
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY
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Purpose: here is a general consensus that an inverse relationship exists between

vitamin D status and body mass index (BMI) in overweight and obese individuals,

leading to the hypothesis that vitamin D deficiency may contribute to the

development of unfavorable metabolic phenotypes. However, evidence from

non-obese adults remains limited. This study measured energy metabolism in

non-obese adults using a metabolic chamber and explored its association with

vitamin D status.

Methods: Sixty-nine healthy adults (mean age = 22.8 years, mean BMI = 20.7 kg/

m2) participated in this cross-sectional study. Participants were categorized into

vitamin D-deficient, insufficient, and sufficient groups based on the Chinese

classification for total 25(OH)D levels (WS/T 677–2020). They performed typical

daily activities in a metabolic chamber, where their baseline lipid profile, 24-hour

energy expenditure, and substrate oxidation were measured.

Results: A two-way ANOVA (seasonality × 25(OH)D) revealed no statistically

significant differences in total energy expenditure, resting energy expenditure,

sleeping energy expenditure, walking energy expenditure, carbohydrate

oxidation rate, or fat oxidation rate among the three groups (p > 0.05). These

results remained consistent even after adjusting for fat-free mass. Although

statistically significant correlations were found between 25(OH)D status and

certain lipid profile markers (i.e., total cholesterol, high-density lipoprotein, and

free fatty acid) (p < 0.05), these correlations were weak, with Pearson’s

correlation coefficients below 0.3.
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Conclusions: Total 25(OH)D status does not affect energy metabolism in young,

healthy, non-obese adults. Along with existing evidence, this suggests that low 25

(OH)D status is more likely a consequence of unfavorable metabolic phenotypes

rather than a contributing factor.

Clinical trial registration: https://www.chictr.org.cn, identifierChiCTR-IIR-17010604.
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1 Introduction

Vitamin D, a fat-soluble sterol compound and hormone

precursor, plays a critical role in various physiological functions

(1). Among these, its involvement in human energy metabolism has

garnered significant attention over the past decade (2). Research has

shown that vitamin D status is a positive predictor of resting energy

expenditure in adults, independent of obesity or metabolic

syndrome (3). This has led to the hypothesis that vitamin D

insufficiency or deficiency may be an independent risk factor for

unfavorable metabolic phenotypes such as obesity, type 2 diabetes,

and dyslipidemia — primarily supported by observational studies

(4). In the Framingham Heart Study, for example, vitamin D status

was inversely associated with waist circumference and visceral

adipose tissue in non-diabetic individuals (5). Similar associations

have been observed across various populations, including obese

adults (6), healthy children (7), and older adults (8). Given this body

of evidence, vitamin D supplementation has been explored as a

potential strategy to improve metabolic health. However, many

intervention studies have not demonstrated a causal effect of

vitamin D status on obesity metrics or weight loss (9, 10). Despite

this, the prevalence of poor vitamin D status among individuals

with metabolic diseases highlights the need for further research into

the relationship between vitamin D and energy metabolism.

There are three main limitations in research on vitamin D’s role

in energy metabolism. First, while rodent models often provide

valuable insights into human disease development and treatments,

the effects of vitamin D metabolism on energy homeostasis differ

significantly between animal and human studies (11). Given this

limitation, more rigorously controlled experimental studies in

humans are necessary. Second, most studies in this field rely on

metabolic cart measurements to estimate whole-body energy

metabolism (3, 12). Methodologically, metabolic cart-based

assessments of energy expenditure and macronutrient oxidation,

especially through short-term measurements, may yield inaccurate

results (13). In contrast, metabolic chambers, which allow

unrestricted human movement and locomotion, provide not only

more accurate measurements but also a better representation of

real-life energy metabolism. Yet, the high costs and demanding
02
research conditions (e.g., 24-hour observation) associated with

