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Immortalized Schwann cell lines
as useful tools for pathogenesis-
based therapeutic approaches to
diabetic peripheral neuropathy
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1Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,
2Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life
Sciences, Tokyo, Japan
Growing evidence suggests that hyperglycemia-related abnormalities in

Schwann cells play a pivotal role in the development and progression of

diabetic peripheral neuropathy (DPN). Several immortalized Schwann cell lines

have been established in our laboratory and utilized for the study of DPN; IMS32

from normal ICR mice, 1970C3 from normal C57BL/6 mice, IWARS1 and IKARS1

from wild-type and aldose reductase-deficient C57BL/6 mice, and IFRS1 from

normal Fischer 344 rats. These cell lines retain biological features of Schwann

cells and display high proliferative activities that enable us to perform molecular

and biochemical analyses. In addition, these cells have exhibited metabolic

alterations under exposure to diabetes-associated conditions, such as

hyperglycemia, dyslipidemia, glycative and oxidative stress load. Herein, recent

studies with these cell lines regarding the pathogenic factors of DPN

(augmentation of the polyol and other collateral glycolysis pathways, glycative

and oxidative stress-induced cell injury, autophagic and proteostatic

disturbances, etc.) and therapeutic strategies targeting these factors

are introduced.
KEYWORDS

immortalized Schwann cells, diabetic peripheral neuropathy, polyol pathway, glycation,
oxidative stress, autophagic and proteostatic disturbances
1 Introduction

As glial cells in the peripheral nervous system (PNS), Schwann cells are responsible for

providing trophic support for the growth and maintenance of neurons and wrapping their

axons in either a myelinating or an unmyelinating form. Following axonal injury, Schwann

cells dedifferentiate into a ‘repair’ phenotype, contributing to axonal regeneration and

functional recovery. They proliferate, migrate to the lesion site, eliminate axon debris
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alongside macrophages, promote the elongation of new axons, and

finally remyelinate them (1, 2).

Abnormalities of Schwann cells and/or their crosstalk with

neurons and other non-neuronal cells in the PNS can lead to

various types of peripheral neuropathies. Diabetes Mellitus is one

of the major causes of neuropathies, and diabetic peripheral

neuropathy (DPN) is the most frequent and early-onset

complication of type 1 and type 2 diabetes (3, 4). DPN is

characterized by progressive, nerve-length-dependent loss of

peripheral nerve fibers, leading to impaired sensory and

autonomic function, pain, numbness, and eventually, complete

loss of sensation. Although its pathogenesis remains largely

unclear, hyperglycemic insults, along with dyslipidemia,

atherosclerosis, and impaired insulin action (in the case of type 2

diabetes), cause a range of metabolic abnormalities in neurons,

Schwann cells, and vascular endothelial cells. These changes result

in axonal degeneration, demyelination, and reduced nerve blood

flow, respectively (5). Furthermore, the abnormalities in each cell

type can trigger dysfunction in others (6) (Figure 1).

Cultured Schwann cells are valuable tools to explore the

pathogenesis of DPN. Methods for primary culture of Schwann

cells from both normal and diabetic animals have been established

and widely used in DPN research (7–9). However, the primary

cultures have several disadvantages, including time-consuming

process, ethical concerns related to animal sacrifice, and an

insufficient cell population for molecular and biochemical

analyses. To address these issues, several Schwann cell lines

derived from schwannoma tissues and long-term primary cultures

have been developed as novel in vitro models for DPN (10, 11).

Notably, spontaneously immortalized Schwann cell lines exhibit

high proliferative activity while largely retaining the distinct

phenotypes of Schwann cells, making them ideal for studying

pathogenic mechanisms (12). Although the detailed mechanisms

underlying cell immortalization remain unclear, this phenomenon

is thought to represent an early step in the progression toward
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cellular transformation (13). Unlike primary cultured cells, which

have a limited lifespan, immortalized cells can be passaged

indefinitely and are not contact-inhibited when cultures reach

confluence. However, most immortalized Schwann cells exhibit

mitogenic responses to growth factors (e.g., transforming growth

factor-b, platelet-derived growth factor, acidic and basic fibroblast

growth factors, etc.) and secrete various neurotrophic factors in a

manner similar to primary cultured Schwann cells (13–18).

