR amplification was performed using Kapa Hifi Hotstart

Readymix PCR kit with high fidelity enzyme. Amplicons were

extracted from 2% agarose gels and purified with AxyPrep DNA

gel recovery kit (Axygen Biosciences, USA). The purified PCR

produc t s we r e t e s t e d by The rmo Nanod rop 2000

microspectrophotometer and 2% agarose gels.
2.3 16S rDNA gene sequence analysis

Qubit 2.0 (Invitrogen, USA) was used for library quantitation.

Paired-end sequencing was performed using Illumina’s MiSeq
Frontiers in Endocrinology 03
PE250 Sequencer (Illumina, USA). Paired-end data obtained by

sequencing was spliced with PANDAseq software (https://

github.com/neufeld/pandaseq, version 2.9), and long Reads with

high variability were obtained for 16S analysis. The resulting raw

reads were filtered as follows: 1) maximum number of N base = 3; 2)

minimum average quality score of each read = 20; 3) the length of

reads between 250bp and 500bp. Clean Reads are finally obtained.

The reads with 97% identity were clustered into Operational

Taxonomic Units (OTUs) using UPARSE (http://drive5.com/

uparse/). A representative sequence of each OTU was assigned to

a taxonomic level in the Ribosomal Database Project (RDP, http://

rdp.cme.msu.edu/) database using 0.8 as the minimum confidence

threshold. Alpha and beta diversity were calculated using QIIME

software (version 1.9.1) with the default parameters. a-diversity
represents an analysis of diversity in a single sample reflected by

parameters including Observed species index, Chao 1 index,

Simpson index, Shannon index and PD whole tree index using

QIIME. b-diversity is used to measure the microbiota structure

between different groups. The results of Unifrac are used to measure

b-diversity, which are generally divided into Unweighted Unifrac

and Weighted Unifrac. Both the weighted and unweighted Unifrac

distance matrices were plotted in the principal coordinate analysis

(PCoA), and analyses of similarities (ANOSIMs) were performed.

The higher the index, the greater the differences between groups.

The linear discriminant analysis (LDA) effect size (LEfSe) method

was used to analyze the differentially expressed bacterial taxa at

different levels between CPP patients and healthy controls. LEfSe

analysis is mainly used to find and identify two or more biomarkers

and genomic characteristics, such as genes, metabolic pathways and

taxonomy. LEfSe analysis used LDA to detect differential

abundance and characteristics between groups at the phylum,

class, order, family, and genus levels. Bacterial taxa with LDA

scores greater than the set threshold (the lowest was 2) were

considered biomarkers with statistical differences. The

abundances of functional categories in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) orthologs was predicted by

Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt).
2.4 Quantitative analysis of
microbial metabolomics

Feces samples were thawed on ice-bath to diminish

degradation. About 10 mg of each sample was weighted and

transferred to a new 1.5 ml tube. Then 25 ml of water was added
and the sample was homogenated with zirconium oxide beads for 3

min. 185 ml of ACN/Methanol (8/2) was added to extract the

metabolites. The sample was centrifuged at 18000 g for 20 min.

Then the supernatant was transferred to a 96-well plate. The

following procedures were performed on a Biomek 4000

workstation (Biomek 4000, Beckman Coulter, USA). 20 ml of

freshly prepared derivative reagents was added to each well. The

plate was sealed and the derivatization was carried out at 30°C for

60 min. After derivatization, 350 ml of ice-cold 50% methanol

solution was added to dilute the sample. Then the plate was
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stored at -20°C for 20 minutes and followed by 4000 g

centrifugation at 4°C for 30 min. 135 ml of supernatant was

transferred to a new 96-well plate with 15 ml internal standards in
each well. Serial dilutions of derivatized stock standards were added

to the left wells. Finally, the plate was sealed for LC-MS analysis.

