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Objective: To explore the differential gene expression in peripheral blood

immune cells of individuals with type 2 diabetes mellitus (DM), comparing

those with and without non-proliferative diabetic retinopathy (NPDR).

Methods: From a pool of 126 potential participants, 60 were selected for detailed

analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and

26 with NPDR. We analyzed peripheral blood mononuclear cells (PBMCs) using

RNA sequencing and quantitative PCR (qPCR) to pinpoint differentially expressed

genes (DEGs). Western blot and flow cytometry were also employed to evaluate

the protein expression of specific genes.

Results: In patients with NPDR compared to those with DM alone, MerTK—a gene

implicated in inherited retinal dystrophies due to its mutations—was notably

downregulated in PBMCs. Through flow cytometry, we assessed the protein

levels and cellular distribution of MerTK, finding a predominant expression in

monocytes and myeloid-derived suppressor cells (MDSCs), with a marked

reduction in CD4+ and CD8+ T cells, as well as in natural killer T (NKT) cells.

Patients with DM demonstrated a significant deviation in the PBMCs composition,

particularly in B cells, CD4+ T cells, and NK cells, when compared to HDs.

Conclusions: The study indicates that MerTK expression in T cells within PBMCs

could act as a viable blood biomarker for NPDR risk in patients with DM.

Furthermore, the regulation of T cells by MerTK might represent a critical

pathway through which DM evolves into NPDR.
KEYWORDS

diabetes mellitus, retinopathy, non-proliferative diabetic retinopathy, PBMC (peripheral
blood mononuclear cells), MERTK
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Introduction
Diabetic retinopathy (DR), a major ocular complication of

diabetes mellitus (DM), is a primary cause of vision loss, especially

in individuals over 50 years old (1). Clinically, DR is classified into

non-proliferative diabetic retinopathy (NPDR) and advanced

proliferative diabetic retinopathy (PDR) (2). NPDR involves

vascular basement membrane thickening and microaneurysm

formation, progressing to PDR with severe risks due to

neovascularization (3). Current DR treatments mainly address

symptoms and show varied patient outcomes. Early retinal

function and cellular changes preceding visible microangiopathy in

DR suggest the necessity for early intervention (4).

Research has shown that individuals with DM and DR

experience changes in the composition of immune cells in their

bloodstream (5, 6). Bo Li et al. have unveiled a significant

association between 35 distinct immune cell phenotypes and the

risk of developing DR (7). This alteration in peripheral immune

cells is believed to play a crucial role in chronic inflammation,

setting the stage for the development and progression of DR (8, 9).

This process is not only pivotal in the early stages of NPDR but also

in the progression to more severe forms of the condition, such as

PDR. PDR is marked by severe complications, including

neovascularization, vitreous hemorrhage, and tractional retinal

detachment (10). Peripheral inflammation is thought to

exacerbate retinopathy by altering the intraocular environment

and disrupting the vascular protective mechanisms in the retina,

as indicated by Yokomizo et al (11). Thus, targeting the activity of

circulating immune cells presents a potential strategy for the early

diagnosis and prevention of DR.

Circulating immune cells have systemic effects on inflammation

and can penetrate tissues by crossing the parenchyma-blood

barriers, occurring during both health and disease states (12). The

movement of specific immune cell subsets into and out of tissues is

vital for health and disease progression. Particularly in the retina,

the interactions between these immune cells and retinal cells can

either worsen or alleviate disease-related changes (13–15),

highlighting the critical role of peripheral immune regulation in

retinopathy’s development and progression. Understanding the

mechanisms by which these cells affect retinal diseases is crucial

for creating targeted treatments. Such therapies could adjust

immune responses to prevent or manage retinopathy effectively,

opening new pathways for intervention.

This study seeks to elucidate the pivotal molecular alterations in

circulating immune cells that drive the advancement of DM toNPDR.

We analyzed peripheral blood mononuclear cells (PBMCs) from

patients with and without NPDR to achieve this. Through RNA

sequencing (RNA-seq), we discovered a significant reduction in the

expression of the Mer tyrosine kinase (MerTK) gene in patients with

NPDR, particularly noting its marked decrease in circulating T cells.