Additionally, both primary cultured and immortalized Schwann

cells undergo differentiation (e.g., increased expression of myelin

proteins and the Krox-20 transcription factor) and dedifferentiation

(e.g., increased expression of SOX2 and c-Jun) in responses to

genetic manipulation, chemical stimuli, and co-culture with

neurons (19–23). These findings suggest that immortalized

Schwann cells retain several characteristic features of primary

cultured Schwann cells. We previously reported on immortalized

Schwann cell lines established in our laboratory, such as IMS32

from ICR mice (15) and IFRS1 from Fischer 344 rats (17), which

have proven to be useful tools in DPN research (24). Since then,

numerous studies using these cell lines have been conducted by us

and other researchers. Additionally, new Schwann cell lines have

been established from both normal and aldose reductase (AR)-

deficient C57BL/6 mice, including 1970C3 (18), IWARS1 (25, 26),

and IKARS1 (18, 25) (Table 1). In this article, we briefly summarize

the findings obtained from these cell lines, which are expected to

contribute to the development of pathogenesis-based therapies

for DPN.
2 IMS32 cells

IMS32 cells, one of the best-characterized immortalized

Schwann cells, spontaneously arose from long-term primary

cultures of adult ICR mouse dorsal root ganglia (DRG) and

peripheral nerves. During the purification process, complement
FIGURE 1

Current understanding of the pathogenesis of DPN. Details are explained in the text.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1531209
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sango et al. 10.3389/fendo.2024.1531209
and anti-Thy1.2 antibody were used to eliminate fibroblasts from

the culture (15). IMS32 cells display distinct Schwann cell

phenotypes, including spindle-shaped morphology with

immunoreactivity for glial cell markers, and synthesis and

secretion of neurotrophic factors; however, there have been no

evidence that the cells could myelinate neurites in co-culture with

neurons. The high proliferative activity of IMS32 cells might disturb

continuous and stable neuron-Schwann cell interactions. Despite

this problem, IMS32 cells are recognized as a useful tool to study the

action mechanisms of axonal regeneration-promoting factors (29–

33), as well as the pathogenesis of neurodegenerative disorders (34–

36) and glial cell-associated cancer metastasis (37).

As previously reported (24), IMS32 cells have been utilized for

exploring the pathogenesis of DPN, such as polyol pathway

hyperactivity (27), glycation (38), and reduced NGF secretion

(39). Herein, several important studies published after 2011 will

be introduced.
2.1 Schwann cell dedifferentiation

As stated in Introduction [1], Schwann cells undergo

dedifferentiation following peripheral nerve injury as a

prerequisite for successful axonal regeneration. In contrast,

Schwann cell dedifferentiation is suggested to play a pathological

role in peripheral neuropathies, including hereditary neuropathy

(40), autoimmune neuritis (41), chemotherapy-induced neuropathy

(42), and DPN. Neureguin-1/ErbB2 signaling, which promotes

Schwann cell differentiation, was impaired in the peripheral

nerves of diabetic mice (43). Additionally, hyperglycemic insults

induced dedifferentiation of primary cultured and IMS32 Schwann

cells, evidenced by reduced expression of myelin protein zero

(MPZ) and enhanced expression of p75, a low-affinity

neurotrophin receptor and marker of immature Schwann cells

(44). Schwann cell dedifferentiation under diabetic conditions

may lead to Schwann cell death and demyelination; however, the

main pathology of DPN is believed to be axonal degeneration rather

than demyelination, with the latter being evident in DPN patients

only at advanced stages (45). Since the interaction between axons
Frontiers in Endocrinology 03
and Schwann cells is essential for maintaining peripheral nerve

function, discordance arising from Schwann cell dedifferentiation

might affect both myelinated and unmyelinated fibers in DPN.

