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Background: Type 2 Diabetes (T2D) is a complex condition marked by insulin

resistance and beta-cell dysfunction. Traditional dietary interventions, such as

low-calorie or low-carbohydrate diets, typically overlook individual variability in

postprandial glycemic responses (PPGRs), which can lead to suboptimal

management of the disease. Recent advancements suggest that personalized

nutrition, tailored to individual metabolic profiles, may enhance the effectiveness

of T2D management.

Objective: This study aims to present the development and application of a

Digital Twin (DT) technology—a machine learning (ML)-powered platform

designed to predict and modulate PPGRs in T2D patients. By integrating

continuous glucose monitoring (CGM), dietary data, and other physiological

inputs, the DT provides individualized dietary recommendations to improve

insulin sensitivity, reduce hyperinsulinemia, and support the remission of T2D.

Methods: We developed a sophisticated DT platform that synthesizes real-time

data from CGM, dietary logs, and other biometric inputs to create personalized

metabolic models for T2D patients. The intervention is delivered via a mobile

application, which dynamically adjusts dietary recommendations based on

predicted PPGRs. This methodology is validated through a randomized

controlled trial (RCT) assessing its impact on various metabolic markers,

including HbA1c, metabolic-associated fatty liver disease (MAFLD), blood

pressure, body weight, ASCVD risk, albuminuria, and diabetic retinopathy.

Results: Preliminary data from the ongoing RCT and real-world study

demonstrate the DT’s capacity to generate significant improvements in

glycemic control and metabolic health. The DT-driven personalized nutrition

plan has been associated with reductions in HbA1c, enhanced beta-cell function,

and normalization of hyperinsulinemia, supporting sustained T2D remission.

Additionally, the DT’s predictions have contributed to improvements in MAFLD

markers, blood pressure, and cardiovascular risk factors, highlighting its potential

as a comprehensive management tool.
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Conclusion: The DT technology represents a novel and scalable approach to

personalized nutrition in T2D management. By addressing individual variability in

PPGRs, this method offers a promising alternative to conventional dietary

interventions, with the potential to improve long-term outcomes and reduce

the global burden of T2D.
KEYWORDS
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Introduction

Type 2 Diabetes (T2D) is a complex metabolic disorder

characterized by chronic hyperglycemia, driven by a combination

of insulin resistance and impaired beta-cell function (1). The global

rise in T2D prevalence has resulted in significant healthcare

burdens, particularly due to complications such as cardiovascular

disease, nephropathy, and neuropathy (2). Traditional management

approaches, including pharmacotherapy and standardized

nutritional guidelines, often fail to achieve long-term glycemic

control and remission. This shortcoming is largely due to the

inability of these approaches to address the significant

interindividual variability in metabolic responses (2).

Conventional “one-size-fits-all” nutritional strategies are typically

based on population averages, which often disregard the unique

physiological and metabolic profiles of individual patients (3). This

can lead to suboptimal outcomes, even with tightly controlled lifestyle

interventions, as results can vary widely across different individuals

(4). This variability is particularly evident in postprandial glycemic

responses (PPGRs), where significant differences are observed among

individuals consuming the same meal (5).

Low-calorie and low-carbohydrate diets are common approaches

in T2D management, but both have limitations. Calorie-restricted

diets, such as those in the Diabetes Remission Clinical Trial

(DiRECT) trial, reduce hyperinsulinemia and hepatic fat, improving

insulin resistance and lowering glucose output (6). However, these diets

can risk causing protein malnutrition, micronutrient deficiencies (7),

and essential fatty acid shortages, potentially leading to adverse

outcomes such as cardiac arrhythmias (8), increased mortality, and

rebound weight gain, which may trigger T2D relapse after remission

(9). Similarly, low-carbohydrate diets, which focus on reducing

macronutrient intake, can achieve similar results by lowering glucose

spikes, reducing glucolipotoxicity, and enhancing beta-cell function.

However, they often overlook other critical factors that influence

PPGRs and fail to account for individual variability, resulting in low

remission rates, typically around 4-10% after one year (10).

The limitations of these conventional approaches highlight the

need for a more personalized strategy in managing T2D. Recent

advancements in personalized nutrition propose a novel approach

to managing T2D by tailoring dietary recommendations based on
02
individual metabolic characteristics. Personalized nutrition

considers factors such as genetics, gut microbiome composition,

habitual diet, and lifestyle elements like physical activity and sleep

patterns. Machine learning (ML) algorithms used to predict PPGRs

based on dietary, anthropometric, physical activity, and gut

microbiota data have demonstrated promising accuracy, with

validation in independent cohorts. However, most data-driven

approaches, including metabolic phenotyping and predictive

model development, have primarily focused on non-diabetic and

prediabetic populations. These models have yet to fully address the

complexities of predicting PPGRs in individuals with T2D, who

experience greater glycemic variability and often use glucose-

lowering medications, complicating predictions compared to non-

diabetic populations (11).

Recent studies have revealed significant variability in PPGRs

among individuals consuming the same standardized meal. The

linear regression between PPGRs and carbohydrate content was

positive for nearly all participants (95.1%), indicating higher PPGRs

with carbohydrate-rich meals. However, the degree of carbohydrate

sensitivity varied widely, reflecting the broad spectrum of glycemic

responses among individuals, independent of carbohydrate

consumption levels (12).

The Personalized Responses to Dietary Composition Trial 1

(PREDICT 1) clinical trial quantified and predicted individual

variations in postprandial triglyceride, glucose, and insulin

responses to standardized meals (13). The study revealed significant

variability, even among identical twins, driven largely by modifiable

factors. For instance, gut microbiome composition accounted for a

considerable portion of these variations, underscoring the importance

of non-genetic influences on metabolic responses. Additionally,

factors such as meal timing, sleep, and physical activity were found

to be particularly predictive of postprandial responses, while genetics

played a less significant role than previously believed. MLmodels that

incorporated these variables accurately predicted individual

postprandial triglyceride and glycemic responses, with consistent

validation results in a U.S. cohort. These findings challenge the

effectiveness of standardized dietary recommendations and support

the potential of personalized nutrition for broader disease prevention.

However, the PREDICT 1 study had limitations, particularly when

compared to findings from the Israeli cohort (11). The correlation of
frontiersin.org

https://doi.org/10.3389/fendo.2024.1485464
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shamanna et al. 10.3389/fendo.2024.1485464
intra-individual PPGRs in PREDICT 1 was lower, possibly due to the

choice of a standardized meal (bagel and cream cheese), which may

not have elicited consistent glycemic responses compared to meals

used in the Israeli cohort. Additionally, PPGR prediction accuracy in

the PREDICT 1 cohort was slightly lower, suggesting that meal

composition and other population-specific factors may have

affected model performance (13).

Among European adults, personalized nutrition advice

delivered via the internet produced larger and more appropriate

changes in dietary behavior than conventional approaches.

However, the online nature of this study limited the range of

measures, with some key health biomarkers, like blood pressure,

not recorded. Data were self-reported or collected remotely,

introducing potential measurement errors (14).

In response to the limitations of conventional strategies, we

developed and implemented Digital Twin (DT) technology (15–

17). This advanced approach addresses the shortcomings of

previous models (11, 13) by offering a more personalized method

for predicting PPGRs in individuals with T2D. Unlike models

focused on non-diabetic or prediabetic populations (11), DT

technology integrates continuous glucose monitoring (CGM) data,

medication use, dietary logs, physical activity, and other physiological

metrics specific to T2D patients. This allows the DTmodel to account

for the greater glycemic variability and complex medication regimens

typical in these individuals. The DT approach represents a significant

advancement in T2D management by creating a comprehensive,

personalized intervention that addresses the multifaceted nature of

the disease (18).

