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Mendelian randomization studies
of risk and protective factors for
osteoporosis: a systematic
review and meta-analysis
Wenhao Ji1,2†, Bin Pan1,2†, Xin Chen1,2, Zhaobai Lao1,2,
Wanlei Yang1,2* and Yu Qian1,2*

1Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical
University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China, 2The First
Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
Background: Mendelian randomization is believed to attenuate the biases inherent

in observational studies, yet a meta-analysis of Mendelian randomization studies in

osteoporosis has not been conducted thus far. This study aims to evaluate the

connection between potential causal factors and the risk of osteoporosis by

synthesizing evidence from Mendelian randomization studies.

Methods: The databases PubMed, Web of Science, and Embase were

systematically searched for Mendelian randomization studies investigating

factors influencing osteoporosis up to May 2024. Meta-analyses were

conducted to assess the associations between various potential pathogenic

factors and osteoporosis using Mendelian Randomization studies. The quality

of the study was evaluated according to the Strengthening the Reporting of

Observational Studies in Epidemiology via Mendelian Randomization (STROBE-

MR) guidelines.

Results: A total of 706 potentially relevant articles were screened, resulting in the

inclusion of 53 studies in the systematic review, of which 30 were eligible for the

meta-analysis. The combined findings from these 30 studies revealed that

rheumatoid arthritis, inflammatory bowel disease, sex hormone binding

globulin, depression, non-alcoholic fatty liver disease, primary biliary

cholangitis and asthma are associated with increased risk of osteoporosis,

while basal metabolic rate and gut microbiota (NB1n) serves as a protective

factor. However, the association between obesity, type 2 diabetes mellitus,

metformin, ulcerative colitis, leisure sedentary behaviors, systemic lupus

erythematosus, serum iron and osteoporosis was found to be nonsignificant.

Conclusion: In summary, our meta-analysis indicates that significant causal

relationships with osteoporosis’s onset and progression have been established

for rheumatoid arthritis, inflammatory bowel disease, primary biliary cholangitis,
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non-alcoholic fatty liver disease, depression, sex hormone binding globulin, basal

metabolic rate, gut microbiota (NB1n), and asthma.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier

PROSPERO CRD42024540504.
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1 Introduction

Osteoporosis (OP) represents a systemic skeletal disorder

marked by diminished bone density, compromised bone

architecture, heightened susceptibility to fractures, and increased

brittleness (1). With the aggravation of the global aging problem,

the incidence of OP is positively correlated with age, which has

become an important public health problem facing the world today

(2). Fractures are among the gravest complications arising from OP

(3). Epidemiological data indicates that close to 9 million fractures

attributable to OP transpire annually across the globe, culminating

in diminished life quality and elevated mortality risk (4).

Numerous epidemiological investigations have identified

potential determinants of OP, such as low physical activity,

insufficient sunlight exposure, smoking, excessive alcohol

consumption, nutritional imbalances and so on (5). However, most

studies investigating the risk factors of OP are mainly based on

observational study design. Moreover, observational studies are

susceptible to the interference of reverse causality and confounding

factors, thus limiting the inference of causality. Although randomized

controlled trials (RCTs) are the “gold standard” for examining

causality, RCTS require a significant investment of time and

money, and are often not suitable for all research questions due to

ethical and financial constraints. Mendelian randomization (MR)

offers a viable alternative for exploring causal relationships, utilizing

genetic variants as instrumental variables to assess the causal impact

of various exposures on health outcomes. Its unique methodological

features and advantages of less confusion bias interference make it a

powerful tool to evaluate the relationship between exposure factors

and disease onset (6). Many MR studies have investigated the causal

relationship between lifestyle, nutrition, disease status, and OP.

However, these studies have differences in research design,

population composition, genetic tools, and methods for estimating

causal effects, which may lead to biased or uncertain results.

Numerous systematic reviews have been performed onMR studies,

encompassing various conditions such as cancer (7), arthritis (8), and

rheumatoid arthritis (RA) (9). To the best of our knowledge, the

present study is the inaugural to evaluate and summarize existing MR

research through a systematic review and meta-analysis, with the aim

of identifying potential risk and protective factors associated with OP.
02
2 Materials and methods

2.1 Data sources and search strategy

This review was meticulously carried out, adhering to the

PRISMA-P 2020 guidelines (10, 11). It has been officially

registered in the PROSPERO database (CRD42024540504). The

process illustrated in Figure 1 outlines the procedures for literature

retrieval and inclusion-exclusion. PubMed, Embase, and Web of

Science electronic databases were searched for relevant MR

literature on OP up to May 1, 2024. The complete search strategy

for each database is outlined in Supplementary Table S1.
2.2 Study selection

The articles retrieved were imported into the NoteExpress

reference library, version 3.9 (Beijing Aegean Lezhi Technology,

China), for the identification and removal of duplicates.