Conversely, the induction of Schwann cell differentiation could be a

potential therapy for DPN (46). Transplantation of human

mobilized mononuclear cells (hMNC) restored the amplitude of

compound muscle action potentials and MPZ expression in the

sciatic nerves of diabetic nude rats. Furthermore, co-cultured

hMNC induced MPZ expression, along with morphologic

maturation of IMS32 cells (47). These findings suggest that the

ameliorating effects of hMNC on DPN can, at least partly, be

attributed to Schwann cell differentiation.
2.2 Glucosamine toxicity

The enhanced AR activity and polyol pathway flux in the PNS

under hyperglycemic conditions are believed to play a major role in

the development of DPN (25). When AR-deficient mice were

rendered diabetic through streptozotocin (STZ) treatment, they

did not exhibit overt neurological symptoms 12 weeks after the

onset of diabetes (48). However, reduced nerve conduction

velocities were observed in both wild-type and AR-deficient

diabetic mice 16 weeks after STZ injection (49). These findings

suggest that other pathways, either downstream of or independent

of the polyol pathway, contribute to the development of DPN in

prolonged diabetes. Metabolomics analysis revealed elevated

glucosamine levels in the sciatic nerves of both wild-type and AR-

deficient mice exposed to 12 weeks of diabetes. Therefore,

glucosamine accumulation might be a cause of DPN independent

of AR and the polyol pathway. Supporting this hypothesis,

glucosamine injection into normal mice induced neurological

abnormalities resembling DPN, including reduced sensory and

motor nerve conduction velocities, decreased intraepidermal

nerve fiber density, diminished Na+-K+-ATPase activity, and

lower ATP levels in sciatic nerves. Furthermore, exogenously

applied glucosamine accelerated cell death in a concentration-

dependent manner (1 mM < 2.5 mM < 5 mM < 10 mM) and

impaired insulin signaling (downregulating the expression of
TABLE 1 Spontaneously immortalized rodent Schwann cell lines described in this article.

Cell
Line

Origin (Species) Strain Characteristics References

IMS32 Normal mice ICR High proliferative activity
Enhanced polyol pathway activity under high
glucose conditions

Watabe et al., J. Neurosci. Res. (1995) (15)
Sango et al., J. Neurochem. (2006) (27)

1970C3 Normal mice C57BL/6 Enhanced polyol pathway activity under high
glucose conditions

Niimi et al., J. Neurochem. (2018) (18)

IWARS1 Normal (AR-wild
type) mice

C57BL/6 Enhanced polyol pathway activity under high
glucose conditions

Suzuki et al., iScience (2023) (26)
Yamaguchi et al., J. Biol. Chem. (2024) (28)

IKARS1 AR-deficient mice C57BL/6 Inactive polyol pathway Niimi et al., J. Neurochem. (2018) (18)
Yamaguchi et al., J. Biol. Chem. (2024) (28)

IFRS1 Normal rats Fischer344 Myelination in co-culture with primary cultured and
lined neurons

Sango et al., J. Neurosci. Res. (2011) (17)
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phosphorylated AKT and S6 ribosomal protein) and ATP

production in IMS32 cells under both normoglycemic (5.6 mM)

and hyperglycemic (30 mM) conditions (49). While the mechanism

of glucosamine elevation in the PNS under diabetic conditions

remains unclear, it is possible that glucosamine contributes to the

development of DPN by inhibiting insulin signaling and ATP

production in Schwann cells. Glucosamine can be metabolized to

glucosamine-6-phosphate, a key intermediate in the hexosamine

biosynthetic pathway, which is the second collateral glycolysis

pathway (50, 51). Although there is currently no direct evidence

of the glucosamine-induced activation of the hexosamine pathway

in Schwann cells or its role in the pathogenesis of DPN (Figure 2),
Frontiers in Endocrinology 04
our ongoing study using AR-deficient Schwann cells (IKARS1) may

help clarify these issues (Yako et al., in preparation).
2.3 Lipotoxicity

In addition to hyperglycemia, dyslipidemia resulting from obesity

and type 2 diabetes plays a pivotal role in the development and

progression of DPN (52). Several studies have identified Schwann cell

lipotoxicity as a pathogenic factor in DPN (53, 54). Supporting these

findings, palmitate (PA), a representative saturated fatty acid, induces

cell death with caspase-3 activation in IMS32 cells in a dose-dependent
FIGURE 2

Glucosamine as a novel pathogenic factor in DPN. (A) Schematic representation of glycolysis and collateral glucose-utilizing pathways in Schwann
cells. (B) Regardless of the presence or absence of polyol pathways, increased glucosamine uptake into Schwann cells under diabetic conditions,
through a specific mechanism, may impair the insulin signaling pathway and reduce ATP synthesis. Additionally, glucosamine can be metabolized
into glucosamine-6-phosphate (Glucosamine-6-P), a key intermediate in the hexosamine pathway, which may further contribute to impaired insulin
signaling. These abnormalities may play a significant role in the development of DPN. Abbreviations: Glucose-6-P, glucose-6-phosphate; Fructose-
6-P, fructose-6-phosphate; Glyceraldehyde-3-P, glyceraldehyde-3-phosphate; AR, aldose reductase; AGEs, advanced glycation endproducts; ROS,
reactive oxygen species; UDP-GlcNAc, uridine diphosphate N-acetyl-D-glucosamine; DHAP, dihydroxyacetone phosphate; a-Glycerol-P, a-
glycerol-phosphate; DAG, diacylglycerol; pS6RP, phospho-S6 ribosomal protein.
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manner (55). PA also upregulates the protein level of CCAAT/