An ultra-performance liquid chromatography coupled to

tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY

UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA) was used to

quantitate the microbial metabolite in this study by Metabo-Profile

Biotechnology (Shanghai) Co., Ltd. The optimized instrument

settings are briefly described as follows. For HPLC, column:

ACQUITY HPLC BEH C18 1.7 × 10−6 m VanGuard precolumn

(2.1 × 5 mm) and ACQUITY HPLC BEH C18 1.7 × 10−6 m

analytical column (2.1 × 100 mm), column temp.: 40°C, sample

manager temp.: 10°C, mobile phases: A = water with 0.1% formic

acid; and B = acetonitrile/IPA (70:30), gradient conditions: 0–1 min

(5% B), 1–11 min (5–78% B), 11–13.5 min (78–95% B), 13.5–14

min (95–100% B), 14–16 min (100% B), 16–16.1 min (100-5% B),

16.1–18 min (5% B), flow rate: 0.40 mL min−1, and injection vol.:

5.0 mL. For mass spectrometer, capillary: 1.5 (ESI+), 2.0 (ESI-) Kv,

source temp.: 150°C, desolvation temp.: 550°C, and desolvation gas

flow: 1000 L h−1.

The metabolites were identified using the STD method,

employing the Q300 kit (Metabo-Profile, Shanghai, China). This

method enables the quantitative detection of a wide array of

metabolites, including amino acids, phenols, phenyl or benzyl

derivatives, indoles, organic acids, fatty acids, sugars, and bile

acids in biological samples of varying concentrations on the same

microtiter plate. The Q300 kit utilizes 60 internal standards, such as

L_Arg in ine_15N2 , H ippur i c a c id_D5 , TCDCA_D9 ,

D_Glucose_D7, Carnitine_D3, C5 0_D9 and Citric acid_D4,

along with 306 one-to-one standards for accurate quantification.

The derivatization reaction was carried out using 3-

nitrophenylhydrazine as the derivatization reagent and 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide as the catalyst.

Quality control (QC) on the samples were carried out in order

to ensure high quality analysis of samples by the instrument. The

raw data files generated by UPLC-MS/MS were processed using the

QuanMET software (v2.0, Metabo-Profile, Shanghai, China) to

perform peak integration, calibration, and quantitation for each

metabolite. Mass spectrometry-based quantitative metabolomics

refers to the determination of the concentration of a substance in

an unknown sample by comparing the unknown to a set of standard

samples of known concentration (i.e., calibration curve).

For many metabolomics studies, two types of statistical analysis

are extensively performed: 1) multivariate statistical analyses such as

principal component analysis (PCA), partial least square

discriminant analysis (PLS-DA), orthogonal partial least square

discriminant analysis (OPLS-DA) and so on; 2) univariate

statistical analyses including student t-test, Mann-Whitney-

Wilcoxon (U-test), ANOVA, correlation analysis, etc. PCA is an

unsupervised modeling method commonly used to detect data

outliers, clustering, and classification trends without a priori

knowledge of the sample set. The first principal component (PC1)
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expresses more variation than the second principal component

(PC2), which, in turn, expresses more variation than PC3, and so

on. PLS-DA and/or OPLS-DA has been extensively used for multi-

class classification and identification of differently altered metabolites.

In the current project, PLS-DA modeling is used as a multi-class

classifier to visualize the difference between global metabolic profiles

among the groups that provides more valuable information beyond

what can be gleaned from PCA. The OPLS method is an improved

PLS-DA method for modeling and further screening of differential

metabolites between the CPP group and the control group.
2.5 Serum sex hormone detection

Serum samples (25 ml) were analyzed to measure levels of LH,

FSH, E2 and other hormones using a chemiluminescence method.

The preparation, calibration, dilution, quality control, correction,

and analysis procedures were conducted in strict accordance with

the operation manual of chemiluminescence instrument

(Beckman, USA).
2.6 Spearman correlation analysis

Spearman correlation analysis was performed on the 16S rDNA

sequencing and metabolomics data to investigate associations

between differential gut microbiota and metabolites. LDA >2 and

P < 0.05 were used as criteria for screening and extracting

differential gut microbiota and related functional data, followed

by extraction of differential metabolomics data. The results of the

Spearman correlation analysis were visualized in a heatmap. For

each metabolite, data were included in the heatmap if its correlation

with at least one gut microbiota had a P value < 0.05 and an absolute

correlation coefficient (R) > 0.3.
2.7 Statistical analysis

SAS software (Version 9.2) was used for statistical analysis in

this study. Age and body mass index (BMI) data between the two

groups were compared using the Mann-Whitney Wilcoxon test,

with statistically significance defined as P < 0.05.
3 Results

3.1 Clinical data

A total of 50 children with ICPP were recruited from Shanghai

Children’s Hospital. The inclusion criteria were as follows: (1) onset

of secondary sexual characteristics in girls before 8 years of age;

