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Ovarian cancer (OC) is the gynecological malignancy with the poorest prognosis.

Surgery and chemotherapy are the primary therapies for OC; however, patients

often experience recurrence. Given the intimate interaction between OC cells

and the tumor microenvironment (TME), it is imperative to devise treatments that

target both tumor cells and TME components. Recently, follicle-stimulating

hormone (FSH) levels in the blood have been shown to correlate with poorer

prognosis in individuals with OC. Ovarian carcinoma cells express FSH receptors

(FSHRs). Thus, FSH is an important target in the development of novel therapeutic

agents. Here, we review the effects of FSH on normal physiology, including the

reproductive, skeletal, cardiac, and fat metabolic systems. Importantly, this

review outlines the role and mechanism of the FSH/FSHR axis in the

proliferation, survival, and metastasis of OC, providing theoretical support for

the targeted FSHR treatment of OC. Current progress in targeting FSHR for OC,

including the recent application of nanotechnology and immunotherapy, is

presented. Finally, we discuss prospects and future directions of targeted FSHR

therapy in OC.
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1 Introduction

Ovarian cancer (OC) is the seventh most prevalent cancer in women worldwide, and

the most lethal gynecological cancer affecting women in the United States (1). When the 5-

year survival rate falls below 30%, the situation corresponds to approximately 75% of

patients presenting stage III or IV disease (2). Cytopathic therapy and chemotherapy are

routine treatments for patients with advanced disease (3). Although 80% of women with

stage III or IV OC respond to initial treatment, the majority eventually experience relapse

and develop resistance to chemotherapy. Poly (ADP-ribose) polymerase (PARP) inhibitors
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have emerged as potentially effective therapeutic options for

individuals with wild-type BRCA epithelial OC (EOC) and BRCA

mutations in recent years. Furthermore, PARP inhibitor-enriched

CD133+ and CD117+ OC stem cells (OSCs) can successfully repair

PARP inhibitor-induced DNA damage (4, 5). In addition,

bevacizumab with platinum-paclitaxel-based chemotherapy has

been suggested as the initial treatment for OC; however, although

progression-free survival is prolonged by 3.5 months, no statistically

significant change in overall survival (OS) is observed (6). These

findings indicate that conventional treatment has reached a

plateau, and that new effective treatment regimens are needed

to prolong OS. At the same time, owing to the nonspecific

biological distribution of chemotherapeutic agents to healthy

tissues, which frequently results in serious side effects, effective

therapies targeting tumor cells are needed (7) to significantly reduce

systemic side effects and improve the therapeutic index of most

chemotherapeutic drugs.

EOC comprises 90% of OCs and is referred to as an

“immunogenic tumor” because the tumors, peripheral blood, and

ascites of patients with EOC exhibit non-spontaneous antitumor

immune responses (8). Ovarian tumor cells and the tumor

microenvironment (TME) are closely related; thus, it is crucial to

develop therapeutic strategies that can target tumor cells and retain

their anticancer activity in the TME (9).

To avoid off-target interactions, identifying genes with

expression limited to tumor surface targets is a significant

challenge in the development of OC treatments (10). The

selection of OC target sites has focused on molecules present on

the surface of tumor cells, including glycosylated proteases linked to

the inhibition of ovarian tumor cell invasion and metastasis (11),

OC blood markers (12) (such as mucin 16 [MUC16] and human

epididymis protein 4 [HE4]), and anti-angiogenic receptors (13)

(such as vascular endothelial growth factor [VEGF] and epidermal

growth factor receptor [EGFR]). The transmembrane tumor-

associated antigen follicle-stimulating hormone (FSH) receptor

(FSHR) is present in 50–70% of serous ovarian malignancies and

in approximately 50% of OCs of different classes (14), but not in

extragonadal tissues. According to Perales-Puchalt et al. (15), FSHR

is expressed in approximately 70% of tumor microvascular

endothelial cells but not in those of non-cancer-related

cardiovascular origin. Therefore, targeting FSHR is the most

promising strategy for overcoming OC recurrence, treatment

resistance, and mortality.

Nanomaterials are a novel class of recently developed materials.

Nanodrugs are often employed to create drug delivery systems that

allow prolonged drug circulation and retain molecular activity of

the drug while selectively targeting tumor cells to avoid the systemic

side effects caused by chemotherapy medications. Immunotherapy

is a recently developed field that aims to treat cancer patients by

reactivating their immune systems. The US Food and Drug

association has approved numerous medications of these classes

for the treatment of different tumor types.

This review provides a detailed introduction to the structure and

biological functions of FSH, followed by those of the FSHR, and

summarizes the mechanism of action of FSH and FSHR in the

occurrence and development of OC. The research progress and future
Frontiers in Endocrinology 02
development prospects of nanotechnology and immunotherapy for

targeting FSHR in OC are highlighted, aiming to provide further

theoretical evidence supporting targeted therapy of OC.
2 FSH

The anterior pituitary gland produces FSH, a pituitary

gonadotropin involved in the regulation of gonadal functions

(16). Gonadotropins belong to a family of closely related

glycoproteins, including FSH, thyrotropin (TSH), chorionic

gonadotropin (CG), and luteinizing hormone (LH). These

hormones are produced by various cell types: pituitary cells

synthesize TSH, gonadal cells synthesize LH and FSH, and

placental trophoblasts produce CG (17). Every member of the

family has a structurally unique beta (b)- component in addition

to a functionally indispensable 96-amino acid alpha (a)-subunit
shared by LH, TSH, and CG. FSH is a heterodimer consisting of a

non-covalently bound common alpha subunit to a unique beta

subunit that confers biological specificity to the hormone (18). The

individual subunits have no known biological activity. Nonetheless,

heterodimer formation is essential for this activity. In silico and

crystallographic structural investigations revealed an interaction

between the a subunit and the FSHR, indicating that receptor

binding is not limited to the b subunit (19). Biological functions of

FSH are activated by its interaction with FSHR; thus, the FSHR

plays a central role in human reproduction.
3 FSHR

Encoded by 11 exons and 10 introns, the human FSHR gene is

located on chromosome 2 and spans 52 kb. The FSHR protein

contains 695 amino acids, including a 17-amino acid signal peptide

sequence, whereas the mature receptor contains 678 amino acids

and 3–4 potential glycosylation sites (20). In sheep and mouse

gonadal tissues, pre-mRNAs encoding this gene undergo alternative

splicing, creating several subtypes (FSHR1, FSHR2, FSHR3, and

FSHR4) (21). FSHR1 is also referred to as the 7-trans-membrane

receptor (7TMR) due to its seven transmembrane helices. It

comprises an N-terminal extracel lular domain, seven

transmembrane domains, three extracellular loops, three

intracellular loops, and a C-terminal intracellular domain. The

glycosylated extracellular domain consists of hormone-binding

and signal-specific subdomains and has 12 leucine-rich repeats.