By combining CGM data, dietary logs, physical activity, and

other inputs, the DT system creates a dynamic, individualized

model of a patient’s metabolism. Using machine learning

algorithms, it predicts personalized PPGRs and generates real-

time dietary recommendations to minimize glucose fluctuations,

thereby optimizing glycemic control and potentially enabling T2D

remission. The predictive accuracy of DT technology has been

validated in a randomized controlled trial (RCT) (18), showing

significant improvements in both glycemic control and

personalized dietary recommendations. These DT-driven

interventions allowed for more precise, real-time dietary

adjustments, leading to better overall metabolic health and

increased rates of T2D remission.

This personalized approach, accessible through mobile and web

applications, enables real-time assessments of how specific foods

affect blood glucose levels. It offers benefits comparable to low-

calorie or low-carbohydrate diets but without the need for extreme

dietary restrictions. Instead, patients can achieve similar results—

such as reducing hepatic and pancreatic fat, improving insulin

resistance, and promoting remission—using home-cooked meals

rather than meal replacements (18).

Clinical application of DT technology has shown significant

promise in managing T2D. Patients following the DT-guided

personalized nutrition plan have experienced notable improvements

in glycemic control, with many achieving remission. Additionally, DT

technology supports weight management, reduces insulin resistance,

and improves related metabolic parameters such as blood pressure and

lipid profiles (18, 19).
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This DT technology represents a significant shift towards

precision medicine in T2D care by focusing on individual needs

rather than relying on generalized dietary advice. The scalability

and integration of DT technology with digital health tools position

it as a promising approach for widespread application in T2D

management and prevention. In this methods article, we will detail

the design and implementation of the DT technology, discuss the

underlying ML algorithms, and explore its clinical applications and

outcomes. Our findings emphasize the potential of personalized

nutrition, driven by advanced digital technology, to transform T2D

management, offering a pathway to sustained remission and

improved quality of life for patients.
Materials and equipment

The DT intervention leverages ML algorithms and the Internet

of Things (IoT) to create digital replicas, or “twins,” of individuals,

enabling personalized management of T2D through predictive

modeling (15–17). This system integrates CGM, precision

nutrition, physical activity, sleep patterns, and stress management

data to deliver tailored recommendations. Implementation requires

advanced digital tools, wearable devices, ML algorithms, and

laboratory tests.

The platform primarily uses the CatBoostRegressor algorithm

to predict PPGRs, continuously refining its accuracy with new data.

Additionally, Random Forest models enhance predictive

capabilities, specifically for PPGR predictions. The process begins

with baseline data collection, including demographics, dietary

habits, physical activity levels, sleep patterns, and bloodwork. This

data is integrated into the DT platform alongside CGM readings to

build a personalized metabolic model for each patient, which is used

to predict PPGRs. The platform is powered by specialized engines—

Nutrition, Medicine, Activity, Sleep, and Breathing—that analyze

various health parameters to deliver a holistic approach to T2D

management. It also monitors factors related to patient satisfaction,

such as taste preferences and engagement (Figure 1).

Continuous monitoring via CGM and wearable devices is a key

feature of the DT platform. Devices like the Abbott FreeStyle Libre

Pro® CGM provide real-time glucose monitoring, while the Fitbit

Charge 2® tracks physical activity and sleep patterns. Blood

pressure and body composition are also monitored using

Bluetooth-enabled devices like the TAIDOC® TD-3140 blood

pressure monitor and Powermax® BCA-130 Smart Scale,

respectively. These devices sync with the DT platform, allowing

seamless health data transmission and analysis. Calibration

standards and educational materials are provided to patients to

ensure proper use of the monitoring devices and active engagement

with the DT technology.

Patients interact with the system through the Whole Body

Digital Twin® (WBDT) mobile app (Figure 2), available for both

Android and iOS, to log meals, receive real-time nutritional

recommendations, and monitor their health metrics. The app is

supported by a comprehensive food database containing over

100,000 food items from the United States Department of

Agriculture’s (USDA) FoodData Central and National Institute of
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Nutrition (NIN), which assists users in accurately logging

dietary intake.

At the outset of the program, participants undergo comprehensive

blood tests, including panels for HbA1c, fasting glucose, lipid profiles,

and liver function. These tests are repeated periodically to track

metabolic changes and guide treatment adjustments.

The DT platform includes a telehealth component for remote

patient monitoring and communication with healthcare providers,

enabling real-time consultation and timely adjustments to

treatment plans. Medications are individualized based on CGM

readings and adjusted following standardized protocols. The DT

Care app is used by healthcare providers to monitor patient

progress, manage medications, and provide ongoing support.

Through continuous monitoring and data-driven adjustments,

the DT technology is particularly effective in reducing

hyperinsulinemia, improving insulin sensitivity, and supporting

T2D remission. It also aids in managing broader metabolic

conditions such as obesity, hypertension, and dyslipidemia. Long-

term monitoring enables proactive treatment adjustments and early

intervention, helping prevent metabolic deterioration.
Methods

The primary objective of this study was to implement and

validate DT technology for personalized management of T2D. The

DT system was designed to predict and optimize PPGRs, reduce

hyperinsulinemia, enhance insulin sensitivity, and facilitate T2D

remission. The validation process evaluated the accuracy of

predictive algorithms, the effectiveness of personalized dietary

interventions, and clinical outcomes in patients.
Frontiers in Endocrinology 04
Data collection and setup

The DT program was operationalized through patient onboarding,

which included instructions on using monitoring devices and logging

dietary intake via a mobile app. Comprehensive data collection

involved gathering demographic details, dietary habits, physical

activity, sleep patterns, and bloodwork. Each patient was equipped

with CGMs, sensor watches, blood pressure monitors, and body

composition scales, synchronized with the DT platform. The initial

setup took 1–2 hours per patient, providing the foundation for building

the DT. Data preprocessing involved cleaning raw CGM and sensor

data, removing outliers, correcting errors, and handling missing values

through interpolation. Dietary logs were standardized to ensure data

consistency, critical for model development and analysis.

In parallel, continuous time series glucose data were collected

from CGMs. Metrics such as weight, height, HbA1c, medications

like Gliclazide, Glimepiride, and Metformin, and other clinical

parameters were recorded during doctor’s visits. Data from

activity trackers, such as steps, minutes asleep, and active

minutes, were also collected. Nutritional data, including calories,

carbohydrates, proteins, fats, fibers, glycemic index, and glycemic

load, were calculated from the Precision Nutrition Database, while

meal types (e.g., breakfast, lunch) and quantities were logged

by patients.

The DT platform addresses variability in data quality through

multiple safeguards and adaptive algorithms. It employs real-time

error detection to flag anomalies, continuously updates predictions

using recent trends, and leverages long-term patterns and cohort-

based models to ensure reliable outputs despite intermittent data. A

feedback loop prompts users to validate and correct discrepancies,

supporting robust, personalized recommendations.
FIGURE 1

Digital Twin Platform: Member’s Whole Body Digital Twin for Chronic Disease Reversal. This figure illustrates the Digital Twin Platform’s use of real-
time sensor data to create a Whole Body Digital Twin, enabling continuous, personalized health interventions across various domains for optimal
well-being.
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Data reliability is ensured through automated validation, user

feedback for corrections, baseline validation to monitor deviations,

and reminders for sensor calibration. Cross-validation across

biometric sources further enhances data consistency, ensuring

accurate predictions.

Outliers are managed through automated detection of

deviations from historical trends, data imputation to fill gaps, and

weight adjustments to minimize the impact of anomalies. The

feedback loop engages users to confirm flagged data, capturing

true responses while excluding errors for reliable predictions.
Frontiers in Endocrinology 05
Ethical and legal compliance in data
privacy, security, and patient confidentiality

The DT platform adheres to stringent ethical and legal

standards through comprehensive protocols for informed consent,

data protection, and compliance with international regulations like

Health Insurance Portability and Accountability Act (HIPAA),

General Data Protection Regulation (GDPR), and India’s Personal

Data Protection Bill (PDPB). Informed consent is obtained digitally,

with options for patients to opt in or out of specific data-sharing

functionalities, and consent preferences can be modified at any

time. The platform ensures secure telehealth sessions through end-

to-end encryption, and consent discussions are documented (with

permission) to verify compliance. Data is stored locally based on

regional regulations (e.g., within the EU for GDPR and in certified

US centers for HIPAA). For cross-border transfers, secure

mechanisms like Standard Contractual Clauses (SCCs) are used.