(2) GnRH stimulation test showing a peak LH level (LHP) ≥ 5 mIU/

mL and an LHP/FSHP ratio > 0.6; (3) ovarian volume ≥ 1 mL;

(4) exclusion of secondary CPP due to other causes; and (5) no
frontiersin.org
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history of drug treatment related to CPP, including Chinese herbal

medicines. The exclusion criteria were: (1) presence of pituitary

tumors or other organic lesions; (2) use of traditional Chinese

medicine within 1 month prior to enrollment; (3) use of antibiotics,

probiotics or prebiotics within 1 month prior to enrollment; and

(4) coexisting gastrointestinal diseases or impaired liver function.

At the same time, 50 healthy children matched with the CPP group
Frontiers in Endocrinology 05
in age, sex, ethnicity, and region were recruited as controls. None of

the participants in either group had a history of other diseases. The

mean age of the children in the CPP group was 8.137 years, while

the mean age of the control group was 7.902 years. The average BMI

of the CPP group was 16.294 kg/m2, compared to 15.720 kg/m2 for

the control group. There were no significant differences in both age

and BMI between the two groups (P > 0.05).
FIGURE 1

Discrepancy in the structure and diversity of the gut microbiota in the CPP and control groups. (A) The sequence distribution across length intervals.
Read length was kept within the 250-500 bp range, with those shorter than 250 bp excluded. The X-axis represents sequence length, and the Y-axis
shows the count of reads. (B) Venn diagram of OTUs. Each color corresponds to a specific group. The overlapping region represents OTUs shared
by both groups, while the non-overlapping areas represent unique OTUs in each group. (C) Histogram of microbial abundances in the CPP group
and control group at the genus level. (D) Comparison of the a-diversity index (Shannon index) between the CPP and control group. The X-axis
represents the groups, and the Y-axis represents the Shannon index. The box plot presents 5 statistics: minimum, first quartile, median, third quartile,
and maximum. An asterisk “*” means 0.01<p<0.05. (E) Adonis analysis (unweighted UniFrac analysis). The X-axis represents the first principal
coordinate, and the Y-axis represents the second principal coordinate. Percentage refers to the contribution of the corresponding principal
coordinate to the difference of samples; the points represent individual samples; the horizontal and vertical box plots represent value distributions of
the two groups on corresponding principal coordinates.
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3.2 Discrepancies in the structure and
diversity of the gut microbiota between
CPP and control groups

To explore the correlation between CPP and gut microbiota,

fecal samples from girls diagnosed with CPP and healthy controls

were analyzed using 16S rDNA high-throughput sequencing. A

total of 3,545,161 effective sequences were obtained, with an average

of 35,451.61 ± 1,883.29 tags per sample, ranging from 30,067 to

38,945 tags. Sequence lengths were predominantly between 407 to

422 bp, with an average length of 412.65 ± 3.01 bp (Figure 1A).

Sequences clustered at 97% similarity yielded 638 OTUs, with 467

OTUs shared by both the CPP and control groups. In addition, the

results showed that 128 OTUs were unique to the control group,

corresponding to 41 individuals (82% of the control subjects), while
Frontiers in Endocrinology 06
43 OTUs were unique to the CPP group, corresponding to 34

patients (68% of CPP patients), as shown in the Venn diagram

(Figure 1B). These results suggested significant differences in OTU

distribution between the two groups.

A representative sequence of each OTU was assigned to a

taxonomic level in the RDP. The microbial abundances of the

two groups at the phylum, class, order, family and genus levels were

analyzed. The results showed that at the genus level, the abundance

of Faecalibacterium in the CPP group was higher than that in the

control group, whereas the abundances of Prevotella and Roseburia

were reduced in the CPP group (Figure 1C).