Hormonal activity is caused by a sulfated tyrosine residue at the

hinge loop position 335 in the signal-specificity subdomain (22).

FSHR1: Sertoli and granulosa cells express the mature FSHR1

protein, which has a molecular mass of 76 kDa (23) and is involved

in follicular development, differentiation, and proliferation, and

hormone production in granulosa cells (24). It consists of an

intracellular C-terminal tail, seven a-helical transmembrane

domains connected by alternating extracellular and intracellular

loops, and a sizable N-terminal extracellular domain (25).

Preclinical investigations have shown that the FSH/FSHR1

pathway is associated with increased angiogenic potential of
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ovarian granulosa cells and is beneficial for follicular maturation.

The FSH/FSHR1 complex appears to enhance the secretion of

platelet-derived growth factor receptor-b (PDGF-b) and VEGF in

granulosa cells mediated by transforming growth factor-b1 (TGF-

b1). The FSH-FSHR1 interaction is involved in the vascular

development of this rapidly growing cell population (26). By

binding to intracellular C-terminal fragments and FSH, FSHR-1

initiates several intracellular signaling cascades. Of these, cyclic

adenosine monophosphate (cAMP)/Protein kinase A (PKA)

signaling is the most prevalent (27).

FSHR2: FSHR2 consists of 10 exons but a different C-terminus

(28). In contrast to FSHR1, FSHR2 preserves the extracellular and

transmembrane domains of the receptor but not the intracellular

domains, and this truncation negatively affects downstream

signaling processes. Although FSHR2 binds to FSH with high

affinity, it cannot induce G protein-coupled receptor signaling;

therefore, it is the dominant inactivated receptor (29, 30). This

dominant-negative FSH receptor may be involved in an inhibitory

pathway and likely activates Gi after binding to FSH (31). However,

the biological functions of FSHR2 have not been reported.

FSHR3: FSHR3, also known as the growth factor 1 receptor,

contains exons 1–8, but is a truncated protein (28) with a single

transmembrane segment, and lacks the hepta-helical R1 region

implicated in coupling with heteromeric G proteins. It is a typical

receptor for cytokines/growth factors (21). Feature-wise, FSHR3 is

distinct from FSHR1. It operates apart from cAMP-regulated pathways

(32). The C-terminus of FSHR3 contains the PVILSP sequence, which

may be a common motif for MAPK phosphorylation (21, 33). FSHR3

activates the mitogen-activated protein kinase-extracellular signal-

regulated kinase (MAPK/ERK) pathway in granulosa cells in a

cAMP-independent manner (31, 32, 34). FSHR3-mediated activation

of the MAPK/ERK pathway regulates cell proliferation through

calcium ion (Ca2+) influx by modulating Ca2+-dependent channels

(33, 35). The proliferation of ovarian epithelial cells in response to

FSHR3-mediated MAPK activation further demonstrates its role in

promoting mitosis and proliferation (35). FSH acts directly on

endogenous tissue stem/progenitor cells in the gonads and bone

marrow via FSHR3, promoting asymmetrical and symmetrical cell

division and clonal expansion (36).

FSHR4: FSHR4 contains only exons 1–4 and is referred to as the

soluble FSHR because it lacks a transmembrane domain (28). FSHR4

stabilizes or inhibits the binding of FSHR to FSH in the extracellular

matrix. FSHR4 also functions as an insulin-like growth factor (IGF-

1)-binding protein (37) and has been suggested to be a prohormone

of active molecules (38). Expression of several FSHR variants in cells

may be linked to multiple FSH signal transduction pathways (39).
4 FSH recognizes and activates the
FSHR signaling pathway

FSHR mediates its biological role in target cells through the

stimulatory Gs alpha subunit (Gas)/cAMP/PKA signaling pathway

(40, 41). Interestingly, evidence suggests that the FSH/FSHR system

functions through other pathways.
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4.1 Canonical Gas/cAMP/PKA pathway in
target cell FSHR

The typical Gas pathway indicates that the FSH-FSHR

interaction leads to receptor coupling with Gas subunits,

inducing adenylate cyclase activation and cAMP production (42).

In turn, cAMP activates downstream effector protein kinase A

(PKA). FSH-mediated activation of the cytosolic ERK/MAPK

pathway is PKA-dependent. In addition, FSH-induced MAPK

p38 phosphorylation is PKA-dependent.
4.2 PI3K/mTOR signaling at FSHR in
target cells

The PI3K/mTOR signaling pathway plays a crucial role in FSH-

induced cell proliferation, gene expression, and protein translation.

Multiple studies have confirmed that the PI3K/mTOR pathway serves

as an effector pathway for FSH/FSHR-mediated signaling. FSH acts on

the FSHR receptor to activate PI3K, which promotes the conversion of

phosphatidylinositol 4,5-bisphosphate(PIP2) to (phosphatidylinositol-

3,4,5-triphosphate)PIP3 (41) and activates Akt (43), which

subsequently activates downstream signaling cascades, including the

phosphorylation and inactivation of GSK3b (44) and AMPK (17), as

well as the inactivation of transcription factors Fox3a and FoxO1 (41).
4.3 FSH-induced b-arrestin-
dependent pathway

The b-arrestin pathway, initially serving as a pathway for FSHR

desensitization and recycling, has gradually gained recognition as

an adapter and converter for FSH/FSHR signaling (45). b-arrestin-
mediated receptor recycling initiates G protein-independent signal

transduction, not only through FSHR but also through several other

7TMRs (46). Interestingly, unlike the rapid and transient nature of

G protein-mediated signal transduction, the signaling cascade

involving the b-arrestin pathway is gradual and sustained (47).
4.4 FSH-mediated nuclear
signaling pathway

FSH regulates the expression of genes involved in steroidogenesis

(48). Upon stimulation, multiple signaling pathways (PKA, p38, ERK,

and Akt) (43, 49, 50) are activated, which subsequently trigger the

activation or inhibition of different transcription factors in the nucleus

through nuclear translocation, thereby regulating gene expression.
4.5 Proteins interact with the FSHR,
influencing signaling pathways

The above signaling pathways are primarily activated by second

messengers Furthermore, FSHR interacts directly with specific
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proteins to regulate signaling cascades via alternate pathways. The

proteins 14-3-3t, APPL1, and FoxO1a directly act on the FSHR,

with the latter two controlling the downstream PI3K/Akt pathway

of FSHR, thereby modulating gene expression (51, 52).
5 FSH functions through the FSHR

5.1 Role of FSH in reproduction

FSH and LH are released in response to the pulsatile release of

the gonadotropin-releasing hormone (GnRH). Estradiol and

inhibin B are the two primary factors that suppress FSH secretion

(53–55). FSH secretion and activity have been linked to different

pituitary regulatory proteins, including follistatin and activin (54).