Data is minimized, anonymized, or pseudonymized where feasible,

and access is controlled using Role-Based Access Control (RBAC),

with regular audits to monitor compliance.

Sensitive data is encrypted using AES-256 for storage and

Transport Layer Security (TLS) 1.2+ for transmission, with multi-

factor authentication (MFA) enforced for all users. The platform

also includes safeguards against device malfunctions, and patient

rights, such as viewing, downloading, or deleting data, are upheld

globally. In case of data breaches, affected patients and regulatory

authorities are notified within 72 hours, as per GDPR. Ethical

oversight is provided by a dedicated Ethics Review Board, and

patient feedback is routinely collected to ensure the system aligns

with ethical guidelines.

Additionally, in the clinical study, all participants provided

written informed consent detailing the study’s nature and wearable

device usage. Patient data was anonymized using unique identifiers,

with personal data stored separately in encrypted, HIPAA-compliant

databases accessible only to authorized personnel. Security measures,

including Advanced Encryption Standard - 256 bit (AES-256)

encryption and TLS, were employed to protect data at all stages,

and regular audits were conducted to ensure compliance.
Machine learning model

A personalized PPGR prediction model (Figures 3, 4A, B), the

Glucose Impact ML Model, was developed using patient-specific

data. This model, leveraging features such as meal composition,

historical glycemic responses, physical activity, and sleep patterns,

allowed individualized predictions of glucose peaks (‘glucoseMax’)

and the relative impact of various foods. Input features (Figure 5)

included 37 variables, such as calories, carbohydrates, proteins, fats,

fiber, glycemic index, recent glucose trends, medications, sleep, and

activity metrics. The model predicted glucose peaks within specific

meal-time windows and normalized them against each patient’s

baseline glucose level, which was penalized based on medication use

to reflect artificially reduced glucose baselines.
FIGURE 2

Whole Body Digital Twin® (WBDT) mobile app User Interface. The
WBDT Member App interface centers on the daily Action Score,
which aggregates data from health modules like Sleep, Breathing,
Activity, Nutrition, and Medicine. Users receive actionable steps,
such as measuring weight, to stay aligned with their personalized
health plan. The app promotes seamless interaction with health
metrics, encouraging consistent engagement.
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Two machine learning algorithms, CatBoostRegressor and

Random Forest , were employed for prediction tasks .

CatBoostRegressor was chosen for its ability to handle categorical

variables and reduce overfitting, using gradient boosting to enhance

model accuracy. Random Forest was selected for its robustness in

modeling non-linear relationships between variables such as time of

day, food types, and glucose levels. The key model parameters

included the number of trees (n_estimators), typically set between

100 and 300, and the maximum depth (max_depth), which ranged

from 3 to 7 to control tree complexity. The minimum number of

samples required to split an internal node (min_samples_split) was

set to 2, ensuring that nodes only split when at least two samples are

present. Additionally, feature subsampling (max_features) was used

to define the number of features considered at each split, commonly

set to the square root of the total number of features, to prevent
Frontiers in Endocrinology 06
overfitting and enhance model generalization. Random Forest

Ensemble Equation: Each tree in the Random Forest produces an

independent prediction. The final prediction is the average of all

individual trees: ŷ = (1=T)oht(x)

t = 1
where: ŷ = Final ensemble prediction; T = Total number of trees
in the forest; ht(x) = Prediction from the t-th decision tree for a

given input x.

The models were implemented using Python (v3.8) with

relevant libraries, including CatBoost (v0.26), scikit-learn

(v0.24.2), and pandas (v1.3.3). Statistical analyses were conducted

using R software (v4.3.1), and visualizations were created using

Matplotlib (v3.4.3).
Model assumptions

Several assumptions were made to enhance model performance:
• Independence of Residuals: Residuals between predicted

and observed glucose levels were assumed to be

independent and normally distributed.

• Feature Stability: Relationships between input features and

PPGR outcomes were assumed to remain stable over time.

• Minimal Multicollinearity: The models were structured to

minimize multicollinearity and ensure independent

contributions from each feature.
Model performance metrics

Model performance was evaluated using keymetrics (Table 1) such

as mean squared error (MSE), root mean squared error (RMSE), mean

absolute error (MAE), R-squared (R²), and the area under the receiver

operating characteristic curve (AUC-ROC) for classification tasks.

MSE, defined as MSE = (1/N) * S (y_i − ŷ_i)², was used to quantify

average squared differences between actual and predicted values, where

lower values indicate better predictive accuracy. For glucose

predictions, an MSE range of 50 to 100 is generally acceptable for

meal-induced glucose spikes, and our model achieved anMSE between

45 and 55, demonstrating strong predictive performance. Similarly,

RMSE, calculated as √(1/N S(yi - ŷi)²), provides an overall measure of

prediction quality and is sensitive to large errors. An RMSE of 24.96

mg/dL for glucose peak predictions indicates that the predicted glucose

levels were, on average, within 24.96 mg/dL of the actual values.

MAE, defined as (1/N) S|yi - ŷi|, measures the average magnitude

of errors without considering their direction and is less sensitive to

large deviations. An MAE of 17.21 mg/dL suggests that, on average,

the predicted glucose levels deviated by ±17.21 mg/dL from actual

values, with 91% of predictions falling within 40 points of actual

values. R-squared (R²), given by 1 - S(yi - ŷi)²/S(yi - ȳ)², quantifies the
proportion of variance in the dependent variable explained by the

model, with values closer to 1 indicating better predictive power. Our

model achieved an R² value of >0.85, indicating that it captured over

85% of the variability in glucose levels, demonstrating strong

predictive power.
FIGURE 3

Flowchart illustrating the process for training a machine-learned
model to output a representation of a patient’s metabolic health.
This figure outlines the process used by the digital twin module to
train a machine-learning model for predicting a patient’s metabolic
state. The process begins with retrieving historical biological and
patient data (710) to train a baseline model (720) reflecting
population-level trends. Next, a patient-specific dataset (730) is
generated, and a personalized model (740) is trained to predict
individual metabolic responses. Finally, current biological and patient
data are inputted into the trained model (750) to output real-time
metabolic states. Data sources include lab tests, sensor data, and
patient-recorded measurements, enabling precise metabolic
monitoring and health predictions. This figure is taken from the
patent US 2021/0196195 A1.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1485464
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shamanna et al. 10.3389/fendo.2024.1485464
FIGURE 4

Process of Predicting and Verifying Patient-Specific Metabolic Responses Using a Machine-Learned Model. (A) This figure depicts the process of
implementing a machine-learned model to predict a patient’s specific metabolic response. The model uses wearable sensor data (805), lab test data
(810), and symptom data (815) to establish an initial metabolic state (825). Once sufficient training data for a patient exists, the digital twin module
(450) can predict the patient’s metabolic response (850) based on input biosignals (830), such as nutrition (835), medication (840), and lifestyle data
(845). The predicted metabolic response reflects changes in the patient’s health, corresponding to the input biosignals. (B) This figure illustrates the
comparison process between a patient’s predicted metabolic state and true metabolic state. During a given time period, wearable sensor data (805),
lab test data (810), and symptom data (815) are used to generate a patient’s true metabolic state (860) via the digital twin module (450).
Simultaneously, input biosignals (830), such as nutrition, medication, and lifestyle data, are processed to predict the patient’s metabolic state (870).
The Response Review Module (880) compares the true and predicted metabolic states to identify discrepancies, helping detect any errors in the
biosignal inputs that might have contributed to the differences. This figure is taken from the patent US 2021/0196195 A1.
FIGURE 5

Predictor Features for Digital Twin Model Development. The predictor model includes demographic info (age, sex, BMI, gender), activity level (steps,
active/sedentary minutes), sleep data, blood test results (HbA1c, HOMA), food nutrition data, recent glucose features, medications, and time of day.
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For classification tasks, AUC-ROC was employed to assess the

model’s ability to differentiate between positive and negative classes,

with scores ranging from 0.5 (no discrimination) to 1 (perfect

discrimination). Our model achieved an AUC-ROC score of >0.85,

indicating excellent discriminatory capability in distinguishing between

glucose spikes and non-spikes. To confirm statistical significance, exact

p-values (p < 0.05) were calculated, along with 95% confidence

intervals and effect sizes to quantify the strength of the

observed relationships.