Subsequently, two reviewers independently assessed the

remaining art ic les , se lect ing only those meeting the

predetermined criteria. In cases of disagreement, a third

investigator was consulted to achieve a consensus.

Study selection criteria:

Inclusion:
1. Original studies investigating causal relationships between

risk factor-associated phenotypes and OP using

MR analysis.

2. Any studies that include MR as part of their analysis.

3. Studies encompassing diverse sex, age, cohorts,

and ethnicities.
Exclusion:
1. Any case reports, narrative reviews, or other non-research-

based studies.

2. Studies lacking complete manuscripts or original datasets.

3. Research that does not consider OP as an outcome.
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2.3 Data extraction and quality assessment

We extracted data from each MR study, including the first

author’s surname, year of publication, alliances or consortia

involved in OP genomics research, total participant count, the

ancestry of the cohort, investigated exposure factors, and principal

outcomes. Quality assessment followed the Strengthening the

Reporting of Mendelian Randomization Studies (STROBE-MR)

Guidelines (12). After converting the quality assessment score to a

percentage, studies were categorized as high-quality (scores > 85%),

medium-quality (scores between 75% and 85%), and low-quality

(scores < 75%) accordingly (Supplementary Table S2).
2.4 Statistical analysis

When a minimum of two separate studies or datasets were

available to evaluate the causality between pathogenic factors or

genetic markers and OP, the gathered data were assimilated for

meta-analytic evaluation. To determine the combined OR values for
Frontiers in Endocrinology 03
various factors influencing OP risk, both fixed-effect and random-

effects models were applied. Study heterogeneity was gauged using

Cochran’s Q test and Higgins’ I² test. If the summary results of the

fixed effects model are obtained with I² > 50% and p < 0.05, it is

considered that the heterogeneity is statistically significant, and the

results of the random effects model should be reported. All data

analyses were performed using RevMan version 5.4.1 (Copenhagen:

The Nordic Cochrane Centre, The Cochrane Collaboration, 2020),

with statistical significance established at a two-sided p-value

below 0.05.
3 Results

3.1 Study selection

The initially retrieved database yielded 706 records using the

pre-established retrieval strategy. However, upon closer inspection,

only 53 articles were ultimately included in this review, as illustrated

in Figure 1.
FIGURE 1

Preferred Reporting Items of Systematic Review and Meta-analyses (PRISMA) flow diagram.
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TABLE 1 Characteristics of 53 studies included in qualitative analysis.

Study Year Ethnicity Cohort Exposure Sample size Findings

Wu et al. (13) 2024 Asian UKB Periodontitis
7,788cases,

20,4665conttrols
No causality between periodontitis and OP.

Lee et al. (14) 2024 European
UKB,

FinnGen
Predicted

plasma cortisol
9,734cases,

58,0320controis
Non-causal association between plasma cortisol

and OP.

Zhang et al. (15) 2024 European IEU H. pylori infection
5,266cases,

33,1893controls
H. pylori infection causally associated with OP risk.

Sun et al. (16) 2023 European FinnGen LTL/SHBG
7,300cases,

35,8014conrols
Longer LTL and the levels of SHBG causally

associated with OP risk.

Chen et al. (17) 2024 European IEU
Leisure
sedentary
behaviors

7,547cases,
45,5386controls

No causality between leisure sedentary behaviors
and OP.

Chen et al. (18) 2024 European FinnGen Asthma
7,300cases,

35,8014conrols
Asthma causally associated with OP risk

Li et al. (19) 2024 European FinnGen Cortical structure
7,300cases,

35,8014conrols
Cortical structure causally associated with OP risk

Dou et al. (20) 2024 European UKB COPD
5,266cases,

33,1893controls
COPD causally associated with OP risk.

Zhang et al. (21) 2024 European FinnGen Daytime napping 30,2610 Daytime napping causally associated with OP risk.

Wu et al. (22) 2024
European,
Asian

UKB,
FinnGen,

BBJ

Primary
biliary

Cholangitis (PBC)

6,484cases,40,1279controls/
6,303cases,

32,5717controls/
9,794cases,

16,8932controls

PBC causally associated with OP risk.

Shi et al. (23) 2024
European,
Asian

UKB,
BBJ

Systemic
lupus

erythematosus (SLE)

7,547cases,45,5386controls/
7,788cases,

20,4665controls

In the East Asian population, SLE causally associated
with OP risk; In Europe, no causality between SLE

and OP.

Huang et al. (24) 2024 European FinnGen SHBG 21,2778
Circulating SHBG levels causally associated with

OP risk.

Ding et al. (25) 2024 European FinnGen COA and AOA
3,203cases,

20,9575controls
Both COA and AOA have a genetically causal effect

on OP.