FSH is essential for the development and control of the male and

female reproductive systems because it acts on the FSHR, which is

mostly expressed in granulosa and Sertoli cells (56). In females, FSH

is essential for ovarian folliculogenesis and antral follicle formation,

and along with LH, it promotes preovulatory follicular growth (56–

58). Additionally, OSCs express FSH and respond to FSH/FSHR

signaling, resulting in self-renewal, clonal amplification, new ovum

formation, and primordial follicle assembly (59). FSH controls the

growth and maturation of Sertoli cells in males, promotes mitotic

proliferation, and triggers the release of androgen-binding proteins

that control spermatogenesis (60). Notably, this study indicates that

inadequate FSHR signaling through the placental endothelium has a

negative impact on the growth of both the fetus and the placenta,

and that endothelial-cell FSHR in the placental vasculature

promotes angiogenesis (61, 62). The role of FSHR may have

previously been overlooked in both the remodeling of the

mother’s spiral arteries and embryo implantation. However,

further investigations are required (Figure 1).
5.2 Effects of FSH on the bone and
bone marrow

In perimenopausal or postmenopausal women, decreased

estrogen production due to ovarian senescence has historically

been the primary cause of bone loss. Estrogen replacement

therapy is thought to be a reasonable therapeutic option in this

population (73). However, perimenopausal bone loss is not only

reliant on estrogen; the impact of FSH on the bone may also play a

role. In women of reproductive and non-reproductive ages, as well

as those undergoing menopausal transition, FSH levels have been

linked to bone loss (67, 74). Women with higher estrogen-to-FSH

ratios showed less bone loss in the lumbar spine during

perimenopause (75). Genetic research has demonstrated that

regardless of FSH and estrogen levels, women with an active

FSHRN680S polymorphism have a greater risk of developing

postmenopausal osteoporosis (76).

By activating the nuclear factor kappa B(NFkB), MEK/Erk, and

AKT pathways in response to FSH acting on FSHRs on osteoclasts,

osteoclast production, function, and survival are enhanced (63, 64).

In addition, FSH stimulates osteoclasts through an indirect pathway:
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interleukin (IL)-1b, IL-6, and tumor necrosis factor-alpha (TNFa)
production are increased in proportion to FSHR expression due to

the overexpression of receptor activator NFkB (RANK) (77, 78).

Furthermore, FSH promotes osteoclastogenesis by interacting with

the immunoreceptor tyrosine-based activation motif (ITAM) adaptor

(79). Amber et al. (65) reported the expression of functional FSHR in

the bone marrow of very small embryonic-like stem cells (VSELs)

and hematopoietic stem cells (HSCs) in adult mice. VSELs are the

most primitive pluripotent stem cells in the bone marrow and are

capable of self-renewal and HSC production under 5-fluorouracil (5-

FU)- and FSH-stress. HSCs further divide and differentiate to

maintain balanced levels in the body. Functional studies by our

group on the bone marrow of adult mice have shown a direct effect of

FSH on hematopoiesis (65). In summary, accumulating evidence has

shown that FSH acts directly on the bone and bonemarrow through a

specific FSHR, which increases osteoclastogenesis, stimulates bone

resorption, and promotes hematopoiesis.
5.3 Effects of FSH on fat metabolism

Compelling evidence indicates that human, mouse, and chicken

adipocytes express the transcription factor FSHR (56). Pleiotropic

FSHR signaling promotes FSH, which, in turn, controls fat

metabolism. PKA, cAMP, and intracellular adenylate cyclase (AC)

are traditionally activated by Gas that is induced by FSH binding to

FSHR. PKA also controls the transfection of cAMP-response

element-binding protein (CREB) in the nucleus, which

phosphorylates many cytokines and regulates downstream effector

genes such as inhibin-A, aromatase, and uncoupling protein 1

(UCP1) (66). GnRH stimulation increases FSH levels and cyclin

D1 (CCND1) and cyclin E1 (CCNE1) transcription via the PKA/

CREB pathway (80). Adipocyte fat accumulation is promoted by

CCND1 and CCNE1, which drive cell cycle progression and

enhance cell differentiation. Furthermore, FSH directly stimulates

3T3-L1 cells and primary murine adipocytes via the inhibitory G a
subunit (Gai)-coupled FSHR, which results in the upregulation of

key genes involved in lipid metabolism, such as Fas, Lpl, and Pparg,

as well as the stimulation of lipid synthesis (56). The bone marrow

and subcutaneous fat were significantly reduced in different rat

models following injection of an anti-FSHb antibody. These models

included ovariectomized mice and mice that were either pair-fed a

high-fat diet or allowed unrestricted access to standard chow (81).

FSH also inhibits hepatic cholesterol metabolism. In HepG2

cells, FSH interacts with FSHRs to lower LDLR levels (82). Reduced

LDLR expression inhibits LDL-C endocytosis and increases

circulating LDL levels. Furthermore, b-arrestin 2 modulates the

formation of the FSH/FSHR complex, which activates Gi2a and

increases Akt activation via PI3K. The sterol regulatory element-

binding protein 2 (SREBP2) transcription site is released, and

FOXO1 nuclear transfer is inhibited by phosphorylated Akt,

which increases SREBP2 transcription and expression. By

encouraging the transcription and expression of cholesterol,

which produces the rate-limiting enzyme 3-hydroxy-3-

methylglutaryl coenzyme A reductase (HMGCR), mature SREBP2

promotes hepatic cholesterol production (68).
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5.4 Effects of FSH on the
cardiovascular system