To assess the differences in the diversity and richness of the gut

microbiota in the CPP and control group, we analyzed the a-
diversity index. The Shannon index showed that the diversity and

richness of the gut microbiota in the CPP group were significantly
FIGURE 2

Analysis of different microbiota between the CPP and control groups. (A) LEfSe analysis. The LDA score was used to detect differential abundance
between the two groups at the phylum, class, order, family, and genus levels. Bacterial taxa with LDA scores above the threshold (minimum of 2)
were considered biomarkers with significant differences. Red represents the control group, and blue represents the CPP group. (B) The Wilcoxon
test was used to analyze different microbiota constituents at the genus level. The X-axis shows genera name, and the Y-axis shows the log2 value of
relative abundance.
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lower than in the control group (P = 0.044) (Figure 1D). a-diversity
analysis, combined with PCoA, indicated substantial differences in

fecal microbial composition between CPP patients and controls

(Adonis P = 0.012, R2 = 0.019) (Figure 1E).

Further, we carried out LEfSe and Wilcoxon tests to identify

specific microorganisms in the gut microbiota that differed

between CPP and control groups. Features with an LDA score

cut-off of 2 were considered significant. LEfSe analysis showed

that, at the phylum level, Synergistetes and Euryarchaeota were

less abundant in the CPP group compared to the control group. At

the genus level, Faecalibacterium and Klebsiella were significantly
Frontiers in Endocrinology 07
abundant in the CPP group, while Prevotella, Anaerotruncus,

Dialister, Veillonella, Methanobrevibacter, Cetobacterium and

Clostridium XVIII were significantly reduced in the CPP group.

(Figure 2A). Wilcoxon test results further confirmed significant

differences between the two groups (P < 0.01) at the genus level,

with Faecalibacterium significantly enriched and Anaerotruncus

and Pyramidobacter significantly decreased in the CPP group

(Figure 2B). Collectively, these results showed that the increased

Faecalibacterium and decreased Anaerotruncus were important

characteristics of the disordered gut microbiota in patients

with CPP.
FIGURE 3

Identification of differential metabolites between the CPP and control groups. (A) PLS-DA score plots of the metabolic profiles from the CPP and
control groups. Blue represents the CPP group, and red represents the control group. (B) Volcano map of differential metabolites. Metabolites with a
P value < 0.05 and an absolute value of log2FC > 0 were considered significantly different. The red dots (right side) represent metabolites that were
increased in the CPP group, and blue dots (left side) indicate those that were decreased. (C) The representative differential metabolites with the
highest rank (smaller P value and larger FC value) between the CPP group and the control group were 3,4-dihydroxyhydrocinnamic acid and HPHPA
***means P < 0.001. (D) Z score heatmap of differential metabolites. The X-axis represents individual samples, and the Y-axis represents the
metabolites. The red and blue bands at the top represent the control group and the CPP group, respectively. The relative values represented by
colors are displayed at the bottom of the figure, with red indicating higher levels of the metabolite and green indicating lower levels.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1481364
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1481364
3.3 Altered metabolism in CPP patients

In this study, UPLC−MS/MS was used to analyze metabolomic

data from stool samples in both the CPP and control groups, aiming

to identify the differentially expressed metabolites. First,

unsupervised PCA was used to evaluate within-group clustering,

detect any outliers, and assess group separation. Then, a supervised

analysis method (PLS-DA) was used to reduce the influence of

individual variation within each group. The results of PLS-DA

showed that there were significant differences in the composition of

metabolites between the CPP and control groups (Figure 3A).

Furthermore, this study used the Mann−Whitney U test (P value

and fold change [FC] value), a univariate statistical method, to

identify metabolites with significantly different expression between

the two groups. As shown in Figure 3B, there were differences in the

expression of small metabolites between the CPP and control groups.

Compared with the control group, a total of 51 differentially expressed

metabolites were identified, with 32 showing significant upregulation

(P ≤ 0.05, FC>1) and 19 showing significant downregulation (P ≤

0.05, FC>1) in the CPP group. These differentially expressed

metabolites included amino acids, benzenoids, carbohydrates, fatty

acids, indoles, organic acids, phenyl propanoic acids and

phenylpropanoids (Supplementary Table 1). Among them, the most

representative differentially expressed metabolites in the CPP group,
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ranked by smallest P value and largest FC, were as follows: increased