MerTK, a member of the Tyro/Axl/Mer receptor family, is

predominantly expressed on various immune cells such as

monocytes/macrophages, dendritic cells, and microglia (16). It plays

a vital role in phagocytosis and clearing apoptotic cells, thereby

preventing prolonged inflammation. This phagocytic function is
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critical in maintaining tissue functionality and internal environment

stability (17). MerTK has been extensively researched in the context of

retinal pigment epithelium and macrophages, where its mutations are

linked to severe retinitis pigmentosa and the dysregulation of

macrophage functions in phagocytosis and inflammation (18).

Therefore, our findings suggest a critical role for MerTK in

circulating T cells, potentially influencing the development of DR.
Methods

Study subjects

We enrolled 126 donors from the First People’s Hospital of

Guangzhou between 2022 and 2023, and 12 HDs, 22 patients with

DM (type 2 diabetes mellitus), and 26 patients with NPDR (type 2

diabetes mellitus with non-proliferative diabetic retinopathy) were

selected for analysis (Figure 1). Diagnostic criteria adhered to the

Clinical Diagnosis and Treatment Criteria for Diabetic Retinopathy

in China. Briefly, all participants were subjected to stereoscopic

fundus photography for the detection of NPDR utilizing a Non-

Mydriatic Fundus Camera through undilated pupils. For every

participant, two fundus images centered on the fovea and optic

disc for each eye were taken in a darkened room. Two experienced

ophthalmologists from the First People’s Hospital of Guangzhou,

working independently and in a blinded fashion, assessed each

photograph for DR assessment. In cases of discordant evaluations, a

third ophthalmologist would make the ultimate decision. The

severity of DR in each eye was established, and the subject’s

overall classification was determined by the severity observed in

the more affected eye.

Inclusion criteria included confirmed DM diagnosis and

accurate clinical diagnosis of NPDR grading; diagnosed with type

2 DM; the duration of diabetes ranged from 1 to 20 years; and the

participants’ ages ranged from 40 to 90 years. Exclusion criteria

encompassed if they were younger than 18 years old or had type 1

diabetes mellitus; other diabetic microangiopathies like

nephropathy or neuropathy; autoimmune, neurological, or

malignant diseases; major cardiovascular and cerebrovascular

events; other systemic infections or inflammatory diseases; recent

usage of hormones, immunosuppressants, or anti-inflammatory

drugs; and laser photocoagulation, steroid or anti-vascular

endothelial growth factor treatment in the past week.

We collected participants’ age, gender, duration of diabetes, and

blood pressures. Venous blood samples were drawn after an

overnight fast. All biochemical analyses were performed in our

hospital, including glycosylated hemoglobin A1c (HbA1c), total

cholesterol (TC), triglyceride (TG), high-density lipoprotein

cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and

estimated glomerular filtration rate (eGFR). This study complied

with the Declaration of Helsinki for research involving human

subjects and was approved by the research ethics committee of the

institute (K-2022-157-01). Informed consent was obtained from all

participants per ethical standards. Flow chart of participants

enrollment is in Figure 1. Detail of participants are in

Supplementary Tables 1–4.
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PBMCs preparation

Peripheral blood (5mL) was collected in EDTA-containing

tubes (Sanli, Liuyang, China) and processed within 2 hours.

Lymphocyte Separation Medium (LSM, biosharp, Beijing, China)

was added to the blood before centrifugation (19). The PBMCs layer

was transferred to a new tube, washed with PBS (labgic, Beijing,

China), and treated with red blood cell lysis buffer (solarbio, Beijing,

China) at room temperature for 5 minutes. After a final PBS wash,

the PBMCs were obtained (20).
Flow cytometry and UMAP analysis

PBMCs were incubated with a mixture of antibodies for 25

minutes at 4°C in the dark. After PBS washing, cells were suspended

in 300 uL PBS and analyzed using a BD flow cytometer. FlowJo

10.8.1 software was used for data analysis. Those antibodies used are

in Supplementary Table 5.