Multiple studies have indicated that FSH levels are associated

with cardiovascular diseases. Whether and to what extent FSH

levels determine the rate of cardiovascular occurrence remains

controversial. Men receiving androgen-deprivation therapy

(ADT) for prostate cancer are more susceptible to thrombosis,

atherosclerosis, and cardiovascular failure (83–85). For example,

FSH was recently demonstrated to increase the risk of

cardiovascular disease in males undergoing ADT (69). In

addition, a positive connection was observed between the FSH

trajectory and intima-media thickness in the SWAN trial, which

involved 856 women who did not report having a stroke or heart

attack (86). However, a 22-site population-based investigation on

the frequency of metabolic disease-related risk factors in East China
Frontiers in Endocrinology 05
revealed a negative relationship between FSH levels and

cardiovascular risk (87). The interplay between monocyte FSH

and FSHR stimulates RANK production and promotes infiltration

of monocytic cells into atherosclerotic plaques (69). Furthermore, as

neovascularization is necessary for the development of

atherosclerotic plaques (88), FSH may promote the production of

new vessels through FSHR in vascular endothelial cells (70). FSH

can enhance macrophage cytokine production, including IL-6 and

TNFa, leading to low-grade inflammation, atherosclerosis, and

insulin resistance (71). Additionally, FSH contributes to the

development of atherosclerosis by activating the PI3K/Akt/NF-kB
pathway and boosting vascular cell adhesion molecule-1(VCAM-1 )

protein expression (72). Collectively, these factors play significant

roles in the onset and progression of atherosclerosis. However, the

specific mechanism of action of FSH/FSHR in the development of

atherosclerosis requires further investigation.
FIGURE 1

FSH functions through the FSHR. In females, FSH plays a key role during ovarian folliculogenesis and antral follicle development and, in combination
with luteinizing hormone (LH), stimulates preovulatory follicular growth (56–58). In males, FSH regulates the mitotic proliferation of Sertoli cells,
supports their growth and maturation, and prompts the release of androgen-binding protein, which regulates the overall process of
spermatogenesis (60). FSH acts on FSHRs on osteoclasts, stimulating NFkB, MEK/Erk, and AKT pathways, thus promoting osteoclast formation,
function, and survival (63, 64). Functional FSHR is expressed on bone marrow very small embryonic-like stem cells (VSELs) and hematopoietic stem
cells (HSCs) in adult mice (65). PKA further phosphorylates a large number of cytokines and regulates cAMP-response element binding protein
(CREB) transcription in the nucleus to control the expression of downstream effector genes, such as UPC1, aromatase, and inhibin-A (66). FSH
interacts with FSHRs in HepG2 cells, reducing LDLR levels (67). Mature SREBP2 increases liver cholesterol synthesis by promoting transcription and
expression of the cholesterol synthesizing and rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) (68). The
interaction of FSH with FSHR on monocytes has been shown to upregulate RANK expression and promote monocytic infiltration of atherosclerotic
plaques (69). FSH may act by stimulating new vessel formation via FSHR present on vascular endothelial cells (70). FSH may elevate the production
of cytokines, namely IL-6 and TNFa, from macrophages to cause low-grade inflammation, atherosclerosis development, and insulin resistance (71).
FSH promotes the development of atherosclerosis by increasing VCAM-1 protein expression via activating the PI3K/Akt/NF-kB pathway (72).
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5.5 Role of FSH-FSHR in OC

Patients with OC have elevated FSH levels. Previous studies

have reported higher FSH levels in OC and gynecological

malignancies (89); however, the relationship between high FSHR

expression, progression-free survival (PFS), and overall survival

(OS) remains controversial. Furthermore, increased levels of

putative carcinogenic pathways and an increase in the number of

preneoplastic ovarian surface epithelial cells may be associated with

FSHR overexpression (90). Endothelial FSHR expression correlates

with vascular remodeling and angiogenesis. However, the

mechanisms underlying FSH-driven signaling pathways that lead

to EOC development remain unclear. Therefore, we have

summarized the mechanism by which FSH-FSHR promotes OC

cell proliferation and epithelial-mesenchymal transition

(EMT) (Figure 2).
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It has been proposed that the growth factor receptor FSHR3,

which triggers the MAPK/ERK pathway in a Ca2+-dependent

manner, is the mechanism by which FSH promotes OC cell

growth (35). Overexpression of FSHR-3 is also associated with

increased cell proliferation and aggressive behavior, because it

promotes the expression of epidermal growth factor receptor 2

(EGFR-2), EGFR, and c-Myc (97). Furthermore, Gankyrin mediates

FSH-driven OC cell proliferation by regulating the stability of HIF-

1a protein and the expression of cyclin D1 (91). Additionally, our

study showed that FSH stimulates the phosphorylation of both

sphingosine kinase 1 (Sphk1) and sphingosine kinase 2 (Sphk2) and

regulates the survival and growth of OC cells by activating Sphk1

and Sphk2 through ERK1/2 (92). To our knowledge, this is the first

study to provide evidence that high levels of phospho-SphK1 and

phospho-SphK2 are prognostic indicators of OS in patients with

EOC. Another group reported that high levels of b-arrestin 2 were
FIGURE 2

Mechanism of action of FSH-FSHR in OC proliferation and EMT. Cyclin D1 expression is induced by gankyrin-mediated HIF-1a via a gankyrin-
established PI3K/AKT signaling feedback loop (91). FSH stimulates the phosphorylation of both sphingosine kinase1 and sphingosine kinase2 and thus
regulates the survival and growth of OC cells by activating Sphk1 and Sphk2 through ERK1/2 (92). High levels of b-arrestin 2 are positively correlated
with the expression of the gonadotropin receptors FSHR. b-arrestin 2 expression significantly facilitates the proliferation of OC cells (93). FSH
induces epithelial OC invasion via the regulation of the ERK1/2 signaling pathway, resulting in the upregulation of OCT4 expression and
subsequently, EMT and invasion (94). FSH-induces EMT of epithelial OC cells through FSHR PI3K/Akt-Snail signaling pathway (95). FSH receptor
binding inhibitor (FRBI), as an FSH antagonist, blocks FSH binding to FSHR8 and changes the role of FSH at the receptor level. FSH receptor binding
inhibitor upregulates ARID1A and PTEN genes associated with OCs in mice (96). A high dose of FRBI reduces the production of c-Myc and K-Ras,
which probably prevents or blocks tumorigenesis and progression of OC (10).
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positively correlated with the expression of the gonadotropin

receptor, FSHR. Meanwhile, this study revealed that b-arrestin 2

expression significantly facilitates the proliferation of OC cells (93).

Importantly, spheroids in the ascites fluid express and secrete FSH,

which regulates cancer cell proliferation and spheroidogenesis

through Notch signaling, suggesting that FSH is an autocrine

regulator of cancer metastasis. FSH plays an important role in

OC cell proliferation. A recent study demonstrated that FSH

induces EOC invasion by regulating the ERK1/2 signaling

pathway, resulting in the upregulation of octamer-binding

transcription factor 4 (OCT4), and subsequent EMT and invasion

(94). Additionally, FSH-induced EMT in EOC cells may occur via

the FSHR PI3K/Akt-Snail signaling pathway (95). Taken together,

these studies demonstrated that FSHR activates oncogenic

pathways and facilitates an invasive phenotype, even in the

absence of FSH.