Li et al (26) 2024 European FinnGen
Neurodevelopmental
disorders

36,5314
No causality between neurodevelopmental disorders

and OP.

Liu et al. (27) 2024 European FinnGen
NAFLD/
PBC

6,303cases,
32,5717controls

PBC causally associated with OP risk.

Zeng et al. (28) 2024 European UKB
Gut

microbiota (GM)
5,266cases,

33,1893controls
GM causally associated with OP risk.

Cai et al (29) 2024 European FinnGen Metformin
3,204cases,

20,9575controls
Metformin causally associated with OP risk.

Guo et al. (30) 2024 European EBI
Major

depressive
disorder (MDD)

48,4598 MDD causally associated with OP risk.

Wu et al. (31) 2024 European FinnGen
Rheumatoid
arthritis (RA)

21,2778 RA causally associated with OP risk.

Duan et al. (32) 2024 European FinnGen
Socio-

economic status
36,5314

Socio-economic status causally associated with
OP risk.

Zhou et al. (33) 2023 European
IEU,

Neale Lab
Basal

metabolic rate

7,547 cases,
45,5386 controls/5,266
cases, 33,1893 controls

Basal metabolic rate causally associated with OP.

Li et al. (34) 2023 European UKB
Diet-derived
antioxidants

7,547cases,
45,5386controls

Serum b-carotene could elevate BMD and
prevent osteoporosis.

(Continued)
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TABLE 1 Continued

Study Year Ethnicity Cohort Exposure Sample size Findings

Li et al. (35) 2023 European IEU Selenium Levels
7,751cases,

47,6847controls
No causality between Se levels and OP risk.

Zhang et al. (36) 2023 European UKB COVID-19
7,547cases,

455,386controls
No causality between the severity of COVID-19 and

OP risk.

Tang et al. (37) 2023 European
FinnGen,
UKB

IGF family
members

3,203cases,20,9575controls/
5,266cases,

33,1893controls
IGF family members causally associated with OP risk

Cui et al. (38) 2023 European UKB NAFLD
7,547 cases and
455,386 controls

A causal association between NAFLD
and osteoporosis.

Dai et al. (39) 2023 European IEU
Inflammatory
bowel disease

3,203cases,
20,9575controls

CD causally associated with OP risk.

Wei et al. (40) 2023 European FinnGen Metformin
7,300cases,

358,014controls
Metformin use causally associated with OP.

Huang et al. (41) 2023
East
Asian

population
BBJ

Type 2
diabetes
mellitus

7,788cases,
20,4665conttrols

T2DM is not associated with reduction in BMD.

Zhao et al. (42) 2023 European FinnGen PBC
7,300cases,

358,014controls
PBC causally associated with OP risk.

Zhou et al. (43) 2023 European IEU NAFLD
7547 cases,

455,386 controls
NAFLD causally associated with OP.

Tang et al. (44) 2023 European FinnGen
Type 1
diabetes

5,354cases, 294,793controls No causality between T1D and OP risk.

Du et al. (45) 2023 European FinnGen
Vitamin D/

sex
hormones

6,303 cases,
325,717 controls

25(OH)D and TT had a causal effect on osteoporosis.

Cheng et al. (46) 2023 European UKB
Type 2
diabetes
mellitus

7,547 cases,
455,386 controls

A causal link between DM2 and OP.

Tang et al. (47) 2023 European FinnGen
Mental
diseases

3,203cases,
209,575controls

No causality between MDs and OP risk.

Deng et al. (48) 2023 Japanese BBJ RA
7,788cases,

20,4665conttrols
RA causally associated with OP risk.

Xu et al. (49) 2023 East Asian BBJ
Inflammatory
bowel disease

7,788cases,
20,4665conttrols

Inflammatory bowel disease causally associated with
OP risk.

Sun et al. (50) 2023 European FinnGen
Educational
attainment

6,303cases,
325,717controls

No causality between EA and OP.

Lyu et al. (51) 2023 European IEU

Zinc,
immunity,
physical
activity

33,7159 Zinc causally associated with OP risk

Chen et al. (52) 2023 European IEU
Lipid-

lowering
therapies

7,547 cases,
455,386 controls

Lipid-lowering variants of PCKS9 and HMGCR were
associated with decreased risks of OP.

Gagnon
et al. (53)

2023 European IEU
GM and
associated
metabolites

7,547 cases,
455,386 controls

No causality between gut microbita features and
OP risk.

Chen et al. (54) 2023 European UKB Specific GM
7,547 cases and
455,386 controls

Specific bacteria taxa causally associated with OP risk

Ji et al. (55) 2023 European IEU Cytokines
7,547cases,

45,5386controls
Cytokines causally associated with OP risk

Zahn et al. (56) 2023 European
The

Neale Lab
Targeting Longevity

Gene SLC13A5
36,1194

SNPs linked to reduced SLC13A5 function lowered
osteoporosis risk

(Continued)
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3.2 Study characteristics

The systematic review encompassed a total of 53 MR studies

(13–65). These studies included participants with OP from various

datasets, representing both European and East Asian populations.