UMAP analysis was conducted using the “UMAP plugin” in

FlowJo 10.8.1. High-quality cells were selected with “FlowAI” for

gating and doublet discrimination, followed by random selection of
Frontiers in Endocrinology 03
10000 cells per sample using the “Downsample plugin”. Samples

were merged into a new FCS file and visualized with UMAP in

FlowJo. UMAP outputs were used for “FlowSOM plugin” clustering

with nine predefined clusters. “ClusterExplorer plugin” was then

used to present the FlowSOM results. Data from the

“ClusterExplorer plugin” were normalized in R software for final

visualization and cellular annotation accordingly.
Gating strategies

Flow cytometry-acquired cells were gated and classified into various

immune cells. Myeloid cells were identified as monocytes (CD14+) and

their subpopulations, and lymphoid lineage cells included B cells (CD19

+), T cells (CD3+ and its subpopulations), NK cells (CD56+), and NKT

cells (CD3+CD56+). The details are in Figure 2C.
Quantitative RT-PCR

RNA was extracted from PBMCs using TRIzol (Invitrogen,

Waltham, MA, USA) and quantified spectrophotometrically. cDNA
FIGURE 1

Flow chart of participants enrollment and groups. There were a total of 126 participants, 66 of whom were excluded by exclusion criteria, leaving 60
participants, including 26 in the NPDR group, 22 in the DM group and 12 in the HD group. 5 samples of NPDR and 4 samples of DM were used for
RNA-seq. 7 samples of NPDR and 7 samples of DM were used for flow cytometry and qPCR of MerTK. 3 samples of NPDR, 3 samples of DM and 3
samples of HD were used for western blot analysis. 18 samples of NPDR,15 samples of DM and 9 samples of HD were used for flow cytometry.
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was synthesized from 1mg of RNA using a kit (agbio, Hunan,

China). qPCR was performed using SYBR-Green PCR Master

Mix (agbio, Hunan, China) on a QuantStudioTM 5 system

(Thermo Fisher Scientific, Waltham, MA, USA). MerTK gene

expression was normalized to GAPDH and analyzed using the 2-

DDCt method (Table 1).
TABLE 1 Sequences of MerTK and GAPDH.

MerTK Forward primer GTACCAGCCTGCCTTGATGT
Reverse primer GTGTTTGAAGGCAAGAGGCG

GAPDH Forward primer AAAGCCTGCCGGTGACTAAC
Reverse primer TAGGAAAAGCATCACCCGGAG

Frontiers in Endocrinology 04
Western blot analysis

PBMCs were lysed on ice for 30 minutes using Western & IP

ly s i s bu ff e r (Beyo t ime , J i angsu , Ch ina) conta in ing

phenylmethanesulfonyl fluoride (Beyotime, Jiangsu, China).

Protein extracts (40 mg) were separated on a 10% SDS-PAGE gel

and transferred onto polyvinylidene fluoride membranes

(Millipore, Massachusetts, USA). Membranes were blocked with

5% non-fat milk at room temperature for 2 hours, then incubated

overnight at 4°C with the following primary antibodies: rabbit anti-

MerTK (1:1000, Proteintech, Wuhan, China) and mouse anti-b-
actin (1:4000, Bioworld, Dublin, USA). After washing, membranes

were incubated for 1 hour at room temperature with HRP-

conjugated secondary antibodies: goat anti-rabbit IgG (H+L)