Cancer stem cells drive cancer progression by regulating

signaling pathways and miRNAs, thereby providing resistance to

treatment and promoting metastasis (98). FSH plays an important

role in promoting cancer stem cells in malignant tumors. FSH

exhibits anti-apoptotic effects in OSC by regulating stem cell

signaling pathways (99). OCT-4 is a stem cell marker that is

overexpressed in several types of human cancers and can induce

chemotherapy resistance and inhibit apoptosis. FSH/FSHR

upregulates the expression of OCT-4 in OC stem cells, and OCT-

4 overexpression increases Notch, Sox 2, and NANOG levels,

resulting in the expansion of CD44+/CD117+ cells that exhibit

stem cell characteristics (99).

Regarding relationships between FSHR polymorphisms and

OC, the National Center for Biotechnology Information (NCBI)

single nucleotide polymorphism (SNP) database has identified 731

SNPs in FSHR genes, some of which are associated with cancer

susceptibility (100). Yang et al. (101) reported an association

between FSHR subtypes and OC in an Asian population, but no

similar results were observed in a Caucasian population. Greb et al.

(102)found an association between the Ser/Ser genotype of FSH and

a prolonged menstrual cycle (101). Therefore, we speculated that

the FSHR Asn680Ser polymorphism is associated with

cancer susceptibility.
6 Advances in targeting FSHR as a
treatment for OC

Targeted therapies have been developed over several years

along with an extensive understanding of the molecular and

genetic changes in cancer. The potential use of FSHR as a

therapeutic target has also been investigated. One study

examined the effect of sunitinib treatment on FSHR expression

in kidney cancer cells (103). Digarek, a GnRH-receptor

antagonist, was used to block FSH production in a patient with

metastatic colon cancer who had received multiple treatments,

with encouraging results (104) . Nanotechnology and

immunotherapy targeting FSHR therapy for OC have brought

new prospects for the treatment of OC (Figure 3).
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6.1 Nanotechnology for targeted FSHR
treatment of OC

Recent studies on OC have focused on drug carrier-based

targeted therapies. Nanotechnology plays an important role in

OC diagnosis and treatment. Owing to the unique characteristics

of matter at the nanoscale, nanomedicine has emerged as a potent

tool for creating novel drug carriers that are more effective and have

fewer adverse effects than traditional treatments. Nanocarriers can

assist in the targeted delivery of hydrophobic compounds, stabilize

delivery carriers, reduce systemic toxicity of antineoplastic agents,

and enhance the biodistribution and pharmacokinetics of active

pharmaceutical ingredients (111). Nanocarriers, including

liposomes, dendrimers, polymer nanoparticles (NPs), and

polymer micelles, possess unique surface chemistries,

morphologies, and mechanisms of action that can be exploited to

distinguish between malignant and normal cells, thus paving the

way for targeted drug delivery. Furthermore, the development of

specific ligand-functionalized nanoformulations enables

preferential targeting of ovarian tumors and eventually amplifies

their therapeutic potential compared with their non-functionalized

counterparts (112).

Several functionalized nanoparticles(NPs) have been tested for

use in cancer diagnosis and treatment. However, clinical translation

remains limited, and NP-based health applications continue to face

challenges (113). According to a recent survey, the success rate of

phase I trials involving nanomedicines was approximately 94%, that

of phase II trials was as low as 53%, and that of phase III trials

dropped further to 18% (114). The reason for the failure of clinical

conversion rate is its low efficacy, which may be attributed to

biological barriers, NP toxicity, physical and chemical

characteristics, scale effects, and limitations of animal models

(115). Below, we focus on the obstacles that reduce the effective

accumulation of NPs at tumor sites and their targeted delivery.

Despite recent advances, the toxicity of nanomaterials and

biological barriers remain significant obstacles.

Biological barriers: After intravenous injection, nanomedicines

undergo a complex multistep cascade process in the body to exert

their efficacy, which includes entry into the blood circulation,

accumulation at the tumor site, penetration into the interior of

tumor tissue, endocytosis, intracellular transport, and drug release.

A low efficiency at any step reduces the overall delivery effect (116).

Numerous proteins in the blood can tightly bind to form a “protein

crown” on the NPs surface, thus changing their physicochemical

characteristics and stability, hindering the specific binding of

targeted molecules to receptors (117). Most NPs are taken up and

cleared by macrophages or endothelial cells in the liver or spleen

after entering the body, hindering further delivery to tumor tissues

(118). In addition, the “protein crown” can trigger immune

responses, resulting in the clearance of NPs from the body before

reaching the target site. The extravasation of NPs into tumors

through the blood circulation is affected by tumor vascular

distortion, the surrounding microenvironment, and the properties

of NPs (119). The enhanced permeability and retention (EPR) effect

leads to the accumulation of NPs, which has become the “gold
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standard” for designing tumor-targeted delivery systems (120).

However, the EPR is effective in animal models but is usually

ineffective in patients (121). Most importantly, the EPR effect not

only varies greatly in various mouse tumor models with different

tumor vascular pathophysiological characteristics, but also varies

greatly among patients owing to inherent tumor heterogeneity and

individual factors (122). Therefore, innovative tools, technologies,

and strategies must be adopted to effectively solve these problems.

NP toxicity: NPs significantly alter the in vivo distribution

characteristics of drugs, accumulating more in normal tissues,

such as in the liver and spleen. Clinical research failures owing to

toxicity are common (123). Furthermore, these negative impacts are

determined by the material properties of the NPs. For example,

metallic NPs can cause neurotoxicity by inducing ROS generation

and cytokines. This facilitates neuroinflammation, impairs synaptic

transmission, and leads to brain cell death (124). Therefore,

overcoming the safety issues caused by the distribution

characteristics is a prerequisite for the widespread application

of nanomedicine.

Tumor cell-specific targeting is an effective strategy to enhance

the internalization and therapeutic efficacy of nanomedicine. After
Frontiers in Endocrinology 08
functionalization with targeted ligands such as antibodies,

aptamers, peptides, and small molecules, nanomedicines can

specifically recognize and bind to receptors or other molecules on

the surface of tumor cells, leading to increased retention of tumor

tissue and enhanced uptake by tumor cells.