metabolic chambers pose significant challenges. To our

knowledge, studies in this area using metabolic chambers are

scarce. Given the sensitivity needed to detect small yet

meaningful effects of vitamin D on physiological functions, more

studies utilizing metabolic chambers are required. Third, vitamin D

deficiency and essential mineral deficiencies in general are common

worldwide (14), affecting not only obese populations but also

healthy individuals. From a preventive medicine perspective,

understanding vitamin D’s role in energy metabolism among

healthy individuals is of significant public health interest. In

vitamin D-sufficient young adults, for example, additional vitamin

D supplementation has been shown to have no effect on resting

energy expenditure (12). As outlined above, due to the limited data

from representative 24-hour energy metabolism studies, there are

currently no conclusive guidelines to determine vitamin D

requirements for metabolic health in the general population.

Specifically, data on young individuals with vitamin D

insufficiency or deficiency remain scarce.

Therefore, the purpose of this study was to explore the impact of

vitamin D status, measured by 25-hydroxyvitamin D (25(OH)D),

on energy expenditure and substrate oxidation in young, healthy,

non-obese adults. To address the limitations of previous research, a

metabolic chamber was utilized to measure energy metabolism over

a 24-hour period during typical daily activities. The findings are

expected to provide new insights into the effects of vitamin D status

on metabolic health in the general population.
2 Methods

2.1 Study design

This trial (clinical registration: ChiCTR-IIR-17010604) was

approved by the Ethics Committee of the Shanghai University of

Sport (approval # 2015009). According to China’s guidelines for

vitamin D deficiency screening (Chinese Standard GB/T: WS/T

677–2020), vitamin D status is classified as follows: adequate (serum

total 25(OH)D ≥ 50 nmol/L), insufficient (30 ≤ 25(OH)D < 50
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nmol/L), and deficient (25(OH)D < 30 nmol/L). This study aimed

to use a one-way ANOVA to examine the relationship between 25

(OH)D status and energy metabolism. Assuming a Cohen’s d of 0.5,

p-value of 0.05, and 80% power for F-tests, the minimum required

sample size for statistical significance in this cross-sectional, three-

group design was 14 participants per group.

Potential participants were recruited from the Shanghai

University of Sport between March 2017 and October 2018.

Eligibility criteria included: age between 18 and 30 years, body

mass index (BMI) ≤ 25 kg/m², and no use of medications or

nutritional supplements (e.g., vitamin B2, vitamin D, or weight-

loss drugs) that could influence vitamin D status, energy

metabolism, or lipid profile within the six months before the

study. All participants provided written informed consent. A total

of 69 students, most of whom were female, were recruited. Their

general characteristics are presented in Table 1. Apart from

differences in 25(OH)D status and maximal oxygen consumption,

no significant differences were observed among the three groups.
2.2 Protocol

At least one week before the metabolic chamber test,

participants completed a maximum oxygen consumption test

using a cycle ergometer and the Cosmed K4b2 portable metabolic

system (Cosmed, Inc., Rome, Italy). During the same visit, body

composit ion was assessed using a dual-energy X-ray

absorptiometry scanner (GE Lunar Prodigy, USA).

On the experimental day, blood samples were collected from

participants at 7:30 AM by accredited nurses following a 12-hour

overnight fast. After resting at room temperature for 20–30

minutes, the samples were centrifuged at 3000 rpm for 15

minutes at 4°C. The serum was then transferred to additive-free

tubes and immediately stored at -80°C for further analysis. Serum
Frontiers in Endocrinology 03
25(OH)D concentrations were measured using the 25-Hydroxy

Vitamin D EIA (AC-57SF1, IDS Ltd), which has a sensitivity of

3.3 nmol/L and intra- and inter-assay coefficients of variation of

8.9% and 10.6%, respectively. Immunoreactive parathyroid

hormone levels were determined using the EIA-4140 (DRG Inc.),

with intra- and inter-assay coefficients of variation of 9.6%.

Serum total cholesterol was measured using the cholesterol

oxidase method.