We used the Multiple Imputation by Chained Equations

(MICE) method to handle missing data, which involves

generating five imputed datasets based on observed patterns. Each

variable with missing values was modeled using linear regression

(for continuous variables) or multinomial logistic regression (for

categorical variables). Results from the imputed datasets were

pooled using Rubin’s Rules to account for uncertainty and variance.

To assess the robustness of the findings, sensitivity analyses were

conducted, including complete case analysis, testing with different

imputation methods (Predictive Mean Matching, Random Forest),
Frontiers in Endocrinology 08
substituting extreme values, and evaluating the impact on key

outcomes like HbA1c and glycemic variability. These analyses

showed that the study’s conclusions remained consistent, confirming

that the imputation process did not significantly alter the results.
Cross-validation and overfitting prevention

To ensure model robustness and minimize overfitting, k-fold

cross-validation (k=5) was implemented with a two-week gap

between training and validation data to simulate real-world

fluctuations. In this setup, the data was divided into five folds,

with each fold serving as the validation set once while the remaining

four were used for training. The results were averaged across the

folds to enhance generalization and avoid overfitting.

Additionally, an 80-20 split was used initially, with 80% of the

data allocated for training and 20% for validation. To optimize

model performance, grid search was employed to fine-tune

hyperparameters such as learning rate and tree depth.

Regularization techniques, including L2 regularization and early

stopping, were applied to mitigate overfitting. The model was

continuously retrained with new data to maintain real-time

accuracy, reducing variance and improving long-term performance.
Hyperparameter selection process
1. Optimization Strategy:
C Hyperparameter tuning was conducted using grid

search and randomized search approaches.

C For the 1-Day Glucose (1DG) model, the primary

hyperparameters optimized include:

▪ Number of Trees (n_estimators): Typically

ranged between 100 and 500.

▪ Learning Rate (learning_rate): Set between

0.01 and 0.1.

▪ Max Depth (max_depth): Set between 3

and 5.

▪ Subsample: Set to 0.8 to reduce overfitting.
2. Nested Cross-Validation:
C Nested cross-validation involved two levels:

▪ Inner Loop: Used for hyperparameter tuning.

▪ Outer Loop: Used for performance evaluation.

C This strategy ensured that hyperparameters were

optimized on separate folds, minimizing data leakage

and ensuring reliable performance evaluation.
Model-specific hyperparameters
1. CatBoostRegressor and Random Forest were used for

predicting glucose peaks and variability:
TABLE 1 Model performance metrics.

Metric Value Clinical Relevance

RMSE
24.96
mg/dL

Shows that predicted glucose peaks are within 24.96
mg/dL of actual values. Suitable for evaluating glucose
variability. Supports accurate decision-making around
medication and dietary adjustments. Suggests that the
model is capable of accurately predicting glucose
excursions, thus preventing adverse glycemic events
such as hyperglycemia or hypoglycemia.

MAE
17.21
mg/dL

Average absolute deviation between predicted and
actual values, indicating precision of dietary
recommendations. An MAE below 20 mg/dL is
considered clinically acceptable for guiding dietary and
lifestyle recommendations. Supports decision-making
about meal planning and carbohydrate intake. This
level of precision also supports maintaining glucose
within the recommended time-in-range (TIR) of 70–
180 mg/dL, thereby improving glycemic control.

R2 > 0.85

High R2 indicates strong predictive power. This means
that the model can reliably predict the impact of
various factors (such as meal composition and timing)
on blood glucose levels. For clinicians and patients, a
high R² value translates to more accurate predictions of
postprandial glucose responses, enabling more precise
dietary and medication recommendations. This level of
predictive power is crucial in preventing unexpected
glycemic excursions and achieving optimal
glycemic control.

AUC-ROC > 0.85

Measures the model’s ability to classify glucose spikes
accurately, with a high true positive rate and a low
false positive rate. An AUC-ROC above 0.85 supports
identifying potential hyperglycemic events and
enabling timely interventions such as adjusting insulin
dosages or modifying meal recommendations to
prevent hyperglycemic episodes.
This table summarizes the key performance metrics used to evaluate the personalized
postprandial glycemic responses (PPGR) prediction model. Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) quantify the model’s prediction accuracy, with
lower values indicating better precision. R-squared (R²) measures the proportion of variance
explained by the model, where values above 0.85 indicate strong predictive power. The Area
Under the Receiver Operating Characteristic Curve (AUC-ROC) assesses classification
performance, with an AUC-ROC score of >0.85 demonstrating reliable identification of
glucose spikes.
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C CatBoostRegressor: Effective in handling categorical

var iab les and reduc ing overfi t t ing us ing

gradient boosting.

C Random Forest: Utilized for its robustness in

modeling non-linear relationships between

variables such as food type, meal timing, and

glucose trends.
Generating and validating
dietary recommendations

1. Overview of the Dietary Recommendation System

(DT System)
C The DT system uses machine learning to predict personalized

PPGRs for various foods and meal configurations, generating

real-time dietary recommendations to optimize glycemic

control and support T2D remission. By integrating patient

data, CGM, and predictive modeling, the DT system adapts

dynamically to individual metabolic responses and

preferences, adjusting recommendations based on real-time

feedback and lifestyle patterns.
2. Data Input and Feature Engineering

The dietary recommendation system requires comprehensive

input data to build accurate and personalized predictions. The

primary inputs include:
Patient Profile:
C Baseline Clinical Parameters: Age, gender, BMI,

waist circumference, insulin sensitivity index, and

duration of diabetes.

C Metabolic Markers: Fasting glucose, HbA1c, lipid

profile, and blood pressure.

C Medication Usage: Type and dosage of glucose-

lowering medications (e.g., Metformin, GLP-1

agonists, SGLT-2 inhibitors).

C Exercise and Sleep Patterns: Physical activity

frequency, step counts, sleep duration, and quality.
Meal and Nutrition Data:
C Macronutrient Composition: Proportions of

carbohydrates, proteins, and fats.

C Glycemic Index (GI) and Glycemic Load (GL): Used

to estimate the glycemic impact of each food item.

C Meal Timing and Portion Size: Timing, portion size,

and food combinations (e.g., breakfast, lunch,

dinner, or snacks).
Real-Time Data:
C Continuous Glucose Monitoring (CGM): Real-time

glucose fluctuations before and after meals.

C Activity Levels: Steps, active minutes, and

sedentary periods.
Endocrinology 09
C Sleep Patterns: Sleep efficiency, disturbances,

and patterns.
Feature Engineering Process:
C The input data is transformed into a high-

dimensional feature set that captures interactions

between food items, their timing, and patient-

specific responses. For example:

▪ Carbohydrate-to-Protein Ratio: To measure

the impact of macronutrient combinations on

glycemic variability.

▪ Time Since Last Meal: Represents how meal

spacing affects subsequent PPGR.

▪ Previous Glucose Trends: Captures the rate of

change in glucose levels over time to reflect

temporal dependencies.
3. Method for Generating Dietary Recommendations

The core of the DT system is a machine learning model that

predicts the expected PPGR for different food items and

combinations. This model is built using a hybrid architecture that

integrates two major components:
Gradient Boosting Machine (GBM):
C Purpose: Handles structured and static data like

nutrient composition, patient demographics, and

baseline metabolic parameters.

C Key Parameters:

▪ Number of Trees: Typically set between 100

to 500.