3-3-hydroxyphenyl-3-hydroxypropanoic acid (HPHPA), 3,4-

dihydroxyhydrocinnamic acid , homovani l l ic ac id , 3-

hydroxyphenylacetic acid, acetoacetic acid, isocitric acid, cis-aconitic

acid, citric acid, formic acid, glycolic acid, and decreased 4-

hydroxyphenylpyruvic acid, L-tryptophan, phenylpyruvic acid, and

phenylacetic acid. Among these metabolites, the largest fold changes

were seen with 3,4-dihydroxyhydrocinnamic acid (FC=10.432) and

HPHPA (FC=7.803), both of which had small P values

(Supplementary Table 1, Figure 3C). A heatmap (Figure 3D)

visually clusters these metabolites, suggesting potential inter-

metabolite interactions.

Next, we used the hsa library, based on the KEGG database, to

perform metabolic pathway enrichment analysis (MPEA) in order

to identify the most relevant metabolic pathways associated with

these differentially expressed metabolites. Based on the

comprehensive P value and impact value, the analysis identified

several metabolic pathways altered in CPP patients, including

phenylalanine metabolism, glyoxylate and dicarboxylate

metabolism, aminoacyl-tRNA biosynthesis, citrate cycle (TCA

cycle), tyrosine metabolism, phenylalanine, tyrosine and

tryptophan biosynthesis, valine, leucine and isoleucine

biosynthes i s and tryptophan metabo l i sm (Figure 4 ,

Supplementary Table 2).
FIGURE 4

Analysis of metabolic pathways. The larger the circle in the figure, the greater the influence of the metabolic pathway on the grouping. A redder
color represents a smaller P value, indicating that these pathways warrant greater attention.
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3.4 Correlation analysis of gut microbiota
imbalance and metabolite changes in
CPP patients

To explore the potential role of the gut microbiome in influencing

the onset and progression of CPP through metabolic pathways, we

conducted Spearman correlation analysis. The results indicated that

several metabolites altered in CPP patients were significantly related

to changes in gut microbiota composition. Notably, metabolites
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involved in phenylalanine and tyrosine biosynthesis and

metabolism, including HPHPA, 3,4-dihydroxyhydrocinnamic acid,

homovanillic acid, 3-hydroxyphenylacetic acid, and acetoacetic acid,

which were significantly increased in CPP patients, showed negative

correlations with Anaerotruncus. The decreased metabolites 4-

hydroxyphenylpyruvic acid and phenylacetic acid exhibited

significant positive correlations with Anaerotruncus (Figure 5).

Additionally, metabolites involved in the TCA cycle and

glyoxylate and dicarboxylate metabolism, including isocitric acid,
FIGURE 5

Spearman correlation analysis between differential microbiota at the genus level and differential metabolites. The X-axis represents the microbiota,
and the Y-axis represents the metabolites. The color of the grid represents the correlation coefficient of the corresponding metabolite-microbiota.
As shown in the figure, warm colors represent positive correlations, while cold colors represent negative correlations. Darker colors indicate stronger
correlations. Statistical significance is marked as follows: *P < 0.05, **P < 0.01, ***P < 0.001.
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cis-aconitic acid, citric acid, formic acid and glycolic acid, were

significantly increased in the feces of CPP patients. Correlation

analysis indicated that isocitric acid, cis-aconitic acid and citric acid

were positively correlated with Faecalibacterium, which were

enriched in CPP group, while exhibiting negative correlations

with Anaerotruncus. Formic acid showed a negative correlation

with Prevotella, and glycolic acid was negatively correlated with

Anaerotruncus (Figure 5).

Furthermore, L-tryptophan, a crucial metabolite in tryptophan

metabolism, was significantly reduced in the feces of CPP patients

compared to controls, while oxoadipic acid level was notably

elevated. Correlation analysis showed that Faecalibacterium was

negatively correlated with L-tryptophan and positively correlated

with oxoadipic acid (Figure 5). Collectively, these above results

indicated that the altered metabolites observed in the patients with

CPP were correlated with specific gut microbiota profiles.
3.5 Correlation analysis of altered gut
microbiome and metabolites with serum
hormones in CPP patients

We further analyzed the correlation of changed gut microbiota

and metabolites with serum hormones, including baseline LH, FSH,

E2, and the peak values of LH, FSH, E2 after GnRH stimulation test.