The studies utilized a wide range of single nucleotide

polymorphisms (SNPs), from a minimum of 3 (53) to a

maximum of 462 (33). All MR studies utilized data from multiple

sources, including the IEU OpenGWAS Project, GEnetic Factors for

OSteoporosis Consortium (GEFOS), UK Biobank, FinnGen

biobanks, Biobank Japan and The Neale Lab. Table 1 provides a

detailed overview of the characteristics of the included studies. All

studies provided comprehensive information on sample sizes for

both exposure and outcome variables. While two study did not

specify the number of SNPs used in the MR analysis (62, 63), the

majority of studies employed a range of 3 to hundreds of SNPs as

instrumental variables. In terms of selecting SNPs, most MR studies

adopted a stringent threshold for linkage disequilibrium (R² <

0.001) to ensure the in-dependence of the SNPs used as

instrumental variables for exposure. Additionally, all studies

clearly delineated the statistical analysis methods employed for

MR analysis. 22 studies presented sensitivity analysis results using

robust MR methods such as Inverse Variance Weighting (IVW),

and assessed horizontal pleiotropy using the MR-Egger method

(16–18, 22, 23, 25, 27–29, 31, 33, 38–43, 46–49, 54, 58, 65). This

transparency in methods and rigorous approach to data analysis

enhance the overall reliability and validity of the findings presented

in these studies (Table 1).
Frontiers in Endocrinology 06
3.3 Meta-analysis results

A total of one studies (three datasets) for obesity (62), the four

indicators are body mass index (BMI), body fat percentage (BFP),

favorable obesity (FA) and unfavorable obesity (UFA), four studies

for RA (31, 48, 61, 63), two studies for Type 2 diabetes mellitus

(T2DM) (41, 46), two studies for inflammatory bowel disease (IBD)

(39, 49), two studies for ulcerative colitis (UC) (39, 49), two studies

for Crohn’s disease (CD) (39, 49), three studies for Non-alcoholic

fatty liver disease (NAFLD) (27, 38, 43), three studies for primary

biliary cholangitis(PBC) (22, 27, 42), one study (two datasets) for

systemic lupus erythematosus (SLE), two studies for depression (30,

47), two studies for metformin (29, 40), one study (three datasets)

for leisure sedentary behaviors (17), two studies for asthma (18, 25),

three studies for gut microbiota (NB1n) (GM) (28, 53, 54), two

studies for serum iron (58, 65), two studies for sex hormone binding

globulin (SHBG) (16, 24), and one study (two datasets) for basal

metabolic rate (BMR) were selected for quantitative analysis based

on the presence of common risk factors across the studies for meta-

analysis (33).

3.3.1 Risk factors
We conducted a meta-analysis of the included MR studies. The

results indicate that the presence of IBD may increase the risk of OP

by 5% (OR 1.05 [1.02-1.08]). The presence of NAFLD may increase

the risk of OP by 0.14% (OR 1.00 [1.00-1.00]). The presence of CD

may increase the risk of OP by 5% (OR 1.05 [1.02-1.07]). The

presence of RA may increase the risk of OP by 8% (OR 1.08 [1.01-
TABLE 1 Continued

Study Year Ethnicity Cohort Exposure Sample size Findings

Xu et al. (57) 2022 European UKB
Dietary
Habits

9,434cases,
44,4941controis

Five dietary habits causally associated with OP

Xu et al. (58) 2022 European FinnGen Iron status 30,0147 No causality between iron status and OP.

Yuan et al. (59) 2022 European UKB Cystatin C
5,266cases,

33,1893controls
Serum cystatin C levels causally associated with OP

Chen et al. (60) 2022 European FinnGen
Tea

consumption
1,175cases,

93,083controls
No causality between tea consumption and OP.

Kasher et al. (61) 2022 European UKB RA
7,734 cases,

35,3 407controls
OP phenotypes did not show causal associations

with RA

Martin et al. (62) 2022 European
FinnGen,
IEU, UKB

BMI/BFP
/FA/UFA

42,1084cases,
737,530controls/

2,452cases,
16,9858controls/
1,4663cases,

43,6361controls

Body fat percentage causally associated with OP risk.

Yu et al. (63) 2021 Asian BBJ RA
7,788cases,

21,2453controls
RA causally associated with OP risk.

Kou et al. (64) 2020 European UKB IL-18
933 cases,

360,261 controls
IL-18 level causally associated with OP risk.