▪ Learning Rate: Set between 0.01 to 0.1 to

control the contribution of each additional tree.

▪ Max Depth : Se t to 3-5 to manage

model complexity.
Long Short-Term Memory (LSTM) Network:
C Purpose: Captures sequential dependencies and

temporal relationships between consecutive glucose

readings, meals, and physical activity.

C Key Parameters:

▪ Number of Units: Set between 50 to 200

depending on the model’s complexity.

▪ Dropout Rate: Set between 0.2 and 0.5 to

prevent overfitting.

▪ Learn ing Rate : F ixed a t 0 .001 for

Adam optimizer.

C Data Integration: Inputs include nutritional data (e.g.,

macronutrients, glycemic index), patient features (e.g.,

age, BMI, medication), meal timing, and real-time

CGM data. Additional features like “carbohydrate-to-

protein ratio” and “previous glycemic trend” are

created through feature engineering.

C PPGR Prediction Model: Combines Gradient

Boosting Machine (GBM) and Long Short-Term

Memory (LSTM) networks. The GBM handles

static features like nutritional content, while the
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LSTM captures temporal dependencies. The model

equation is defined as: PPGR(t) = f(S wi · f(ht, xi))
where:

- PPGR(t) = Predicted postprandial glucose

response at time t.

- wi = Learned weight for each feature.

- f(ht, xi) = Feature interaction function that

considers temporal dependencies (ht) and

static features (xi).

- f = Predictive function that maps the combined

features to the PPGR value.
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4. Dietary Recommendation Engine

The dietary recommendation engine processes the PPGR

predictions to generate meal recommendations that align with the

patient’s glycemic targets and nutritional requirements. It follows a

multi-objective optimization strategy that incorporates the

following steps:
Optimization Function: The recommendation process is

guided by an optimization function that seeks to

minimize glycemic variability while maximizing

nutritional quality and adhering to patient preferences.

The objective function is defined as:

Recommendation

= arg min _ food(PPGR _ predicted + l1

· Nutrient Variability + l2 · Patient Preferences)

where:

argminfood means the system is searching for the food

item that results in the smallest value of the objective function

PPGR_p r e d i c t e d = P r e d i c t e d p o s t p r a n d i a l

glycemic response.

l1 = = Regularization parameter for nutrient variability.

l2 = Regu l a r i z a t i on pa rame te r fo r pa t i en t -

specific preferences.

Personalized Recommendation Criteria:
C Minimization of Predicted PPGR: Foods and meal

combinations with lower predicted PPGRs

are prioritized.

C Nutrient Density: Meals must maintain a balance of

proteins, vitamins, and essential nutrients to support

overall health.

C Patient Preferences and Restrictions: Incorporates

dietary restrictions (e.g., vegetarian diets, food

allergies) and lifestyle choices.
Real-Time Adjustment Mechanism:
C The DT system integrates real-time CGM feedback to

iteratively refine the recommendations. If a meal

generates a higher-than-expected glycemic

excursion, the model is retrained using the new data

to update future predictions and recommendations.
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C A Corrective Model is used to adjust for unexpected

variations, incorporating recent meal responses and

glycemic outcomes.
5. Ranking and Selection: The Glucose Impact Model enabled

classification of foods into three categories:
• Green For You (GFY): Foods with minimal glycemic

impact, recommended for unrestricted consumption.

• Orange For You (OFY): Foods with moderate impact, to be

consumed sparingly.

• Red For You (RFY): Foods with high impact, recommended

to be avoided.

These recommendations were derived from a Nutrition

Rules Table (NRT) and dynamically adjusted based on each

patient’s evolving metabolic state.
6. Validation and Evaluation of Dietary Recommendations
The validation process includes short-term and long-term

evaluations to ensure that the recommendations produce

desired clinical outcomes:
C Short-Term Validation: Recommendations are

validated using real-world CGMdata. Metrics include:

▪ MAE: Average error between predicted and

actual PPGR.

▪ RMSE: Precision of glucose peak predictions.

▪ Time-in-Range (TIR): Time within the target

glucose range (70-180 mg/dL).

C Long-Term Validation:

▪ Glycemic Variability: Standard deviation of

daily glucose readings.

▪ Reduction in HbA1c: Monitored over 3-

month intervals.

▪ Patient Satisfaction: Surveys assess adherence

and ease of use.

C Patient-Centric Outcomes:

▪ The DT system evaluates patient engagement

and ease of implementation through feedback

channels integrated into the platform.

▪ Adjustments to the dietary recommendations

are made based on feedback and real-time

data, ensuring that the recommendations are

both clinically effective and practical

for patients.
7. Example of Recommendation Generation
C For a patient with high PPGR to carbohydrate-

rich meals:
▪ Initial Recommendation: Substitute high-PPGR

foods (e.g., white rice) with low-PPGR alternatives

(e.g., quinoa) and increase protein and fiber.
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▪ Real-Time Adjustment: If spikes persist, adjust

portion sizes or recommend additional changes,

such as including healthy fats.
8. Validation of Effectiveness
C Recommendations are validated using:
▪ Reduction in Hyperglycemic Episodes: Time

spent above 180 mg/dL.

▪ Improvement in Metabolic Markers: Lower

HbA1c and improved insulin sensitivity.

▪ Patient-Centric Outcomes: Increased satisfaction,

adherence, and quality of life.
Continuous monitoring and
model maintenance

Model predictions were regularly evaluated against actual CGM

data to maintain precision. Calibration and retraining were

conducted periodically to account for sensor inaccuracies or

physiological changes. Proprietary technologies, outlined in key

patents (e.g., US11185283B2, US11957484B2) (16, 17), were

updated as advancements in machine learning and digital twin

technology occurred.

The DT platform provides a scalable, data-driven solution for

personalized T2D management by leveraging advanced digital tools

and machine learning models. It enables precise, real-time dietary

and lifestyle recommendations, offering a significant improvement

in glycemic control and the potential for sustained T2D remission.
Results

Below is a summary of our ongoing open-label RCT titled

“Randomized Controlled Trial of Twin Precision Treatment (TPT):

A Novel Digital Twin-Based Precision Approach for Reversing

Diabetes”. The results are based on initial published data from

the trial (18), which are cited to support the methodology.
Study design

This study adhered to the Declaration of Helsinki, approved by

the Medisys Ethics Review Board (MCERB/2020/07), and was

registered with the Clinical Trials Registry-India (CTRI/2020/08/

027072). It was designed as a two-year study with a three-year

extension, making it a five-year trial to assess the outcomes of DT

technology in managing T2D.
Trial participants

Eligible participants were aged 18–70, diagnosed with T2D for

≤8 years, with normal liver and kidney function, and proficient in
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smartphone use. Exclusion criteria included pregnancy, non-T2D

diabetes, prior or planned bariatric surgery, and significant

psychiatric disorders. Participants were recruited from four

diabetes centers in India, and all provided informed consent.
Randomization and blinding

Participants were randomized using a computer-generated

sequence in a 3:1 ratio to the DT group (n=250) or the standard

care (SC) group (n=86). Seventeen participants in the DT group

withdrew before the intervention, leaving 319 participants: 233 DT

and 86 SC participants for intent-to-treat (ITT) analysis.
Outcomes

Primary outcomes included changes in HbA1c and T2D

medication dosages from baseline to two years, measured at 90-

day intervals. Secondary outcomes included T2D remission rates

(remission was defined as an HbA1c <6.5% without glucose-

lowering medications for at least 3 months) (20).
Intervention Group (DT)

The DT group received personalized dietary recommendations

based on AI-driven predictions of glucose responses. The

intervention, supported by health coaches, aimed to modify

behavior through AI guidance. The DT program consisted of

three phases: a 90-day “Restrictive Phase” that limited high PPGR

foods, followed by a 90-day “Reintroduction Phase,” and a long-

term “Maintenance Phase” with ongoing AI-guided dietary

adjustments. Most medications, except metformin and sitagliptin,

were discontinued and titrated as needed.
Standard care group

SC participants received conventional T2D management,

including quarterly clinical assessments and lab tests. Treatment

focused on medication, lifestyle modifications, and consultations with

physicians and nutritionists. Lifestyle advice emphasized a balanced

diet, physical activity (150 minutes per week), and behavioral support,

including goal-setting and blood glucose monitoring.
Statistical analysis

The sample size was calculated to detect a ≥1% difference in

HbA1c between the DT and SC groups, assuming an SD of 1.83,

90% power, and a significance level of 0.05. Accounting for a 20%

dropout rate, the study included 250 DT and 86 SC participants.