(1:2000, Proteintech, Wuhan, China) and goat anti-mouse IgG
FIGURE 2

Verification the transcript and protein level of MerTK in NPDR and DM group. (A) qPCR verificated the expression level of MerTK in NPDR and DM
groups. (B) The protein expression of MerTK in PBMCs was measured by western blot analysis, and the ratio of MerTK to b-actin was calculated. n =
3 per group. (C) Gating strategies used in flow cytometry analyses to identify subsets of immune cells. Blood sample were isolated into PBMCs and
then examined by flow cytometry. Representative image showing forward-scatter area (FSC-A) vs side-scatter area (SSC-A) used to exclude debris/
dead cells and the gated population was then plotted as FSC-A vs FSC-H revealing single cells. CD16 vs CD15 showing Low-density eosinophils
(CD16-CD15+), Low-density neutrophils (CD16+CD15+) and PBMCs; CD3 vs CD19 showing B cells (CD3-CD19+), No-T B cells (CD3-CD19-) and T
cells (CD3+CD19-); CD4 vs CD8 showing CD4+T cells (CD4+CD8-) and CD8+T cells (CD4-CD8+); HLA-DR vs CD14 showing Monocytes (CD14+),
then CD14 vs CD16 showing monocyte population comprising of three subsets: Classical monocytes (CD16-CD14+), Intermediate monocytes (CD16
+CD14+) and Non-classical monocytes (CD16+CD14-); CD14 vs CD19 showing CD14-CD19- cells, then CD56 VS CD3 showing NK cells (CD56
+CD3-) and NKT cells (CD56+CD3+). CD11b VS HLA-DR showing Myeloid-derived suppressor cells (MDSCs, CD11b+HLA-DR-), then CD15 vs CD14
showing MDSCs population comprising of three subsets: E-MDSCs (CD15-CD14-), PMN-MDSCs (CD15+CD14-) and M-MDSCs (CD15-CD14+).
(D) Representative histograms of MerTK in PBMCs. (E) Flow cytometry verificated the expression level of MerTK in NPDR and DM groups. n = 7 per
group. The significance of the difference between the results was determined by unpaired T-tests. Data is presented as mean ± SEM,
*P<0.05, **P<0.01.
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(1:2000, Proteintech, Wuhan, China). Bands were visualized using

the SuperSignal West Pico PLUS chemiluminescent substrate

(Thermo Fisher Scientific, Waltham, MA, USA) and quantified

using ImageJ software, with protein levels normalized to b-actin.
RNA-seq and analysis

RNA integrity was checked on a 1% agarose gel and quantified

with NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA,

USA). Samples with RIN > 7 were sequenced on Illumina HiSeq/

Novaseq/MGI2000 instruments (2 x 150 PE). Data were quality-

checked, filtered, and aligned to the reference genome.

This study utilized R 4.3.0 for bioinformatics analysis. The

expression matrix was derived from raw sequencing data and

analyzed using the “deseq2” package in R. The negative binomial

regression model was fitted, and hypothesis testing was performed

using the Wald test or likelihood ratio test to identify DEGs.

Upregulated genes were selected based on the criteria of |log2FC|

≥ 1 and adjusted P < 0.05, while downregulated genes were selected

based on |log2FC| ≤ -1 and adjusted P < 0.05. Volcano plot was

generated using the “ggplot2” package, and heatmap was created

with the “pheatmap” package. For Gene Ontology (GO) enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis, we used the “ClusterProfiler” package

in R software (21).

The raw sequence data reported in this paper have been

deposited in the Genome Sequence Archive (Genomics,

Proteomics & Bioinformatics 2021) in National Genomics Data

Center (Nucleic Acids Res 2021), China National Center for

Bioinformation/Beijing Institute of Genomics, Chinese Academy

of Sciences (GSA: HRA007945) that are publicly accessible at

https://ngdc.cncb.ac.cn/gsa.
Statistical analyses

Data analysis was conducted using GraphPad Prism 8.0. T-tests

and one-way ANOVA were employed for comparisons, with the

Mann-Whitney test or Kruskal-Wallis test used when assumptions

of normal distribution or homoscedasticity were not met. Mean ±

SEM was reported, with P < 0.05 considered significant.
Results

Downregulation of MerTK in circulating
immune cells of patients with NPDR

Following our inclusion and exclusion criteria, we selected the

PBMCs of four patients with DM and five patients with NPDR for

RNA-seq analysis (Figure 1). This analysis revealed seven

differentially expressed genes (Figures 3A, B), highlighting

alterations in biological processes like neutrophil homeostasis and

apoptotic cell clearance (Figure 3C). Notably, we observed a

significant downregulation of MerTK in the NPDR group
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compared to the DM group (adjusted P = 0.02, |log2FC| = -1.232,

Figures 3A, D). This reduction in MerTK expression at both

transcriptional and translational levels was confirmed using

qPCR, western blot and flow cytometry (Figures 2A–E),

indicating a consistent decline of MerTK in PBMCs of patients

with NPDR. However, no significant difference in MerTK

expression was observed between the HD and DM groups

(Supplementary Figure 1).
Specific decline of MerTK expression in T
cells of patients with NPDR

Our analysis extended to various immune cell types to

investigate MerTK expression differences. Using UMAP analysis,

we identified nine distinct immune cell clusters (Figures 4A, B).