The results showed that Anaerotruncus was negatively correlated

with the peak value of FSH following the GnRH stimulation test,

while Faecalibacterium exhibited a positive correlation with the peak

value of LH after GnRH stimulation test (Supplementary Figure 1).

Moreover, L-tryptophan showed a negatively correlation with the

peak value of LH, and acetoacetic acid showed a positive correlation

with basic LH and FSH levels (Supplementary Figure 2).
4 Discussion

The gut microbiota is a general term for microorganisms residing

in the human intestine. The gut microbiota is closely linked to the

neuroendocrine system and significantly influences the brain-gut-

microbiome axis. Numerous clinical studies have demonstrated

bidirectional interactions within the axis. Gut microbes interact

with the central nervous system through neural, endocrine, and

immune signaling pathways. In turn, the brain can modulate gut

microbiota composition and function (16). Recent studies have noted

that the gut microbiota in the CPP girls resembles that of obese

cohorts (17, 18). Dong et al. identified an association between the gut

microbiota in CPP girls and short-chain fatty acids (SCFAs)

production (17). Additionally, the gut microbiota and its derived

SCFAs have been shown to reverse obesity-induced precocious

puberty in female rats by regulating HPG axis (19). Furthermore,

the imbalance of the gut microbiota can alter nitric oxide synthesis,

which is closely associated with the progression of CPP (20). These

studies highlight the gut microbiota as a significant regulatory

“organ” of the HPG axis. Different from the previous researches,

our study found novel disordered gut microbiota in CPP patients,

particularly involving Faecalibacterium and Anaerotruncus. These
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changes can influence essential metabolic pathways, including

phenylalanine and tyrosine biosynthesis and metabolism, the TCA

cycle, glyoxylate and dicarboxylate metabolism, and tryptophan

metabolism. Our findings provide valuable insights into the

pathogenesis of CPP by integrating specific microbiota profiles and

metabolic disruptions.
4.1 Distinct gut microbial signature in
patients with CPP

Our findings revealed that the most important characteristics of

the disordered gut microbiota in patients with CPP were an increased

abundance of Faecalibacterium and a decreased abundance of

Anaerotruncus. Faecalibacterium, belonging to the phylum

Firmicutes, resides in the human gut and plays a role in various

host metabolic processes. The sole species within this genus,

Faecalibacterium prausnitzii (F. prausnitzii), functions to produce

butyrate. Butyrate, one of the most abundant SCFAs in the colon,

serves as an energy source for colonocytes and plays an important

role in maintaining intestinal health (21). F. prausnitzii has been

associated with many endocrine diseases, such as type 2 diabetes and

polycystic ovary syndrome, with studies noting significant changes in

its abundance in the faces of affected patients (22, 23). While direct

studies on the relationship between F. prausnitzii and CPP are

lacking, researches indicated that its abundance correlate with

hormone levels, such as LH and FSH. F. prausnitzii could impact

the secretion of gut-brain mediators like ghrelin and peptide YY

(PYY), by producing SCFAs. Ghrelin is a peptide that can lead to

adiposity by enhancing the appetite and reducing fat utilization. PYY,

co-localized with GLP-1 in the L-cells of the distal gut. Alterations in

ghrelin and PYY levels subsequently impact the secretion of sex

hormones (LH, FSH, etc.) by influencing kisspeptin neurons through

the HPG axis (23, 24). This finding is consistent with our finding that

Faecalibacterium is positively correlated with the peak value of LH.

Previous studies have shown that Anaerotruncus is associated

with Parkinson’s disease, obesity, and other diseases. Zhang et al.

found that estrogen deficiency induced by ovariectomy led to an

increase in the level of Anaerotruncus in the gut of rats (25). These

results indicated that there is a certain connection and interaction

between serum hormones and Anaerotruncus. In our study, we

found that the abundance of Anaerotruncus in the CPP group was

significantly lower than that in the control group, and

Anaerotruncus was negatively correlated with the peak value of

FSH. We speculate that the decreased Anaerotruncus might lead to

precocious puberty by causing an increase in the level of FSH.