Seventeen participants in the DT group withdrew before the

intervention, leaving 319 participants: 233 DT and 86 SC

participants for ITT analysis. The remission sample size was
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smaller than that for HbA1c reduction. Data analysis followed the

ITT principle, with missing data imputed using the mean and

verified via multiple imputation. Continuous variables were tested

for normality by Shapiro-Wilk test and presented as mean (SD),

while categorical variables were shown as counts and percentages.

Baseline characteristics were compared using independent t-tests

and Chi-square tests. Post-intervention outcomes at two years were

analyzed using t-tests, and paired t-tests were used for within-group

comparisons. A type 1 error rate of 0.05 was applied, with the false

discovery rate controlled by the Benjamini-Hochberg procedure.

Sensitivity analyses included adjustments for baseline covariates

through multivariable models and propensity scores. Statistical

analyses were performed using SPSS version 28.0, with p-values

<0.05 considered significant.

Below is a summary of our ongoing open-label RCT results at

the one-year mark (18). The initial sample included 319 patients:

233 in the DT group and 86 in the SC group. At the 1-year follow-

up, 37 patients (15.9%) dropped out from the DT group (leaving

196), and 16 patients (18.6%) dropped out from the SC group

(leaving 70). The dropout rates were similar in both groups,

indicating it was not related to the DT intervention. DT-enabled

personalized nutrition significantly lowers A1C levels in patients

with T2D. In the DT group, the mean HbA1c improved remarkably

from 9.0 (± 1.9) to 6.1 (± 0.7) over one year (P<0.001), whereas the

standard care (SC) group using traditional dietary interventions

showed a non-significant change from 8.5 (± 1.9) to 8.2 (± 1.6)

(P=0.051) (18). After one year, 94% of the DT group discontinued

all T2D medications, with 72.7% achieving T2D remission,

compared to none in the SC group (18). The DT technology has

also demonstrated significant success in improving Metabolic

Dysfunction-Associated Fatty Liver Disease (MAFLD). The

proportion of patients with normal Nonalcoholic fatty liver

disease-Liver Fat Score (NAFLD-LFS) increased from 11.8% to

67.4% in the DT group, whereas it decreased from 16% to 9.9%

in the SC group over one year (P<.00001) (18). Similarly, the

proportion of patients with normal fatty liver index (FLI)

increased from 13.6% to 54.3% in the DT group compared to a

reduction from 15.9% to 13.4% in the SC group (P=0.0003) (18). At

one year, the proportion of patients with normal Framingham

Steatosis Index (FSI) increased from 13.1% to 61.1% in the DT

group while remaining stable in the SC group (P=0.0008) (18). Liver

fibrosis scores also improved, with the proportion of patients with

normal Nonalcoholic fatty liver disease Fibrosis Score (NFS)

increasing from 77.6% to 94.4% in the DT group compared to an

increase from 60.7% to 65.5% in the SC group (P=0.58) (18). The

DT group also showed significant reductions in liver fat percentage

by Magnetic Resonance Imaging Proton Density Fat Fraction

(MRI-PDFF) (5.5 ± 4.7% vs. 10.9 ± 6.8%, P<.001), with more

patients achieving a liver fat content <6% than in the SC group

(83.2% vs. 34%) (18).

DT technology has shown significant cardiovascular benefits as

well. There was a notable reduction in systolic blood pressure (SBP)

from 140.2 ± 15.8 to 127.1 ± 8.3 mmHg (P=0.02) and diastolic

blood pressure (DBP) from 94.7 ± 11.7 to 86.8 ± 6.4 mmHg

(P=0.014) in the DT group over six months (19). Additionally,

twelve patients discontinued medications needed to manage
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hypertension, achieving a remission rate of 60% (19). The DT

group also demonstrated a marked shift towards a lower ASCVD

risk profile, with 76.6% of participants categorized as low risk at one

year compared to 49.1% at baseline. High-risk category reductions

were more pronounced in the DT group, decreasing from 8.1% to

0.9% (21).

The DT group demonstrated significant improvements in

albuminuria, with 92% of participants exhibiting normal

albuminuria at one year , up from 79% at base l ine .

Macroalbuminuria decreased from 4% to 1% in the DT group,

and mean albuminuria levels significantly decreased from 36.5 mg/g

to 17 mg/g (P=0.0166) in the DT group while increasing in the SC

group (22). Significant improvements were also observed in diabetic

neuropathy, with 96.4% of DT patients showing improved touch

sensitivity and 63.0% showing better vibration perception.

However, the correlation between remission and sensory function

recovery was weak, suggesting the need for comprehensive

management approaches (23). Among patients initially diagnosed

with diabetic retinopathy (DR), 43.75% showed regression with no

evidence of DR after the intervention, highlighting the potential for

positive retinopathy outcomes through DT technology, though the

correlation with T2D remission was minimal (24).

At one year, 73.8% of patients in the DT group achieved a

weight loss of ≥5%, and 41.6% achieved a weight loss of ≥10%.

Significant differences were observed in mean weight reduction (7.4

± 5.9 kg vs. 0.4 ± 3.6 kg P<0.001), BMI reduction (2.7 ± 2.3 kg/m² vs.

0.1 ± 1.8 kg/m² P<0.001), and waist circumference reduction (9.5 ±

7.7 cm vs. 1.2 ± 10.8 cm P<0.001) compared to the SC group (18).

The results mentioned above are the one year outcomes of our

ongoing RCT which is planned for five years duration. At 18

months, 64.3% of the DT participants who achieved remission at

12 months maintained their remission status, demonstrating a

considerable level of sustainability. The HbA1c levels in the DT

group continued to show significant improvement from baseline to

18 months (8.9 ± 1.9 to 6.4 ± 0.9), while the SC group showed only

minimal changes (8.5 ± 1.8 to 8.3 ± 1.6). These results highlight the

potential for long-term glycemic control in the DT group (25). We

will continue to report the outcomes of all the remaining five years

to evaluate the long-term sustainability.

We have implemented several strategies to assess long-term

remission and prevent relapse. Follow-up periods now extend

beyond 18 months to capture trends in glycemic control and

intervention durability. Structured relapse prevention protocols,

including booster sessions for behavioral reinforcement, dietary

adjustments, and continuous patient engagement via digital

platforms, are integrated. The DT program uses advanced tools

like CGM and predictive analytics for early detection and timely

intervention. Behavioral support modules focusing on stress

management, motivation, and lifestyle adherence are incorporated

to address psychosocial factors. Additionally, comparative analyses

with other interventions identify predictors of sustained remission,

helping customize protocols for optimal long-term outcomes.

We conducted a real-world study to evaluate the effectiveness of

the DT technology, across Indian and American cohorts with T2D

(26). Over 90 days, both cohorts exhibited significant improvements

in key glycemic and metabolic parameters, including HbA1c,
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HOMA-IR, TyG index, and Framingham Risk Score (FRS), with

outcomes comparable between the two groups. Notably, DT

technology proved effective in reducing cardiovascular risk and

improving non-glycemic factors such as body weight and systolic

blood pressure, demonstrating its efficacy regardless of differing

phenotypes. The findings indicate that the DT model provides

consistent benefits across diverse populations, demonstrating its

adaptability and effectiveness across varied clinical and

sociodemographic profiles (26).