MerTK expression was primarily noted in monocytes and MDSCs,

with lesser amounts in NK and NKT cells, and minimal in T cells,

including CD4+ and CD8+T cells, and the lowest in B cells

(Figures 4C, D). In the NPDR group, significant reductions in

MerTK expression were observed specifically in CD4+, CD8+, and

NK T cells (P < 0.01, P < 0.05, P < 0.05, respectively) (Figures 4E, F).

Conversely, monocytes, B cells, NK cells, and MDSCs did not show

significant expression changes between DM and NPDR

groups (Figure 4G).
Immune cell population changes in DM
and NPDR

Our study analyzed peripheral blood from 9 HDs, 15 patients with

DM (without NPDR), and 18 patients with NPDR. We found

significant alterations in the immune cell populations between the

DM or NPDR groups and HDs, with no notable differences between

DM and NPDR groups. Specifically, B cells increased significantly in

both DM and NPDR groups compared to HDs, while NK cells showed

a significant increase only in the DM group (Figure 5A). T cells,

monocytes, low-density eosinophils, low-density neutrophils, NKT

cells, and MDSCs did not significantly differ among the three groups

(Figures 5B, C). Further analysis of T cell and monocyte subtypes

revealed an increase only in CD4+T cells in the DM andNPDR groups,

with no significant changes in CD8+T cells or in classical, non-classical,

and intermediate monocytes (Figures 5D, E). These findings suggest

that hyperglycemia-induced dysregulation of circulating immune cells

may contribute to the onset of NPDR.
Discussion

MerTK is known for its role in retinal pigment epithelium

(RPE), mediating rapid phagocytosis and clearance of

photoreceptor debris, with its dysfunction leading to retinal

dystrophy and retinitis pigmentosa (22–24). Contrary to its well-

documented presence in RPE cells, our study found MerTK to be

significantly downregulated in the circulating T cells of patients

with NPDR compared to those with DM, particularly in CD4+ and
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CD8+T cells, as well as NKT cells. Given that T cells are implicated

in retinal infiltration during DR, our findings suggest a potential

role for MerTK in modulating T cell functions, contributing to the

progression from DM to NPDR.

MerTK is a crucial cell surface receptor involved in the innate

immune system, involved in the function of a variety of immune

cells. One of the most well-known functions of MerTK in

macrophages is mediating the clearance of apoptotic cells in vitro

and vivo (25). Cai et al. found that the signal from MerTK in

macrophages can activate the ERK-dependent pathway and inhibit

the phosphorylation of 5-lipoxygenase, thus promoting the

production of specialized proresolving mediators and promoting

the regression of inflammation (26). Meanwhile, TAM family

kinases can suppress antitumor immunity and promote resistance

to immune-checkpoint inhibitors (27). In dendritic cells, MerTK

regulates antigen presentation and immune activation, influencing

initial activation and immune tolerance of CD8+T cells (28). The

research between MerTK with T cells is also very crucial. Previous

research has indicated that MerTK negatively regulates T cell

activation (29) and serves as a co-stimulatory receptor on CD8+T

cells (30). Studies in pediatric T-cell acute lymphoblastic leukemia

showed increased MerTK expression (31), while inhibition of

MerTK curtailed T-cell precursor expansion and induced
Frontiers in Endocrinology 06
apoptosis (32, 33). These insights bolster our hypothesis that

MerTK downregulation could enhance T cell activation and

proliferation, intensifying T-cell-mediated immune responses and

potentially hastening the transition from DM to DR.

The relationship between DR and DM underscores a complex

interplay of factors, including the vitreous environment (11) and

systemic inflammation (10, 34) from prolonged hyperglycemia. Our

results raise the question of whether changes in circulating T cells

mirror alterations within the vitreous environment. The infiltration of

these cells through the blood-retina barrier suggests their substantial

influence on the vitreous immune response, either protective or

harmful (35). Furthermore, the common signaling pathways in blood

and retinal T cells hint at a shared mechanism in their regulation.