Cheng et al. (65) 2019 European GEFOS
Blood

minerals
50,8253cases,
5,3236controls

Magnesium causally associated with OP risk.
OP, osteoporosis; UKB, UK Biobank; BBJ, BioBank Japan; IEU, IEU OpenGWAS project; EBI, European Bioinformatics Institute; GEFOS, GEnetic Factors for OSteoporosis Consortium; LTL,
leukocyte telomere length; SHBG, sex hormone-binding globulin; NAFLD, Non-alcoholic fatty liver disease; T2DM, Type 2 diabetes mellitus; MDs, mental diseases; CD, Crohn’s disease; COA,
childhood-onset asthma; AOA, adult-onset asthma; BFP, body fat percentage; BMD, bone minerali density; FA, favorable adiposity; UFA, unfavorable adiposity.
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1.17]). The presence of PBC may increase the risk of OP by 5% (OR

1.05 [1.04-1.07]). The presence of asthma may increase the risk of

OP by 1% (OR 1.01 [1.00-1.01]). The presence of depression may

increase the risk of OP by 0.09% (OR 1.00 [1.00-1.00]). SHBG is also

a risk factor for OP (OR 1.42 [1.20-1.69]). The Higgins I² test

identified significant heterogeneity in RA and asthma. Despite this,

the random-effects model was selected owing to the small number

of studies. In contrast, analyses without heterogeneity were

conducted using the fixed-effects model as the main approach

(Figure 2; Supplementary Figure S1).

3.3.2 Protective factors
We evaluated the overall causal effects of BMR and GM (NB1n)

on OP using a fixed effects model. Our analysis results indicate that

BMR (OR: 0.99 [0.99-0.99]) and gut microbiota (NB1n) (OR: 1.00

[1.00-1.00]) have a protective effect on OP outcomes (Figure 3). In

addition, we further validated the results of this study using a

random effects model (Supplementary Figure S2).

3.3.3 Factors with no significant correlation
The genetic susceptibility of the four indicators related to

obesity is not associated with an increased risk of osteoporosis.

Cochran’s Q test and Higgins’ I ² test revealed significant

heterogeneity among BMI, BFP, and UA studies. However, due to

the limited number of studies included, we chose the random effects

model for evaluation. There was no significant correlation between

BMI, BFP, FA, UA, and OP predicted by genes (BMI (p=0.59), BFP

(p=0.90), FA (p=0.26), UFA (p=0.75)).

T2DM (p = 0.38), metformin (p = 0.31), UC (p = 0.36), SLE (p =

0.35), leisure sedentary behaviors (p = 0.34) and serum iron

(p=0.82) were not significantly associated with an increased risk

of OP (Figure 4). We further validated the above results using a

random effects model (Supplementary Figure S3).
4 Discussion

This analysis synthesizes MR findings from published literature.

Genetic evidence shows that RA, IBD, PBC, NAFLD, SLE, asthma

and SHBG correlate with a heightened risk of OP. Conversely,

T2DM, metformin usage, BMR, and GM (NB1n) are linked to a

reduced risk of OP. On the other hand, no association was found

between obesity, sedentary leisure activities, serum iron levels, or

depression and the risk of OP. These findings diverge somewhat

from the quantitative analysis conducted on the 30 articles included

in this review. Notably, the studies considered were of substantial

quality and demonstrated minimal bias.
4.1 Risk factors

Meta-analysis found that RA predicted by genetics was

positively correlated with OP. The findings align with the

conclusions drawn from the articles incorporated in our

systematic review. RA may lead to OP through a complex

interaction between chronic inflammation and bone formation,
Frontiers in Endocrinology 07
osteolysis and resorption (66). This leads to the activation of the

nuclear factor kappa B ligand receptor activator (RANKL)/nuclear

factor kappa B receptor activator (RANK)/osteoprotegerin (OPG)

signaling pathway, which in turn stimulates osteoclast

differentiation while inhibiting osteoblast function, disrupting

bone homeostasis, accelerating bone loss, and ultimately leading

to OP (67–69). In addition, RA patients with long-term use of

glucocorticoids have a higher risk of developing glucocorticoid-

induced OP (70).

Asthma, a widespread chronic noninfectious condition, has

been linked to an increased OP risk through clinical research

(71). While past studies have largely focused on the prolonged

use of glucocorticoids as a connecting factor between asthma and

OP, the direct impact of asthma on bone health has not been fully

considered (72). The research by Jee Youn Oh et al. indicates that

comorbidities like asthma-COPD overlap can intensify the risk of

OP, even when glucocorticoid effects are taken into account (73).

Recent studies indicate that asthma may disrupt the interaction

between osteoblasts and osteoclasts through inflammatory factors,

accelerating bone turnover and leading to a disparity in bone

resorption and formation, which may culminate in OP (18). Our

meta-analysis also suggests a positive causal relationship between

asthma and OP.