Additionally, our 1-year follow-up data in the U.S Real world

study further validated the long-term efficacy of the DT

intervention. At 1 year, HbA1c decreased significantly from 7.73

± 1.38 to 6.22 ± 0.62, with 71.9% of participants achieving HbA1c

<6.5%. Moreover, T2D reversal, defined as HbA1c <6.5% with no

diabetes medications except metformin, was achieved in 55.5% of

participants (27).

We are close to reporting the one-year results of an RCT

comparing DT-augmented T2D management to usual care in

achieving HbA1C < 6.5% in T2D patients, either with metformin

monotherapy or without any T2D medications, while also facilitating

weight loss and enhancing quality of life and treatment satisfaction.

This single-center, open-label randomized controlled trial was

conducted at Cleveland Clinic’s Family Health Center in Twinsburg,

Ohio, and is registered on ClinicalTrials.gov (NCT05181449).

A case study demonstrated significant improvement in a patient

with Polycystic ovary syndrome (PCOS) following a 360-day

intervention program with DT technology, showing substantial

changes in ovarian morphology and improvement in metabolic

milieu and radiological parameters (28).

The expected outcomes demonstrate the potential for significant

improvements in glycemic control, weight management,

cardiovascular health, and overall well-being, ultimately leading to

T2D remission in a substantial proportion of patients.
Discussion

DT technology represents an innovative and highly

personalized approach to the management and potential

remission of T2D. By leveraging advanced technologies such as

AI, ML, and continuous real-time monitoring, DT technology

addresses the limitations of traditional T2D management

strategies that rely on generalized dietary recommendations. DT

technology has demonstrated significant improvements across key

clinical outcomes, emphasizing the effectiveness of personalized

interventions in managing T2D. The DT group achieved a

significant 2.9% reduction in HbA1c levels compared to a non-

significant change in the SC group over one year. After one year,

94% of the DT group discontinued T2D medications, with 72.7%

achieving remission. This highlights the superior glycemic control

provided by the DT technology (18). DT technology also led to

notable improvements in MAFLD, with the proportion of patients

with normal NAFLD-LFS increasing from 11.8% to 67.4% in the

DT group while decreasing in the SC group. Additionally, there

were significant improvements in FLI and liver fat percentage,
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further demonstrating the DT’s positive impact on liver health

(18).Cardiovascular benefits were another key outcome, with

significant reductions in systolic and diastolic blood pressure,

substantial weight loss, and a shift towards a lower ASCVD risk

profile in the DT group (21). Hypertension remission was

particularly notable, with 60% of participants able to discontinue

their medications (19). The DT technology also effectively managed

T2D complications, showing significant regression in

microalbuminuria (22), diabetic neuropathy (23) and diabetic

retinopathy (24). Weight loss was another significant

achievement, with 73.8% of patients in the DT group achieving at

least 5% weight loss, and 41.6% losing 10% or more. There were also

notable reductions in BMI and waist circumference, far exceeding

those seen in the SC group (18). Lastly, the DT technology showed

promise in managing PCOS. A case study demonstrated significant

improvements in ovarian morphology and metabolic parameters

after a 360-day intervention with the DT, suggesting the

technology’s broader applicability beyond T2D (28).

Overall, the DT intervention delivers comprehensive

improvements in glycemic control, liver and cardiovascular

health, weight management, and even conditions like PCOS,

establishing it as a highly effective approach for managing T2D

and its associated complications.

This study’s findings are contextualized by recent research on

PPGRs (11–14). Studies like the PREDICT 1 have demonstrated

significant variability in PPGRs among individuals, even among

those consuming the same standardized meal (13). Such variability

is largely driven by modifiable factors, such as gut microbiome

composition, meal timing, and physical activity, rather than genetic

factors alone. The DT technology leverages these insights by

utilizing advanced ML models, like CatBoostRegressor and

Random Forest, to predict PPGRs based on individual data

inputs. This aligns with findings from PREDICT 1, which

underscore the importance of personalized approaches to dietary

interventions and challenge the efficacy of one-size-fits-all dietary

recommendations (13). A data-driven approach to personalized

nutrition involves metabolic phenotyping to create predictive

models. One such model, utilizing ML, predicts PPGRs based on

dietary, anthropometric, physical activity, and gut microbiota data

(11). Its accuracy has been validated in an independent cohort,

demonstrating potential for tailored dietary interventions. While

this method effectively lowered glucose levels with personalized

diets, it did not link these results to broader health outcomes.

Additionally, it focused on non-diabetic and prediabetic

populations, not fully addressing the complexities of PPGR

prediction in diabetics, who experience greater glycemic

variability and different medication use (11). A recent study (12)

indicates substantial variability in PPGRs among individuals

consuming identical standardized meals. Although 95.1% of

participants exhibited higher PPGRs with increased carbohydrate

content, the degree of carbohydrate sensitivity varied greatly,

highlighting diverse glycemic responses that were independent of

carbohydrate intake levels. This study has several limitations,

including lower correlation of intraindividual PPGRs compared to

the Israeli cohort (11), potentially due to the choice of a
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standardized meal (bagel and cream cheese) (13). The model’s

reliance on complex features such as CGM measurements and fecal

analyses, though increasingly accessible, may limit its broader

application. Among European adults, internet-delivered

personalized nutrition advice led to more significant and

appropriate dietary changes than conventional methods.

However, the online nature of this study limited the range of

measures, with some key health biomarkers, like blood pressure,

not recorded. Data were self-reported or collected remotely,

introducing potential measurement errors (14).

The impressive results achieved with the DT technology have

far-reaching implications for the future of T2D management and

precision medicine. By utilizing real-time data and advanced

predictive models, this personalized approach offers a substantial

advancement in addressing not only glycemic control but also other

critical aspects of metabolic health. The DT technology’s success in

managing T2D (18), MAFLD (18), hypertension (19), and

complications like diabetic neuropathy (23) and retinopathy (24)

is particularly noteworthy. One of the most striking implications is

the DT technology’s ability to significantly lower HbA1c levels and

achieve high remission rates in T2D patients (18). This suggests that

personalized nutrition, guided by sophisticated digital tools, can

fundamentally change the course of T2D, offering a viable

alternative to traditional management strategies that often fall

short of achieving long-term remission and leave patients

dependent on pharmacotherapy.

Additionally, the DT technology’s broader benefits in

cardiovascular health (21), liver function (18), and weight

management (18) indicate its potential as a comprehensive

solution for managing the complex challenges of metabolic

syndrome. The inclusion of a case demonstrating significant

improvement in a patient with PCOS further highlights the

versatility and effectiveness of this approach (28). The DT

technology’s ability to improve ovarian morphology and

metabolic parameters in PCOS suggests that it could also play a

vital role in managing other endocrine and metabolic disorders. The

high remission rates observed in this study suggest that

personalized nutrition, when guided by advanced digital tools like

the DT, can potentially reverse the course of T2D in many patients.

This is particularly important given the limitations of traditional

management strategies, which often fail to achieve long-term

remission and leave patients reliant on pharmacotherapy.

The DT technology offers a unique and comprehensive

approach to diabetes management, setting itself apart from other

digital tools such as Livongo (29), Omada Health (30), One Drop

(31), and mySugr (32). Unlike these platforms, the DT system

constructs a highly detailed, patient-specific virtual model that

continuously monitors and predicts metabolic responses using

real-time biosignals, including CGM data, lab results, and lifestyle

information. This allows the DT system to generate precise, real-

time recommendations for dietary and lifestyle modifications based

on the predicted PPGRs of individual patients.

In contrast, Livongo focuses on providing remote monitoring

and telehealth coaching, with device integration aimed at

promoting patient self-management. Livongo’s system connects to

various devices but relies exclusively on self-monitoring of blood
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glucose (SMBG) data, focusing on behavioral support rather than

creating dynamic patient-specific models using CGM (29).