Much of the current literature on OC has focused on FSHR-

based targeted therapies. As a specific receptor, FSHR has

significant advantages in cancer cell targeting. This receptor is

endocytosed by cells and is usually expressed more in cancerous

cells than in healthy cells. The internalization and varied expression

of this receptor allow for the reduction of unfavorable side effects

and enhancement of therapeutic outcomes. Therefore, the

development of improved treatments using enhanced delivery

systems is a primary goal of NP-therapy. Follicle-stimulating

hormone peptide (FSHP) can facilitate paclitaxel (PTX) NPs

targeting ovarian carcinomas in vivo (14). This novel FSH33-NP-

PTX displays stronger antiproliferative and antitumor effects than

free PTX or naked PTX-loaded NPs (NP-PTX), both in vitro and in

vivo , and not only enhances the antitumor effect of

chemotherapeutic drugs, but also minimizes side effects in

unrelated normal organs. Furthermore, FSHP-NP-PTX recognizes
FIGURE 3

Nanotechnology and immunotherapy for ovarian cancer (OC) targeting FSHR. Follicle-stimulating hormone peptide (FSHP) facilitates paclitaxel
nanoparticles’ (NPs) targeting of ovarian carcinoma in vivo (14). The FSHP-NP-PTX system recognizes metastasic lymph nodes of ovarian cancer and
can be captured by the lymph nodes by FSHP-NP-PTX passively targeting the lymphatic system, thereby significantly inhibiting cell proliferation
(105). An siRNA-targeted NP delivery system with follicle-stimulating hormone (FSH)b 33-53 peptide as the targeting ligand inhibits the migration and
invasion of ovarian clear cell cancer cells, which is an effective targeted therapy strategy for ovarian cancer and a stable delivery system for siRNA
(106). FSH peptide-conjugated NPs with an increased amount of polyethylene glycol (PEG) grafting and encapsulated short hairpin RNA (shRNA) can
silence the FSH target gene, growth-regulated oncogene a (gro-a) (107). Moli et al. (108) designed a novel FSH 33-targeting dendritic
macromolecular nanocarrier as a potential delivery platform for OC cells that express FSHR, which is a highly effective active targeting medium and
has the potential to block the FSH signaling pathway cascade while selectively delivering chemotherapy drugs, potentially enhancing its therapeutic
effect. Preparation of ovarian cancer FSHR NP vector carrying therapeutic plasmid growth-regulating oncogene a (pGRO-a) short hairpin RNA
(shRNA) (FP21-PEG-PEI/pGRO-a). A strategy to treat human ovarian cancer by redirecting primary human T cells to target FSHR laying a foundation
for further development of FSHR-targeted immunotherapy (109). In addition, T-cells redirected against FSHR+ tumor cells with full-length FSH
represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate
targets in tumor-free ovaries (89). mAb targeting the external domain of FSHR using an in vivo-expressed FSHR vector and identifying an effective
surface targeting mAb D2 AP 11 (10). DB7.2xD2AP11 DNA-encoded bispecific NK cell engager exhibits in vitro expression and binding to Siglec-7 and
FSHR, which induces potent killing in multiple ovarian tumor lines and decreases tumor burden in vivo (110).
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and accumulates in metastatic lymph nodes in OC by passively

targeting the lymphatic system, which can significantly inhibit cell

proliferation (105). Previously used chemotherapeutic drugs, such

as paclitaxel, target OC cells themselves rather than the entire tumor

tissue. The stroma surrounding cancer epithelial cells not only

provides a supportive and nutritive microenvironment for cancer

cells but also assists in the development and progression of cancer.

A different study used an siRNA-targeted NP delivery system to

target FSH b 33–53 peptide and effectively inhibited the migration

and invasion of ovarian clear cell cancer cells, indicating NPs can be

used an effective targeted therapeutic strategy for OC and a stable

delivery system for siRNA (106).

Another limitation of NP-based medicines is the acute toxicity

observed in vivo, which may be due to a small amount of

polyethylene glycol (PEG) grafting, which leads to polyplex

aggregation. An FSH peptide-conjugated NPs was developed with

increased PEG grafting that encapsulated short hairpin RNA

(shRNA) to silence the target gene growth-regulated oncogene a
(Gro-a) (107). Gro-a shRNA-loaded NPs conjugated with FSH

peptides overcome the drawbacks of the in vivo application of

RNAi therapeutics and polymer-based nanocarriers and show safe

antitumor efficacy. Previously, Moli et al. (108) designed a novel FSH

33-targeting dendritic macromolecular nanocarrier as a potential

delivery platform for OC cells expressing FSHR, which was a

highly effective active targeting medium and had the potential to

block the FSH signaling pathway cascade while selectively delivering

chemotherapeutic drugs, and potentially enhanced its therapeutic

effect. Zhang et al. (125) conjugated a 21-amino acid polypeptide (L-

FP21) with polyethyleneimine (PEI) and methoxy PEG (MPEG). An

OC FSHR NP vector was prepared carrying therapeutic plasmid,

growth-regulating oncogene a (pGro-a) shRNA (FP21-PEG-PEI/

pGro-a). In another recent study, HK2 shRNA-loaded NPs were

developed with FSH b 33–53 or retro-inverso FSH b 33–53 peptide

modification to target tumor metabolism and growth in OC, which

effectively suppressed HK2 expression, reversed glycolytic-based

glucose metabolism and exhibited strong antitumor effects even in

cisplatin-resistant OC with negligible systemic toxicity (126).

Multiple studies have indicated that nanomaterials targeting FSHR

have tremendous potential for the development of novel therapeutic

drugs for the treatment of aggressive cancers, such as EOC, thereby

opening up new opportunities in cancer research.
6.2 Immunotherapy for targeted FSHR
treatment of OC

With recent improvements in our understanding of the

molecular basis of tumor immune recognition and regulation,

immunotherapies have attracted great interest. These include

immune checkpoint inhibitors (ICI), cancer vaccines, and

adoptive cell therapies (ACT) (6). Despite its strong rationale,

immune checkpoint blockade using antibodies targeting

programmed cell death 1 (PD-1) or programmed cell death

ligand 1 (PD-L1) has shown limited efficacy in EOC treatment

with a modest response rate of 4–15% (127). This can be partly

explained by the fraction of immunologically uncold ovarian
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tumors and the comparatively modest number of tumor-resident

tumor-reactive effector T cells that are crucial for antitumor activity

and therapeutic response (128, 129). Further research is needed to

understand the mechanism of immune resistance in OC, including

the immunological, genetic, and molecular aspects, which are

crucial for developing effective immunotherapies for patients with

OC and improving their clinical outcomes.

ACT is a promising therapeutic approach that harnesses the

intrinsic capabilities of the immune system to recognize and

eliminate tumor cells. ACT involves isolating autologous or

allogeneic immune cells, activating or genetically modifying them

in vitro, and expanding them to produce sufficient numbers of

antitumor active immune cells, which are then infused back into

the patient with tumor to amplify the patient’s cellular immune

function and enhance antitumor effects. ACTs include autologous

lymphokine-activated killer cells, cytokine-induced killer cells (CIK),

natural killer cells (NK), tumor-infiltrating lymphocytes, dendritic

cells (DC), T-cell receptor-modified T cells (TCR-T), chimeric

antigen receptor-modified T cells (CAR-T) (Figure 4), and CAR-

NK cells. Recently, CAR T-cell therapy has received increasing

attention as an adoptive cellular immunotherapy that targets

tumors. TCR T-cell therapy for OC is still in the early stages of

development (131). CAR T-cell therapy has achieved tremendous

clinical success in treating patients with B-cell lymphomas and

leukemia. Human epidermal growth factor receptor 2, mesothelin,

MUC16, folate receptor alpha, and epithelial cell adhesion molecules

are CAR targets that have been widely validated in vitro, and are

currently under clinical investigation for the treatment of OC (132).