Depression is a mood disorder with symptoms that may vary

from person to person, often leading to psychological and physical

distress (30). A multitude of research efforts have sought to

understand the connection between depression and OP. These

studies suggest that depression could be a considerable risk factor

for reduced BMD and fractures, despite some inconsistencies in

findings (74). Our meta-analysis and included MR studies all show

that depression may increase the risk of developing osteoporosis.

IBD, encompassing CD and UC, are idiopathic conditions

thought to emerge from a blend of genetic predisposition and

environmental factors (75). There has been an uptick in OP

incidence and related pathological fractures among IBD sufferers,

which may be because IBD patients often suffer from insufficient

intake and malabsorption of nutrients due to chronic diarrhea and

other factors, inflammatory factors such as interleukin (IL) promote

osteoclast differentiation, and long-term use of glucocorticoid and

other drugs lead to the imbalance of osteoblasts and osteoclasts,

increasing the risk of OP (76–78). A population-based matched

cohort study revealed a 40% higher fracture incidence in IBD

patients compared to those without IBD (79). However, MR

analysis has not been significant causal link between UC and OP.

More extensive research is necessary to validate the association

between IBD and OP.

NAFLD and PBC are common chronic liver diseases.

Numerous studies have explored its potential link to OP, with

findings indicating a higher prevalence of OP in NAFLD and PBC

patients compared to those without the condition (80). The

mechanisms through which chronic liver diseases may impact OP

include alterations in bone metabolism, vitamin D status, chronic

liver inflammation, hepatic fibrosis severity, and disturbances in

lipid metabolism. Nonetheless, observational studies examining the

link between chronic liver diseases and OP have produced varied

results. While some studies report a significant association with an
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increased risk of OP and fractures (81, 82), others find no

correlation or even contradictory outcomes (83, 84). These

inconsistencies could stem from limitations inherent in

observational studies, such as unaccounted or inaccurately
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measured confounding variables like gender, age, and menstrual

status, leading to biases in the results. Bidirectional MR studies have

suggested a causal relationship between chronic liver diseases and

OP. However, further research is necessary to validate this causal
FIGURE 2

Forest Plot of Risk Factors for Osteoporosis.
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link and better understand the complex interplay between chronic

liver diseases and OP.

Our meta-analysis indicates a positive association between

SHBG levels and the risk of OP, which is consistent with the

conclusions drawn from the original analyses included in our study.

Despite numerous proposed theories, the precise biological

mechanisms linking SHBG to OP risk remain incompletely

understood. SHBG, a glycoprotein, binds to sex hormones like

testosterone and estradiol, thereby regulating their bioavailability

(85). It is theorized that SHBG affects bone metabolism by altering

the availability of free sex hormones, which are crucial for

maintaining bone homeostasis. Testosterone promotes bone

growth, whereas estradiol prevents bone loss. Elevated SHBG

levels could potentially decrease sex hormone bioavailability,

leading to increased bone turnover and lower BMD (86, 87).

Additionally, SHBG might directly impact bone cells, as it has

been observed to interact with receptors on osteoblasts and

osteoclasts, possibly affecting their functions (88). In essence, it is

possible that SHBG contributes to the risk of OP through its direct

effects on bone cells and related factors in bone health.
4.2 Protective factors

BMR serves as a gauge of the body’s overall metabolism, playing

a crucial role in sustaining normal physiological functions (33). As

we age, functional decline becomes inevitable, affecting various

bodily processes, including bone health. BMR could potentially be

a modifiable element in decreasing the prevalence of OP. Evidence

from a cross-sectional study indicates that a lower BMR correlates

with a heightened risk of osteosarcopenia among postmenopausal

women (89). Furthermore, another study posits that BMR, along

with body fat, may serve as significant predictors for BMD at the

femoral neck and spine in women aged over 50 (90). Two-sample

MR analysis suggest that higher BMR may reduce the risk of OP

(33). The increase in BMR may affect body composition by

increasing energy expenditure, especially by increasing lean body

mass (LBM), which is an important influencing factor of BMD. The

increased LBM may have a positive impact on bones through
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mechanical loading, promoting bone formation and enhancing

BMD (91). In addition, as age increases, BMR decreases, leading

to a decrease in energy expenditure, which may result in changes in

body composition such as a decrease in muscle mass and an

increase in fat mass, thereby affecting BMD (92).

The GM is a complex and diverse assembly of microorganisms

inhabiting the human gastrointestinal tract, playing a pivotal role in

both health and disease (93). Recently, there has been a surge in

scientific research focusing on the relationship between GM and

OP. Studies have demonstrated that GM can affect the balance of

Treg/Th17 cells and associated cytokines via the immune system,

influencing both the intestinal and systemic immune responses.