Participants’ 24-hour energy metabolism was measured in an

indirect calorimetry chamber (Fuji High Accuracy Human

Calorimeter, FHC-20S, Japan), which was maintained at 25°C

with 50% humidity. Participants followed a structured activity

protocol, as outlined in Table 2, from 10 AM on day 1 to 10 AM

on day 2. Three meals were provided based on age and body mass,

adhering to the estimated energy requirements outlined in the

Chinese Dietary Reference Intakes (Chinese Standard GB/T: WS/

T 578.1–2017). The macronutrient composition of the meals was

standardized to provide 50–60% of total calories from

carbohydrates, 20–30% from fat, and 15–20% from protein.

Breakfast, lunch, and dinner accounted for 30%, 40%, and 30% of

the total daily caloric intake, respectively. Using minute-by-minute

data on oxygen consumption and carbon dioxide production, 24-

hour energy expenditure was calculated with Weir’s formula (15).

The Frayn equation was applied to estimate carbohydrate and fat

oxidation rates (16).
2.3 Statistics

The de-identified data supporting the conclusions of this study

are deposited at Figshare (DOI: 10.6084/m9.figshare.27280311.v1).

All statistical analyses were performed using R version 4.4.1 (Race

for Your Life). Considering the seasonal effects on the body’s

vitamin D production (17), a two-way ANOVA, as illustrated in
TABLE 1 Demographics characteristics.

Demographics
Serum 25(OH)D status

Pairwise comparison
Deficiency Insufficiency Adequacy

n (men) 30 (3) 25 <<(>>2<<)>> 14 (3) –

25(OH)D (nmol·L-1) 22.1 ± 5.6 37.4 ± 4.1 57.1 ± 7.1 F = 200, p < 0.001

Age (years) 23.6 ± 2.0 22.3 ± 2.1 22.2 ± 2.5 F = 3.2, p = 0.048

Height (cm) 161 ± 6 162 ± 8 166 ± 9 F = 2.9, p = 0.063

Body weight (kg) 53.8 ± 6.1 54.4 ± 9.8 57.4 ± 7.5 F = 1.0, p = 0.366

BMI (kg·m2) 20.8 ± 1.7 20.5 ± 2.5 21.0 ± 2.4 F = 0.2, p = 0.826

Fat free mass (kg) 36.1 (5.4) 36.9 (3.9) 38.4 (8.1) c2 = 1.5, p = 0.461

Fat (%) 29.3 ± 6.3 28.5 ± 7.0 27.5 ± 7.4 F = 0.3, p = 0.708

Body surface areaa 1976 ± 179 1984 ± 248 2105 ± 270 F = 1.7, p = 0.183

VO2max (ml·kg-1·min-1) 30.6 ± 5.1 34.2 ± 4.4 36.4 ± 6.1 F = 6.6, p = 0.003

Parathyroid hormone (pg·ml-1) 48.5 ± 16.8 58.3 ± 23.5 64.2 ± 29.5 F = 2.7, p = 0.077
Data are expressed as mean ± standard deviation or median (interquartile range). abased on the Du Bois formula.
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Figure 1, was used to examine the relationship between 25(OH)D

status and energy metabolism. Additionally, Pearson’s correlation

coefficient or Spearman’s rank correlation coefficient was employed

to assess the relationship between 25(OH)D status and the lipid

profile. To address asymmetry due to differing measurement units,

log transformations were applied before conducting the correlation

analysis. Statistical significance was set at the 5% level.
Frontiers in Endocrinology 04
3 Results

Based on the two-way ANOVA, no significant interaction effect

was detected, with F-test values ranging from 0.22 to 2.52 and p-

values between 0.22 and 0.95. Therefore, we can conclude that

seasonality did not influence the primary outcomes of this study. A

one-way ANOVA was used to assess the main effect of 25(OH)D
TABLE 2 Schedule of 2-day activities in the metabolic chamber.