Although previous studies have demonstrated the effectiveness of anti

anti-mesothelin CAR-T treatment strategy in OC in vitro and in vivo

(133). However, targeting solid tumors has not achieved parallel

success. Multiple factors may limit the efficacy and safety of this form

of therapy for solid tumors, one of which is the risk of on-target, off-

tumor toxicity. However, targeting bona fide cancer/ovary antigens,

such as FSHR, with expression restricted to the OC (134), tumor

vessels (70), and gonadal tissues (23), lowers the risk of on-target, off-

tumor toxicity and makes FSHR an appealing target for T cell-

based immunotherapy.

Recently, Urbanska et al. (109) developed a strategy to treat

human OC by redirecting primary human T cells to target FSHR

and for the first time validated the applicability of FSHR as a target

for T cell immunotherapy. The findings lay the foundation for the

further development of FSHR-targeted immunotherapy. In

addition, T cells redirected against FSHR+ tumor cells with full-

length FSH represent a promising therapeutic alternative against a

broad range of ovarian malignancies with negligible toxicity, even in

the presence of cognate targets in tumor-free ovaries (89).

Furthermore, Bordoloi et al. (10) prepared mAbs targeting the

external domain of FSHR using an FSHR vector expressed in vivo

and identified D2 AP 11 as an effective surface-targeting mAb.

Bordoloi et al. developed a bi-specific T-cell adaptor using D2 AP

11. The addition of peripheral blood mononuclear cells and T cells

to a D2 AP 11 T cell engager (TCE) in vitro induced specific and

potent killing of different genetically and immunologically escaped

OC lines and reduced the tumor load in an OC-stimulated mouse

model. To our knowledge, this is the first report of a bispecific TCE
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receptor targeting the FSHR. Moreover, the DB7.2xD2AP11 DNA-

encoded bispecific NK cell engager is expressed in vitro and binds to

Siglec-7 and FSHR, which induces potent killing in multiple ovarian

tumor lines and decreases the tumor burden in vivo (110). These

studies have described the utility of targeting FSHR in the treatment

of OC. FSHR was found to have a high potency in attenuating

tumor progression in vivo in an ovarian tumor-bearing mouse

model. Notably, the potency and consistency of killing FSHR+

tumors using both the FSHR mAb and bispecific NK cell engager

(NKCE)/TCE in vitro and in vivo are encouraging, providing

additional tools to treat poorly responding OCs.

Generally, a cancer vaccine is defined as a vaccine targeting

tumor-associated antigens and adjuvants that activate dendritic

cells (DCs). The first study on the development of an OC vaccine,

published in 2013, discussed the use of autologous hypochlorous

acid-oxidized OC lysates to pulse DCs in a vaccine. Preclinical

studies using both mice and humans were encouraging, which have

led to attempts to apply it in clinical practice with positive results

(135). Later research broadened the focus of the study and

documented the benefits of OS rates in patients with OC using a

whole-tumor lysate-pulsed DC vaccine (OCDC) in conjunction

with bevacizumab and cyclophosphamide-elicited neoantigen-

specific T cells. Subsequent research revealed a strong correlation

between extended OS and time-to-progression rates and the

addition of acetylsalicylic acid (ASA) and low-dose IL-6 to

OCDC, bevacizumab, and cyclophosphamide (136). Given that

many trials have demonstrated the safety and possible advantages
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of DC vaccination, they may have a positive impact on OC

treatment results (137). In contrast, B cells and macrophages have

emerged as key players in the development of innovative anticancer

and DC vaccines (138). Furthermore, the Modi-1 peptide vaccine,

which combines citrullinated vimentin and enolase peptides, may

be beneficial for treating overconsumption in patients (139).

As FSHR expression is almost exclusive to cancer tissues and its

epitopes can enhance the T cell response in OC, the idea of vaccine

development has become reasonable and potentially achievable.

Perales-Puchalt et al. (15) used the synthetic common sequence

(SynCon) method to produce a novel DNA vaccine to overcame the

immune tolerance of FSHR. The SyonCon FSHR DNA vaccine

produces strong CD8+ and CD4+ cell immune responses and

FSHR-redirected antibodies, delaying the progression of a highly

aggressive OC model with peritoneal cancer metastasis in

immunoreactive mice, and can help in OC treatment and prevent

tumor recurrence after first-line treatment of FSHR+ tumors.
7 Challenges

Despite important advances in OC therapy, recurrent OC still

presents with poor prognosis associated with a highly lethal cancer

phenotype. FSHR expression in and around blood vessels in different

tumors suggests that it is associated with tumor metastasis and

neovascularization (140). The study of FSHR in cancer may help

identify treatment and diagnostic options to improve the
FIGURE 4

Chimeric antigen receptor-modified T cells therapy targeting ovarian cancer. Leukapheresis harvests T lymphocytes from healthy persons. Viral vectors
are used to modify genes using transgenic methods. Gene-directed knock-in technology involves recombining DNA and inserting it into CARs, suicide
genes, or costimulatory receptors in lymphocytes.Next, anti-CD3/anti-CD28 beads and cytokines are employed to expand T cells. The ab-TCR antibody
magnetically eliminates any remaining ab-TCR-positive cells. Finally, the harvested T cells will be administered into the patient’s body (130).
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management of patients with cancer, as the inhibition of FSHR

overexpression may be beneficial in reducing the carcinogenic effect

and progression of OC (especially EOC) (89).

The FSH receptor-binding inhibitor (FRBI), an FSH antagonist,

blocks FSH binding to FSHR and alters FSH activity at the receptor

level. FRBI upregulates AT-rich interaction domain-containing

protein 1A (ARID1A), and phosphatase and tensin (PTEN)

homolog genes associated with OCs in mice (96). Furthermore, a

high dose of FRBI reduced the production of c-Myc and K-Ras,

which probably prevents or blocks tumorigenesis and OC

progression (141). To date, little is known about the effects of

FRBI on oncogenes involved in gynecological cancers in humans

and animals. Therefore, the effects of FRBI on anticancer activity

and progression of OC should be thoroughly investigated.

Treatments targeting FSHR are an emerging research topic in OC.