Similarly, Omada Health targets diabetes prevention rather than

management by offering structured lifestyle intervention programs

that emphasize behavior modification, weight loss, and exercise, but

it lacks the predictive modeling capabilities essential for

personalized diabetes management (30). One Drop, on the other

hand, uses AI-based analytics to offer basic glucose forecasts and

insights derived from self-reported data. It does not have the

capability to incorporate continuous biosignals or provide real-

time recommendations (31). Meanwhile, mySugr is primarily a

tracking and logging app that offers simple analytics based on

manual inputs, making it less sophisticated than the DT system in

terms of real-time adaptive capabilities (32).

When comparing predictive capabilities, the DT technology excels

due to its use of advanced machine learning models like Gradient

Boosting and LSTM networks. These models can accurately forecast

glucose levels and provide adaptive recommendations based on

ongoing CGM inputs. Other platforms, like Livongo (29) and

Omada (30), rely mainly on historical data trends and static

analytics, resulting in generic, non-dynamic suggestions. Even One

Drop’s predictive glucose modeling is limited, as it cannot fully utilize

biosignals or generate real-time personalized dietary recommendations

(31). The DT system’s ability to integrate multiple data streams (e.g.,

CGM, lab tests, medication, and sleep patterns) into a unified digital

model stands in contrast to the siloed approach of most other

platforms, which either rely on isolated device data or focus

exclusively on a single aspect of diabetes management.

In terms of clinical outcomes, the DT technology achieved a

2.9% reduction in HbA1c, with 94% of participants discontinuing

T2Dmedications and 72.7% achieving remission at 1 year through a

real-time personalized management approach (18). In comparison,

Livongo reported a 1.1% reduction in HbA1c at 6 months (29) and

One Drop achieved a 1.36% HbA1c reduction at a median follow-

up of approximately 4 months (31), both primarily through

behavioral coaching. mySugr observed improvements in mean

blood glucose (−10.4%), tests in range (+8.5%), and estimated

HbA1c (eA1c) (−0.4%) over two months by enhancing adherence

to self-monitoring practices (32). Omada Health’s outcomes are

more centered on diabetes prevention, focusing on weight reduction

and lowering the risk of developing T2D (30).

User experience is another differentiating factor. The DT system

offers a highly personalized, adaptive interface with continuous

monitoring and real-time actionable insights. Livongo and Omada

Health, offer straightforward, user-friendly interfaces but with less

customization and flexibility (29, 30). One Drop’s interface is

intuitive but relies heavily on user input, making it less ideal for

patients seeking automated support (31). mySugr provides a

simplified tracking and logging interface, which is suitable for

basic data recording but lacks advanced features for precision

care (32). The key advantage of the Digital Twin technology is its

ability to create a dynamic, patient-specific digital model for real-

time, precise interventions, unlike Livongo’s focus on telehealth

coaching (29), Omada Health’s structured lifestyle programs (30),

One Drop’s AI-driven insights (31), and mySugr’s simple tracking

features (32).
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The DT technology is an advanced tool for individualized diabetes

management, offering real-time predictive modeling, comprehensive

data integration, and personalized recommendations. Unlike generic

platforms, it builds a unique digital replica for each patient, capturing

detailed responses to diet, medication, and exercise. Using machine

learning models such as Gradient Boosting and LSTM, the DT system

predicts PPGRs and adapts recommendations based on real-time

CGM data. It incorporates diverse inputs—lab tests, medications,

sleep, and activity—providing a more complete health profile than

other platforms that rely on limited or self-reported data. Its real-time,

meal-specific guidance makes it superior to static dietary

recommendations, supporting highly tailored and dynamic

diabetes management.
Advantages

The DT technology offers several distinct advantages over

conventional approaches, particularly in its ability to deliver

precision and personalization through the use of AI and machine

learning. By accounting for each patient’s unique metabolic

responses, the DT enables more effective interventions and

improved clinical outcomes. Its digital nature also enhances

scalability and accessibility, with the DT app and connected

devices providing an intuitive interface that encourages patient

engagement and adherence. Furthermore, the DT technology’s

comprehensive approach extends beyond glycemic control,

offering benefits across various health domains, including weight

management, cardiovascular health, and mental well-being. Real-

time monitoring and data integration allow for dynamic

adjustments to recommendations, ensuring that treatment

remains effective as the patient’s condition evolves.
Limitations

The success of the DT technology relies heavily on accurate and

complete data input, which can be impacted by language barriers,

user proficiency, and patient compliance with food logging and

device usage. Incomplete tracking of meals, activity, or health

metrics, along with technical issues like calibration errors in

wearables or CGMs, may affect the accuracy of recommendations.

Additionally, its generalizability to diverse populations with varying

dietary habits, socioeconomic conditions, and access to technology

is a concern. The regulatory landscape poses another challenge, as

evolving data privacy laws like HIPAA and GDPR may require

continuous adaptation for compliance. Self-reported adherence to

app-based interventions may also introduce bias in tracking

engagement and outcomes.

User engagement, dietary compliance, and sustained behavior

change can be challenging due to fluctuating motivation, stress,

competing priorities, and psychological barriers like decision

fatigue, habit resistance, and emotional eating. App fatigue and

declining interest may also affect long-term adherence. The DT

platform addresses these challenges through dynamic AI-generated
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nudges, delivered via the mobile app, providing personalized, real-

time feedback based on data from CGM and activity trackers.

Machine learning models continuously process this data to

recommend tailored adjustments to diet, physical activity, and

sleep, guiding users toward healthier choices. These adaptive

nudges promote engagement, reinforce adherence, and support

sustainable behavior changes over time.

Despite these limitations, the AI-powered DT technology

effectively mitigates many issues through continuous learning

from real-time data, allowing the system to adapt to patient

behavior and compensate for missing or inaccurate inputs.

Predictive analytics and enhanced user interfaces, including

multilingual support, improve compliance and reduce

communication barriers. The system’s self-calibration feature

ensures accurate performance by minimizing errors from device

malfunctions. Additionally, the platform’s flexible design

accommodates varying dietary habits, socioeconomic conditions,

and levels of digital literacy, promoting sustained engagement and

long-term success.

To accommodate diverse dietary patterns, the DT technology

incorporates local food preferences into meal plans, optimizing

adherence and outcomes. For varying socioeconomic conditions,

cost-effective food and exercise options are recommended, along

with social support mechanisms to enhance adherence. To address

varying levels of digital literacy, the app features a simplified design

and personalized guidance, ensuring broad accessibility and making

the intervention effective for a wider audience.
Future directions

To improve the DT technology, future research should focus on

expanding the dataset to include more diverse populations,

enhancing generalizability across ethnic, age, and socioeconomic

groups. Incorporating additional health metrics like genetic or

microbiome data could further personalize recommendations and

improve outcomes.

Assessing the long-term sustainability of DT’s benefits,

particularly in maintaining T2D remission and preventing relapse,

is crucial. Longitudinal studies should explore the lasting effects on

clinical outcomes, such as sustained remission, cardiovascular health,

and complication prevention. Enhancing participant adherence

through user-friendly interfaces, personalized feedback, and real-

time support will also increase platform effectiveness.

Further refinement of machine learning algorithms is essential,

especially by integrating more complex data for greater predictive

accuracy. Optimizing the app’s nudge system using behavioral

science techniques can reduce alert fatigue and encourage lasting

behavior change.

As regulatory frameworks evolve, collaboration with

policymakers is key to ensuring compliance and adaptability.

Pharmacoeconomic analyses comparing the DT technology to

traditional T2D management could demonstrate its cost-

effectiveness, aiding decision-making for healthcare providers

and policymakers.
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Conclusion

The DT technology represents a transformative approach to the

personalized management of T2D. Integrating AI, ML, and real-

time data monitoring, the DT technology offers a highly effective

method for improving glycemic control, achieving T2D remission,

and enhancing overall metabolic health. While there are challenges

related to data accuracy, patient compliance, and device reliability,

the DT technology’s advantages far outweigh these limitations. The

results achieved in this study underscore the potential of precision

medicine to revolutionize T2D care and provide a pathway to

sustained remission for a significant proportion of patients.
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