Day 1 Activity of day 1 18:00 PM Viewing smart phone at a desk

9:30 AM Enter chamber 18:30 PM Writing at a desk

10:00 AM Working on a laptop 19:00 PM listening to music

11:00 AM Doing a cervical and lumbar gymnastics 19:30 PM Reading at a desk

11:30 AM Viewing smart phone at a desk 20:00 PM Watching video

12:00 PM Lunch 22:00 PM Quietly resting on bed (rest metabolic rate)

12:20 PM Doing housework 22:45 PM Washing and ready to sleep

12:30 PM Midday break 23:00 PM Sleep

13:30 PM Listening to music Day 2 Activity of day 2

14:00 PM Reading at a desk 7:00 AM Going to the bathroom

14:30 PM Writing at a desk 7:15 AM Resting on bed (basal metabolic rate)

15:00 PM Doing a cervical and lumbar gymnastics 8:00 AM Breakfast

15:30 PM Watching video 8:30 AM Viewing smart phone at a desk

16:30 PM Treadmill walking at 3.2 km/h 9:00 AM Treadmill walking at 5.6 km/h

16:40 PM Working on a laptop 9:30 AM Reading at a desk

17:40 PM Diner 10:00 AM Energy metabolism collection ends
FIGURE 1

Decision tree of two-way ANOVA.
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status, and Figures 2 and 3 illustrate energy metabolism across the

three groups. In summary, neither energy expenditure nor substrate

oxidation rates were significantly affected by 25(OH)D status, even

after adjusting energy metabolism for fat-free mass (as shown in
Frontiers in Endocrinology 05
Figure 2), body weight (not shown here), or muscle mass (not

shown here). The main effect of seasonality is detailed in Table 3,

where participants tested in the spring exhibited significantly higher

values across most energy metabolism metrics.
FIGURE 2

Energy metabolism by serum 25(OH)D status.
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Table 4 summarizes the correlations between 25(OH)D status

and the lipid profile. Although statistically significant relationships

were observed for total cholesterol, high-density lipoprotein, and

free fatty acid, these correlations were weak.
Frontiers in Endocrinology 06
4 Discussion

In a group of young, healthy, non-obese adults, we demonstrate

that total 25(OH)D status does not influence energy expenditure or
FIGURE 3

Substrate oxidation rate by serum 25(OH)D status.
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lipid profiles typically associated with overweight and obesity. A

novel aspect of this study is that the findings are based on 24-hour

continuous measurements of typical human activities conducted in

a metabolic chamber. The comprehensiveness of this data set

provides new insights into the role of vitamin D in human

energy metabolism.

In rodent models, vitamin D receptor-null or vitamin D-

deficient mice exhibit an enhanced rate of fatty acid b-oxidation
in white adipose tissue and reduced lipid accumulation in the liver,

both of which are beneficial for weight management (18, 19).

However, it is now clear that these results are not transferable to

humans. A substantial body of literature demonstrates an inverse

relationship between circulating 25(OH)D levels and fat mass in

children (20), adults (21), and even athletes (22). Emerging cellular

evidence suggests a potential causal relationship (23), leading to

new hypotheses that propose vitamin D status could serve as an
Frontiers in Endocrinology 07
adjuvant therapy for unfavorable metabolic phenotypes (24, 25).

This existing research prompted the present study, which aimed to

clarify the relationship between vitamin D status and human energy

metabolism. However, none of the key metrics — energy

expenditure or substrate oxidation — differed among non-obese

adults with deficient, insufficient, or sufficient 25(OH)D status.

Similarly, the significant yet weak correlations between 25(OH)D

status and lipid profile do not provide conclusive evidence

regarding vitamin D’s role in body weight regulation. To our

knowledge, this is the first study to report negative evidence

under controlled metabolic chamber conditions.