This ultimately establishes a dynamic equilibrium between

osteoblasts and osteoclasts, which is essential for maintaining

normal bone mass (94). A study revealed that patients with OP

exhibited significantly different GM compositions compared to

healthy controls (95). The results from our meta-analysis as well

as other studies included in the systematic review all provide strong

evidence supporting the causal relationship between GM and OP.
4.3 Factors with no significant correlation

As one of the risk factors of OP, it is of great scientific significance

to explore the causal relationship between obesity and OP from the

genetic level. Previous studies have found that obesity is a protective

factor for OP (96, 97). However, it has also been suggested that

obesity may cause the differentiation of bone marrow mesenchymal

stem cells into adipose cell lines, resulting in the increase of bone

marrow adipose tissue and the decrease of osteoblasts, while excess

bone marrow adipose tissue may change the bone microenvironment

and microstructure through the replacement of bone cells by adipose

cells, resulting in the decrease of bone density (98). On the other

hand, excessive adipose tissue in the bone marrow releases many pro-

inflammatory molecules, many of which activate the RANK pathway

to upregulate the formation and activation of osteoclasts (99).

The prevalence of sedentary behaviors is widespread across

various industries and occupations, encompassing activities such as

sitting, lying down, or engaging in a series of sedentary activities
FIGURE 3

Forest Plot of Protective Factors for Osteoporosis.
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during awake time (100). While some observational studies suggest

a link between increased sedentary time and a higher risk of reduced

bone mass, the evidence is not uniform (101). The inconsistent

results of observational studies may be due to confounding

variables. For example, it has been demonstrated that increased

TV-watching time is correlated with higher consumption of high-
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fat, high-sugar, and high-energy foods which are known to

adversely affect bone health (102). Our meta-analysis did not

establish a direct causal link between leisure sedentary behaviors

and OP.

Diabetes mellitus, a prevalent endocrine disorder, is

experiencing an increasing incidence trend. Hyperglycemia, a
FIGURE 4

Forest Plot of Factors with No Significant Association with Osteoporosis.
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hallmark of diabetes, is implicated in numerous chronic

complications, with OP being a common consequence that often

leads to joint issues, persistent discomfort, and a heightened risk of

disability (103). T2DM is known for its association with either

normal or increased BMD. Paradoxically, it is also linked to reduced

bone turnover and a greater fracture risk (104–106). Observational

studies have not reached a consensus on T2DM’s impact on BMD;

some report higher BMD in T2DM patients compared to non-

diabetics (107, 108), while others note no significant relationship or

even the contrary (109, 110). These discrepancies could stem from

variations in study designs, medication effects, and confounding

variables such as BMI. MR studies suggest that T2DM may lower

OP incidence; however, this finding was not corroborated by our

meta-analysis. Given the limitations of MR studies and T2DM’s

negligible protective effect against OP, extensive RCTs are needed to

clarify the potential causal link between T2DM and OP.

Metformin is a first-line drug for the treatment of type 2

diabetes, which is favored in the clinical environment because of

its affordability, effectiveness and minimal side effects (111). There

is growing evidence suggesting that, apart from its hypoglycemic

properties, metformin also has a positive impact on OP (112).

Various mechanisms have been postulated to elucidate metformin’s

effect on bone health. At the cellular level, metformin fosters

osteoblast differentiation by activating the AMP-activated protein

kinase (AMPK) pathway, promoting the expression of Small

Heterodimer Partner (SHP) and Runt-related transcription factor

2 (Runx2), and augmenting osteocalcin gene transcription (113).

Concurrently, it deters osteoclast differentiation by enhancing

osteoprotegerin (OPG) synthesis and curtailing receptor activator

of nuclear factor-kappa B ligand (RANKL) production in

osteoblasts (114). Nevertheless, a study has reported the absence

of bone-forming effects of metformin in ovariectomized mice,

casting doubts on its efficacy (115). The link between metformin

usage and OP incidence is still under debate, necessitating further

investigation to solidify this association.

SLE is a chronic autoimmune disorder marked by serum

autoantibodies, leading to damage in multiple organs and tissues

throughout the body (116). OP is one of its complications. The

disease’s systemic inflammation is known to enhance bone

resorption and reduce bone formation. Inflammatory responses

mediated promote osteoclast differentiation and inhibit osteoblast

activity, resulting in bone mass loss (117). Additionally, vitamin D

deficiency, prevalent among SLE patients, impairs intestinal

calcium absorption, further contributing to bone mass loss (118).

Furthermore, glucocorticoids are widely used in treating SLE and its

complications; their effects on bones are two-sided: long-term or

massive use can promote OP development while also inhibiting

bone destruction caused by systemic inflammatory response (119).