However, the mechanism of the Anaerotruncus-mediated

regulation of HPG axis activation needs to be further explored.
4.2 Patients with CPP have different
metabolite profiles that are related to
different gut microbiota

Through the fecal metabolomic analysis and the correlation

analysis with differential gut microbes, this study identified different
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metabolite profiles and metabolic pathways in CPP patients that

were related to specific gut microbiome. First, the biosynthesis and

metabolism pathways of phenylalanine and tyrosine were

significantly disrupted in the CPP group. This disruption was

evidenced by changes in the levels of various metabolites,

including HPHPA, 3,4-dihydroxyhydrocinnamic acid,

homovanillic acid, 3-hydroxyphenylacetic acid and acetoacetic

a c id , wh i ch were s i gn ifican t l y inc r ea s ed , wh i l e 4 -

hydroxyphenylpyruvic acid and phenylacetic acid were decreased

in the CPP group. Correlation analysis suggested that these altered

metabolites were significantly correlated with Anaerotruncus. Our

previous study found lower levels of phenylalanine and tyrosine,

precursors of catecholamines, alongside higher levels of their major

end products (homovanillic acid and vanillylmandelic acid) in the

urine samples of CPP subjects compared to healthy controls (15).

This suggests that the metabolism of phenylalanine, tyrosine and

catecholamines is disordered in children with CPP. Catecholamines

are critical neurotransmitters in vivo and play an significant role in

regulating GnRH secretion by hypothalamic neurons (26–28). In

this study, we identified the disordered metabolic pathways of

tyrosine and phenylalanine, with a significantly elevated level of

homovanillic acid, the major end metabolite of catecholamine,

consistent with previous findings. Therefore, we hypothesize that

phenylalanine and tyrosine metabolism may regulate GnRH

secretion in the hypothalamus by affecting catecholamine

metabolism. In addition, among the different metabolites,

HPHPA (FC=7.803) and 3,4-dihydroxyhydrocinnamic acid

(FC=10.432) exhibited the largest fold changes compared to the

control group. HPHPA is an abnormal catabolism product of

phenylalanine metabolism in bacteria. Phenylalanine first

generates a tyrosine analogue, m-tyrosine, when it is being

metabolized by gut microorganisms, and m-tyrosine is further

metabolized to generate HPHPA (29, 30). We suggested that

HPHPA may act as a catecholamine analogue and potentially

modulate catecholamine signaling pathway. However, the precise

mechanisms by which HPHPA influences catecholamine signaling

pathway remain unclear. Further investigation is required to

validate this hypothesis and explore the underlying mechanisms

of HPHPA ’s role in the pathophysiology of CPP. 3,4-

dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid

(DHCA), a metabolic product of gut microorganisms, is known to

activate PI3K and Akt phosphorylation, promote insulin secretion,

increase the clearance of peripheral glucose, and affect the body’s

energy balance (31). There is no direct evidence that 3,4-

dihydroxyhydrocinnamic acid is associated with CPP.

Considering that energy metabolism is recognized as a significant

regulator of the kisspeptin/Kiss1r system (13, 32), we hypothesize

that the upregulation of 3,4-dihydroxyhydrocinnamic acid may

affect puberty development through its effects on energy

metabolism. However, further studies are needed to validate

this hypothesis.

Next, we determined that the TCA cycle and glyoxylate and

dicarboxylate metabolism pathways were upregulated in CPP

patients, as evidenced by altered levels of isocitric acid, cis-

aconitic acid, citric acid, formic acid and glycolic acid.
Frontiers in Endocrinology 11
Correlation analysis suggested that these changed metabolites

were positively correlated with Faecalibacterium. The TCA cycle,

also known as the citric acid cycle, is essential for energy

production. The glyoxylate cycle, which is unique to plants and

microorganisms, converts fat into sugar to provide energy and

synthesizes dicarboxylic acid to supplement the TCA cycle (33, 34).

Energy metabolism plays an important role in the onset of puberty,

as it can affect pubertal development through the kisspeptin-Kissr

signal pathway. In conditions of excess energy, such as increased

food intake, there is an upregulation of Kiss1 mRNA expression in

the hypothalamus, leading to elevated LH levels (35, 36). In our

previous study, we observed that prepubertal female rats with

overnutrition experienced earlier onset of puberty, characterized

by decreased expression of ghrelin and increased expression of

GnRH and KISS-1/Kisspeptin in the hypothalamus compared to

malnourished rats. This suggests a link between energy balance and

pubertal development (37, 38). Thus, this study provides further

evidence that energy metabolism plays a significant role in the

development of CPP.