Despite the well-established inverse association between 25(OH)D

status and obesity, our findings suggest that low vitamin D status may

not be the cause of unfavorable metabolic phenotypes but rather a

consequence. This helps explain the conflicting results between

observational and intervention studies (9). Several plausible

explanations support this notion. First, aside from dietary sources

and supplementation, sun exposure is the main contributor to

endogenous cholecalciferol production in the skin. Overweight and

obese individuals, often due to low mobility andmotivation, engage in

less outdoor physical activity (26, 27), which limits natural vitamin D

synthesis. Second, overweight and obesity disrupt adipose tissue

homeostasis and induce hepatic dysfunction, both of which can

affect vitamin D metabolism. In obese individuals, the expression of

the cytochrome P450 gene family — the primary 25(OH)D

hydroxylase — is down-regulated (28, 29), interfering with

downstream circulating 25(OH)D activity. Evidence from obese

patients undergoing gastric bypass surgery demonstrates that obesity

impacts vitamin D metabolizing enzyme expression in the liver,

indicating that being overweight leads to lower 25(OH)D status

rather than the reverse (30). Relatedly, since vitamin D is fat-soluble

and stored in adipose tissue, individuals with higher adiposity tend to
TABLE 3 Results of seasonality effect.

Variable ANOVA Spring Summer Autumn

TEE (KJ) FWelch(2, 40.5) = 31.9, p < 0.001 7184 ± 1002 5629 ± 666*** 5436 ± 317###

REE (KJ) FWelch(2, 42.5) = 33.1, p < 0.001 6454 ± 1229 4415 ± 736*** 4175 ± 553###

SEE (KJ) FWelch(2, 39.4) = 41.2, p < 0.001 1663 ± 272 1136 ± 153*** 1140 ± 69###

WEE (KJ) FFisher (2, 66) = 4.6, p = 0.014 671 ± 91 614 ± 77* 608 ± 63#

TCOR (g·min-1) FWelch(2, 42.7) = 35.6, p < 0.001 0.194 ± 0.031 0.143 ± 0.021*** 0.130 ± 0.017###

TFOR (g·min-1) FFisher (2, 66) = 4.6, p = 0.03 0.050 ± 0.013 0.042 ± 0.009* 0.044 ± 0.007

RCOR (g·min-1) FFisher (2, 63) = 24.7, p < 0.001 0.194 ± 0.056 0.122 ± 0.033*** 0.111 ± 0.033###

RFOR (g·min-1) FWelch(2, 40.1) = 1.0, p = 0.4 0.035 ± 0.022 0.028 ± 0.012 0.030 ± 0.010

SCOR (g·min-1) FFisher (2, 66) = 33.3, p < 0.001 0.106 ± 0.028 0.060 ± 0.018*** 0.061 ± 0.018###

SFOR (g·min-1) FFisher(2, 66) = 5.8, p = 0.005 0.045 ± 0.013 0.036 ± 0.010** 0.037 ± 0.007#

WCOR (g·min-1) FFisher(2, 66) = 5.2, p = 0.008 1.050 ± 0.171 0.974 ± 0.133 0.906 ± 0.133##

WFOR (g·min-1) FFisher(2, 66) = 1.8, p = 0.2 0.161 ± 0.041 0.141 ± 0.039 0.157 ± 0.041
Data are expressed as mean ± standard deviation. TEE, total energy expenditure; REE, resting energy expenditure; SEE, sleeping energy expenditure; WEE, walking energy expenditure; TCOR,
total carbohydrate oxidation rate; TFOR, total fat oxidation rate; RCOR, resting carbohydrate oxidation rate; RFOR, resting fat oxidation rate; SCOR, sleeping carbohydrate oxidation rate; SFOR,
sleeping fat oxidation rate; WCOR, walking carbohydrate oxidation rate; WFOR, walking fat oxidation rate. *p < 0.05 for spring vs. summer; #p < 0.05 for spring vs. autumn; **p < 0.01 for spring
vs. summer; ##p < 0.01 for spring vs. autumn; ***p < 0.001 for spring vs. summer; ###p < 0.001 for spring vs. autumn. Excluding the estimated RCOR and RFOR, the sample sizes for spring,
summer, and autumn were 24, 26, and 19, respectively. For the estimated RCOR and RFOR, we lost measurements from one participant in each.
TABLE 4 Correlations between the log transformed serum 25(OH)D
(explanatory variable) and lipid profile (response variable).