Multiple studies have demonstrated that conjugated NPs combined

with drugs targeting FSHR in OC display stronger antiproliferative and

antitumor effects. Previous researches not only confirmed that NPs

carriers could enhance the drug effects but also suggested that the FSH

peptide could further enhance the antitumor activity. FSH consists of a
and b chains, and some FSHR-binding domains have been identified;

the affinity of peptides with FSH is FSH b33–53 > FSH b81–95 > FSH

b1–15 > FSH b51–65 (14). Furthermore, a 21-amino-acid peptide,

YTRDLVYGDPARPGIQGTGTF (FP21), corresponding to the FSH

b33–53 sites, has the strongest binding affinity (125). Inorganic NPs

have attracted considerable attention for therapeutic drug delivery

because of their good biocompatibility, easy modification, design

flexibility, and reduced toxicity (142). PEI is a well-known non-viral

gene delivery system because of its high transfection efficiency

compared to polylactic acid, poly(alkyl cyanoacrylate), and chitosan

(143). Surface modification using PEG and mPEG enables PEI NPs to

escape uptake by the mononuclear phagocytic system and reduces their

cytotoxicity (144). However, acute toxicity observed in vivo limits its

widespread use. The reason for this high toxicity may be that a small

amount of PEG grafting leads to polyplex aggregation. Therefore, to

reduce toxicity and improve the silencing efficiency of the NP complex,

an FSH peptide-conjugated PEG-PEI copolymer was prepared with an

increased amount of PEG grafting to silence the target gene, which

promoted malignant transformation, tumor growth, and metastatic

spread (125). However, the extent of the influence of the polymeric NPs

has been debated. One limitation associated with the use of polymeric

NPs is their limited diffusivity, which leads to inefficient distribution of

drug payloads within the tumor mass (145). Therefore, a novel FSH33-

targeted dendrimer-based nanocarrier was designed as a potential

delivery platform for ovarian cells expressing FSHR that could also

provide fertility preservation (108). In summary, a novel polymer of

NPs with high selectivity for OC and normal cells expressing FSHR

requires further development.

Much of the current literature on targeting FSHR in OC has

focused on chemotherapeutic drugs, including PTX, which is the most

commonly used drug in chemotherapy for OC. However,

chemotherapeutic drugs used previously, such as PTX, target OC

cells themselves rather than the entire tumor tissue (106). Thus,

therapeutic approaches that specifically target cancer epithelial cells

cannot completely destroy well-organized tumor tissues. Therefore,

siRNA was introduced into the FSHR-mediated delivery system to
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silence Gro-a. The proliferation of an ovarian clear cell carcinoma cell

line was inhibited after silencing Gro-awith Gro-a siRNA-loaded NPs

(106). In addition, polymer- and lipid-based carriers have been used to

encapsulate RNAi drugs to overcome problems such as poor stability

and uptake (146). Furthermore, these data were consistent with those

from in vitro experiments and indicated that shHK2 effectively

inhibited tumor growth in cisplatin-sensitive OC (126). Therefore,

an active targeting system combined with NPs is a promising tool for

drug delivery. Whether and to what extent an active targeting system

combined with NPs improves OC remains controversial. Further in

vivo studies are required to investigate the therapeutic effects of this

targeted complex in OC (106). Researchers have suggested that the

targeting advantage of the modified NP administration system requires

proper drug concentration and administration time (105). Further

pharmacokinetic studies are needed to evaluate the elimination half-

life, bioavailability, area under the curve, apparent volume of

distribution, and long-term toxicity (105).

Ovarian tumor cells closely interact with the TME; thus, the

development of treatment approaches that not only target tumor

cells but also maintain their antitumor functions in this

microenvironment is of particular importance (9). An increasing

number of studies on immune-based therapies for OC have been

performed, including treatment with ICIs, cancer vaccines, ACT,

oncolytic viruses, and immunosuppression of the TME. Much of

the current literature on immune-based OC therapies has focused

on cancer vaccines and ACT. ACT can be classified into adoptive T-

cell therapy and other immune cell types such as NK cells, CIK cells,

and macrophages. Adoptive therapy with tumor-specific T-cells

consists of two major forms: genetic modification of T-cells for the

expression of a specific TCR and CAR (147). Recently, a different

strategy for the treatment of human OC has been developed

involving redirecting primary human T cells against FSHR, which

validated the suitability of FSHR as a target for T cell-based

immunotherapy for the first time (109). In addition, chimeric

receptors using the entire FSH subunit can effectively redirect the

cytotoxic activity of T cells against various patient-derived FSHR+

ovarian carcinomas (89). Chimeric receptors using entire FSH

subunits may induce significant therapeutic effects in OC without

detectable toxicity or alternative targeting of healthy tissues. To the

best of our knowledge, this is the first report describing the

generation of a vaccine against FSHR. This SynCon DNA vaccine

targeting FSHR broke immune tolerance, elicited potent long-

lasting CD8+ and CD4+ responses, and delayed FSHR+ tumor

progression by enhancing antitumor immunity, specifically CD8+

cytotoxic T lymphocyte (CTL) responses (15). Furthermore, this

approach has been extended to generate anti-FSHR mAbs and

study the resulting reagents as biologics (10). To the best of our

knowledge, this is the first scFv-based therapy developed for the

treatment of FSHR. This could be useful for designing other scFv-

based therapeutics, such as CAR-T cells, that target FSHR in OC.

Researchers have summarized the current evidence of NK cell

applications in the treatment of OC (148). Moreover, researchers

have engineered NKCE to simultaneously engage NK cells through

Siglec-7 and OC targets through FSHR, which is specific to its target

cells and is potent in killing tumor cells, as evaluated using a panel

of different human ovarian tumor cell lines (110).
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However, immunotherapeutic strategies have shown minimal

success in the treatment of OC. Immunotherapy has long been used

in clinical settings to treat solid tumors; however, several difficulties

hinder its advancement of cancer immunotherapy. Most

immunotherapy techniques have been shown to reduce tumor

progression in animal models, but are generally ineffective in patients

(149). A deeper understanding of the mechanisms underlying effective

anticancer responses and the various intrinsic and extrinsic variables

operating on tumor cells that result in primary, adaptive, and acquired

resistance to immunotherapy is necessary (150).
8 Conclusion

FSH and FSHR play important roles in OC cell proliferation,

survival, and metastasis. NPs targeting FSHR have not only reduced

side effects, but also have improved efficacy in the treatment of OC,

improving OS in patients. Targeted immunotherapy against FSHR

has achieved significant breakthroughs, including TCE, NKCE, and

novel DNA vaccines, which can help in OC treatment and prevent

tumor recurrence after the first-line treatment of FSHR+ tumors.

Thus, FSHR is expected to become a new therapeutic target,

bringing good news to patients with OC.
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