While the influence of immune cell-mediated inflammation on

pathogenesis of DR is widely recognized, there is a lack of detailed

quantitative analyses comparing immune cell profiles among

patients with DM, those with NPDR, and HD (36). Our study’s

comparison of immune cell profiles among HD, DM, and NPDR

groups revealed significant changes, particularly in immune cells

like B cells, NK cells and T cell subtypes, suggesting their

involvement in pathogenesis of DR. Interestingly, we observed

increased NK and B cell activities in patients with DM, which

might play a role in the early stages of DR (37, 38). The adaptive
FIGURE 3

RNA-sequencing reveals the different gens of NPDR compared to DM. The (A) volcano plot and (B) heatmap of differentially expressed genes
between 4 DM and 5 NPDR samples, including 4 upregulated genes and 3 downregulated genes. (C) GO and KEGG enrichment analysis of
differentially expressed genes. MF: molecular function; CC: cellular component; GO: gene ontology; KEGG: kyoto encyclopedia of genes and
genomes. (D) Overall MerTK comparison between 4 DM and 5 NPDR samples. The significance of the difference between the results was
determined by Mann-Whitney test, *P<0.05.
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immune response, represented by CD4+T cell, also showed

significant increase, while CD8+ cell showed a decrease, aligning

with literature indicating their varied involvement in progression of

DR (36). Follicular helper T cells, a subpopulation of CD4+T cells,

have also been found to be elevated in patients with DR and diabetic
Frontiers in Endocrinology 07
mice, and inhibition of this population attenuates vascular

inflammation and neovascularization (39). Some studies have

indicated that CD8+T cells can penetrate into retina and

concentration significantly higher in vitreous and macular edema

in patients with DR, which is associated with poor visual prognosis
FIGURE 4

Flow cytometry to demonstrate the expression of MerTK in immune cells. (A) UMAP maps of the fourteen patient cohorts (all n = 7) and identified
nine clusters. (B) Dot plot showing the mean fluorescence intensity (MFI) of clusters. (C) UMAP to show the MFI of MerTK in each cluster.
(D) Representative histograms of MerTK in T cells, CD4+T cells, CD8+T cells, NKT cells, Monocytes, MDSCs, NK cells and B cells. MFI of MerTK in
immune cells, including (E) T cells and subtypes CD4+ and CD8+T cells, (F) NKT cells (G) Monocytes, MDSCs, NK cells and B cells. The significance
of the difference between the results was determined by unpaired T-tests and Mann-Whitney test. Data are presented as mean ± SEM,
*P<0.05; **P<0.01.
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(40, 41). These can further underline the significance of these cells

in DR.

Despite these findings, our study has limitations. We could not fully

assess the impact of diabetes medication on PBMCs, with drugs like

metformin known tomodulate immune responses (42, 43). Additionally,

our patient cohort’s demographic skew towards postmenopausal women

may influence the observed immune changes. Furthermore, it has been

reported that the expression of MerTK in the lymphopoietic system is

59.3% higher in men than in women (44). In our study, although there
Frontiers in Endocrinology 08
was no statistical difference in patient gender between the DM and

NPDR groups, there weremore men in the NPDR group. Therefore, it is

necessary to investigate the changes inMerTK expression across different

genders. Besides, future research should delve into MerTK’s functional

role in T cells and its impact on development of NPDR.

In conclusion, our study elucidates the nuanced differences in

immune cell behavior between HD, DM, and NPDR groups,

highlighting T cell dysregulation and MerTK downregulation as

potential factors in pathogenesis of DR. These findings pave the way
FIGURE 5

Characterization of immune cells in healthy donors (HD), patients with DM and patients with NPDR. The percentages of total single cells that are:
(A) B cells and NK cells; (B) T cells and Monocytes; (C) Low-density eosinophils, Low-density neutrophils, NKT cells and MDSCs; (D) T cell subtypes
including CD4+T cells and CD8+T cells; (E) Monocytes subtypes including Classical monocytes, Non-classical monocytes and Intermediate
monocytes. n = 9 for HD, 15 for DM and 18 for NPDR. The significance of the difference between the results was determined by one-way ANOVA
and Kruskal-Wallis test. Results are presented as mean ± SEM, *P < 0.05, **P<0.01.
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for further investigation into the role of immune cells in early

development of DR.
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