Response variable Statistics

ln(Total cholesterol)
t(67) = -2.33, p = 0.02, r = -0.27, CI95% = -0.48

to -0.04

ln(Low-
density lipoprotein)

S = 62311, p = 0.26, r = -0.14, CI95% = -0.37
to 0.11

ln(High-
density lipoprotein)

t(67) = -2.50, p = 0.02, r = -0.29, CI95% = -0.49
to -0.06

ln(Triglycerides)
S = 62655, p = 0.24, r = -0.14, CI95% = -0.37

to 0.10

ln(Free fatty acid)
t(65) = -2.34, p = 0.02, r = -0.28, CI95% = -0.49

to -0.04
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have lower circulating 25(OH)D levels (31) and exhibit a blunted

response to vitamin D supplementation (32). Our findings align with

the theory that low 25(OH)D status is a result of unfavorable

metabolic phenotypes (33), suggesting that non-obese, metabolically

active young individuals are unlikely to develop overweight solely due

to vitamin D deficiency. Given the potential adverse effects of large

doses of vitamin D supplementation (34), healthy young individuals

are not advised to take additional vitamin D solely for weight

management purposes.

Of note, only 20% of participants met the Chinese standard for

vitamin D sufficiency. This poor vitamin D status is consistent with

epidemiological studies from other regions in China (35, 36).

Vitamin D status is linked to a wide range of health benefits,

including immunity (37), epigenetics, and gene regulation,

particularly in the context of healthy aging (38). Our participants

may lack not only professional knowledge about the benefits of

vitamin D but also the resources to regularly check their vitamin D

status. From a population management perspective, we recommend

that the government include vitamin D status assessments in

residents’ optional annual medical check-ups. Furthermore, we

suggest that school-aged adolescents be required to complete a

mandatory health course covering nutrition, health behavior, and

other essential life skills.

Additionally, it is important to note that while seasonality does

not affect the main conclusions of the study, participants enrolled

during the spring season exhibited significantly higher energy

expenditure and substrate oxidation rates. Although all

participants were recruited from the Shanghai University of

Sport, they are not all alike. For example, ball sports athletes may

have elevated daily energy metabolism. As a result, certain group of

participants who took part in the experiment during spring may

have higher basal metabolic rate. This seasonal effect could create a

misleading impression that the general population’s energy

metabolism is higher in the spring.

Several limitations apply to our study. First and foremost, the

results should be interpreted with caution due to the current analytical

approach tomeasuring 25(OH)D. Similar to steroid hormones (39), 25

(OH)D is transported in the blood by vitamin D binding protein and

albumin, with only a small fraction of free 25(OH)D entering most

cells and exerting physiological functions (40). Therefore, measuring

only total 25(OH)D may not accurately reflect an individual’s true

vitamin D status, particularly in those with higher body mass index

(41). As such, free 25(OH)D may provide a more accurate assessment

of vitamin D status than total 25(OH)D (42). Future studies should

consider including free 25(OH)D as a complementary measure for a

more comprehensive evaluation of vitamin D status. In addition, this

study recruited participants from a sport-specialized university. From a

practical standpoint, this population may be more metabolically active,

potentially diminishing any small effects of vitamin D status on energy

metabolism. Conversely, typical Chinese youth tend to be less

physically active (43). Furthermore, there was considerable

individual variation in the main results (see Figures 2 and 3),

indicating significant heterogeneity in metabolic profiles. Therefore,

caution is advised when generalizing these findings to the broader

population. Finally, vitamin D status may be influenced by genetic

variations, such as mutations in the CYP2R1 gene (44). However, this
Frontiers in Endocrinology 08
is less well-documented in the Chinese population (45) and warrants

further investigation.

In conclusion, there is no relationship between serum 25(OH)D

status and energy metabolism among young, healthy, non-obese

adults. The current body of evidence indicates that being overweight

and obesity are the causes of low vitamin D status, rather than the

reverse. While further research may be needed to strengthen the

overall evidence, we recommend that future studies prioritize

intervention approaches, such as exercise, to improve metabolic

health and explore their secondary effects on vitamin D status.
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