A two-sample MR study indicates a lack of substantial evidence for

a causal link between SLE and OP in European populations,

suggesting that the association might be influenced by

confounding factors. Conversely, genetic predisposition to SLE

appears to have a positive causal link with OP in East Asian

populations (23). Due to inconsistent conclusions from multiple
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studies, additional research is essential to clarify the causal

dynamics between SLE and OP.

Iron is a crucial component for the human body, essential for

mitochondrial function, DNA synthesis and repair, and cellular

survival (120). Normally, the iron content in the human body

remains relatively stable. However, abnormal fluctuations in iron

levels can occur due to various factors, leading to disrupted iron

metabolism which can impact the liver, heart, bones and joints.

Research indicates that both excessive and insufficient levels of iron

have negative effects on bone health (121, 122). Elevated iron levels

can increase oxidative stress in the body, inhibit osteoblast formation,

promote osteoclast differentiation, and ultimately reduce bone

density (123). Some perspectives suggest that adverse effects of both

iron deficiency and excess on osteoporosis risk are influenced by a

U-shaped dose-dependent relationship between iron exposure and

osteoblastogenesis as well as osteoblast activity (124). Despite the

complexity of the relationship between OP and iron status, influenced

by numerous factors, both MR findings and our meta-analysis

indicate no genetic causation between OP and iron status (58).
4.4 Strengths and limitations

As far as we know, this systematic review and meta-analysis

represents the first attempt to synthesize MR studies investigating

the impact of various causal risk factors on OP risk. With the rapid

increase of MR Studies, it is necessary and meaningful to conduct a

summary analysis of heterogeneous studies with the same results.

This study possesses several strengths. The MR approach, as

opposed to traditional epidemiological research, allows for causal

inference at the genetic level, thereby significantly reducing biases

stemming from confounding factors and reverse causation,

ultimately enhancing result reliability. As MR is based on GWAS,

the robustness of evidence is directly related to GWAS sample size.

Our meta-analysis combined data from different GWAS focusing

on exposure and outcome, expanding both participant base and

sample size. Adherence to STROBE-MR guidelines enabled a

comprehensive assessment of study quality. The findings

indicated high-quality literature inclusion, ranging from study

design to result discussion, with low risk of bias. In conducting

our meta-analysis, we employed either fixed effects model or

random effects model based on heterogeneity within included

references. This approach ensures data robustness and underpins

the reliability of our study’s results.

Nevertheless, our meta-analysis is not without limitations. The

scarcity of MR studies on OP precluded the assessment of publication

bias through funnel plot asymmetry and the performance of

subgroup analyses by age, sex, and region. Secondly, significant

heterogeneity among included studies necessitated cautious

interpretation of results attributable to variations in study

methodologies participants and locations. Finally, although the MR

method provides evidence for the correlation between OP and related

risk factors, this method itself also has some limitations. For example,

linkage disequilibrium and pleiotropy may allow instrumental
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variables to affect results through multiple pathways, violating the

MR’s assumption of “exclusion restriction assumption” and

introducing bias. So the research results still need clinical studies

and experimental verification.
4.5 Clinical implications

Considering the potential impact of RA, IBD, SHBG, asthma,

depression, NAFLD, and PBC on OP risk, we suggest promoting

increased physical activity, establishing regular lifestyle habits, and

enhancing disease prevention awareness. Similarly, in light of the

potential protective effects of BMR and GM against OP risk, we

recommend prioritize strength training, ensure adequate protein

intake and quality sleep for improved BMR, as well as maintaining a

diverse diet and considering probiotic supplements to support a

healthy gut microbiota balance.
4.6 Further studies

This review offers a comprehensive overview of current MR

studies investigating risk factors for OP, while also highlighting

several considerations for future research. Firstly, larger scale MR

studies should be conducted in the future, prioritizing the use of the

latest SNPs as instrumental variables to more accurately assess the

impact of risk factors on OP development. In addition, in order to

better understand the characteristics of OP risk factors, future

research must cover different populations exposed to different

environmental factors, not just the European cohort. Finally,

although MR studies are powerful tools for epidemiological

research, they may not necessarily represent the true causal

effects. In the future, experimental validation is needed to

consolidate causal relationships and utilize multi omics data such

as genomics, transcriptomics, and metabolomics to further reveal

the complex mechanisms underlying OP pathogenesis.
5 Conclusions

In conclusion, this study suggests that RA, IBD, CD, NAFLD,

PBC, asthma, depression, and SHBG are identified as risk factors for

OP, while BMR and GM are considered protective factors. The

associations of obesity, SLE, metformin use, leisure sedentary

behaviors, UC, serum iron levels, and T2DM with OP were found

to be not statistically significant. Despite limitations such as limited

population representativeness and heterogeneity of genetic tools,

this study still has significant clinical implications. These findings

offer valuable insights for implementing tertiary prevention in

clinical practice and provide a potential direction for further

research on OP.
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