Additionally, we revealed that L-tryptophan, a key component of

the tryptophan metabolism pathway, was significantly lower in CPP

patients compared to the control group, and L-tryptophan was

negatively correlated with Faecalibacterium. Tryptophan is an

essential amino acid, which is initially converted to 5-

hydroxytryptophan by tryptophan hydroxylase. Subsequently, 5-

hydroxytryptophan is further converted to serotonin (5-HT).

Tryptophan crosses the blood−brain barrier and plays a crucial role

in the synthesis of 5-HT in the central nervous system. 5-HT neurons

in the central nervous system can communicate with GnRH neurons

through synaptic transmission, where 5-HT binds to various

receptors on GnRH neurons, eliciting either inhibitory or excitatory

effects. The presence of multiple 5-HT receptors, including 5-HT1A,

5-HT2A, 5-HT2C, 5-HT4, and 5-HT7, allows for complex

modulation of GnRH activity in a time- and dose-dependent

manner. For instance, binding to the 5-HT1A receptor on the

neuronal cell activates Gi protein, resulting in hyperpolarization

and inhibition of the rhythmic intracellular GnRH release (39–41).

Moreover, previous study found that level of 5-hydroxytryptophan

was significantly lower in the urine of CPP subjects, while levels of 5-

hydroxyindoleacetic acid and 5-hydroxykynurenamine were elevated,

suggesting upregulation of the 5-HT metabolic pathway in the CPP

population (15). Our correlation analysis further indicates that L-

tryptophan is negatively correlated with peak value of LH. Based on

these findings, we hypothesize that gut microbiota in CPP subjects

may modulate the tryptophan-5-HT pathway, reducing 5-HT

synthesis in the hypothalamus, thus diminishing its inhibitory effect

on GnRH neurons. This could lead to increased expression of LH and

related sex hormones, facilitating initiation of pubertal

sexual development.
5 Conclusions

Our study revealed the gut microbial and metabolite

characteristics associated with CPP by integrating microbiomics
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and metabolomics approaches. The most important characteristics

of the disordered gut microbiota, at the genus level, were an

increased abundance of Faecalibacterium and a decreased

abundance of Anaerotruncus. These gut microbiota changes

appear to influence various metabolites and participate in the

regulation of several key metabolic pathways, including

phenylalanine and tyrosine biosynthesis and metabolism, the

TCA cycle, glyoxylate and dicarboxylate metabolism, and

tryptophan metabolism. These findings suggest that the gut

microbiome may be involved in the onset and progression of CPP

through altering the metabolic profile. However, there are some

limitations of our study. First, our current findings are purely

associative and do not establish a causal relationship between the

observed alterations and CPP. Furthermore, we cannot exclude the

possibilities that the changes in the gut microbiome and metabolite

profiles might be secondary to, or coincident with, CPP or other

symptoms associated with the condition. This is hoped to be further

investigated. Additionally, this study only included female

participants. Given that puberty itself is sexual different, the

underlying mechanisms may differ between girls and boys. As

such, it is uncertain whether the findings and conclusions of this

study are applicable to boys. Future studies are needed to investigate

potential sex-specific differences in the mechanisms of CPP.

Overall, this study contributes to the understanding of the

interaction between gut microbiota metabolomics and CPP,

which will be of great significance for the clinical diagnosis and

treatment of CPP in the future.
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SUPPLEMENTARY FIGURE 1

Spearman correlation analysis between changed gut microbiota and serum
hormones. LH_base, FSH_base and E2_base refer to the baseline levels of

serum sex hormones, while LH_peak, FSH_peak and E2_peak refer to the

peak values of serum sex hormones after the GnRH stimulation test. *P <
0.05, **P < 0.01.

SUPPLEMENTARY FIGURE 2

Spearman correlation analysis between changed metabolites and serum
hormones. LH_base, FSH_base and E2_base refer to the baseline levels of

serum sex hormones, while LH_peak, FSH_peak and E2_peak refer to the

peak values of serum sex hormones after the GnRH stimulation test.
*P < 0.05.
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