enhancer-binding protein homologous protein (CHOP), a common

marker of endoplasmic reticulum (ER) stress, in both IMS32 cells and

primary cultured Schwann cells (55), as well as in rat Schwann cell line

RSC96 (56, 57). These findings suggest that PA induces apoptosis via

ER stress in Schwann cells. Additionally, PA is recognized as a potent

ligand for Toll-like receptor 4 (TLR4), a key activator of the innate

immune response (58). The TLR4 signaling pathway is suggested to

contribute to PA-induced cytotoxicity associated with ER stress (59)

or inflammatory responses (60). However, a previous study (55) did

not find the evidence of TLR4 involvement in PA-induced apoptosis

in IMS32 cells. In contrast, oxidized low-density lipoprotein (oxLDL)

under high-glucose conditions triggered the cell death and

upregulated TLR4 mRNA and protein expression in IMS32 cells

(61). Moreover, pretreatment with TAK-242, a selective TLR4

inhibitor, attenuated oxLDL-dependent cell death and the apoptotic

caspase-3 pathway under high-glucose conditions. These findings

suggest that hyperactivation of TLR4 signaling by oxLDL

contributes to apoptotic cell death in IMS32 cells under

hyperglycemic conditions. Given that elevated LDL levels are a risk

factor for DPN (52, 62), TLR4 signaling represents a potential

therapeutic target for DPN.
2.4 Oxidative stress

Reactive oxygen species (ROS), highly reactive forms of molecular

oxygen, have detrimental effects on cells and tissues by inducing DNA

fragmentation and the oxidation of proteins and lipids. Oxidative

stress is defined as an imbalance between ROS production and

accumulation, and the antioxidant defense system’s ability to

detoxify ROS (63). Under diabetic conditions, ROS production in

the PNS is enhanced by several metabolic disorders, including glucose

autooxidation, polyol pathway hyperactivity, advanced glycation

endproducts (AGEs)−receptor for AGEs (RAGE) interactions, and

abnormal protein kinase C activity. Additionally, polyol pathway

hyperactivity contributes to the loss of endogenous antioxidants,

such as taurine and reduced glutathione (GSH). Osmotic pressure

from sorbitol accumulation inhibits taurine intake, while AR competes

with glutathione reductase (GR) for nicotinamide adenosine

dinucleotide phosphate (NADPH); excessive NADPH consumption

by AR can lead to GR inhibition and GSH depletion (25, 64). We (27)

and others (65) have demonstrated enhanced AR activity/expression

in IMS32 cells exposed to high-glucose conditions. In the latter study,

increased AR activity was accompanied by elevated O2
- production,

lipid peroxidation, and caspase 3 activity. These findings suggest

causal relationships among the polyol pathway, oxidative stress, and

apoptosis signaling.

Oxidative stress is a major therapeutic target for DPN, and a-
lipoic acid (ALA) has been approved as an antioxidant treatment for

DPN in several countries (66). In addition to ALA, omega-3

polyunsaturated fatty acids (w-3 PUFAs), such as docosahexaenoic

acid (DHA) and eicosapentaenoic acid (EPA), have demonstrated

antioxidant and anti-inflammatory effects in diabetic conditions (67)

and may be effective for DPN. Pretreatment with DHA and EPA

alleviated IMS32 cell death caused by exposure to tert-butyl
Frontiers in Endocrinology 05
hydroperoxide (tBHP), an exogenous inducer of oxidative stress

(68). The protective activities of DHA and EPA can be, at least in

part, attributed to upregulation of endogenous antioxidant enzymes,

such as heme oxygenase-1 and catalase. In another study, DHA

protected PA-induced cell death in primary cultured rat Schwann

cells through the activation of phosphatidyl inositol-3-kinase (PI3K)/

AKT and mammalian target of rapamycin C2 kinase pathways (69);

however, it remains unknown whether these pathways are involved in

the DHA-induced upregulation of the antioxidant enzymes.

Stachybotrys microspora triprenyl phenols (SMTPs) are a family of

triprenyl phenol metabolites derived from the fungus S. microspore.

Among the SMTPs, SMTP-44D has been shown to exhibit antioxidant

and anti-inflammatory effects on the nervous system (70).

Administration of SMTP-44D ameliorated mechanical allodynia,

thermal hyperalgesia, decreases in nerve conduction velocity and

nerve blood flow, as well as increases in inflammatory molecules

(e.g., tumor necrosis factor-a, interleukin (IL)-1b, IL-6, and

malondialdehyde (MDA)) in the sciatic nerves of STZ-diabetic mice

(71). In agreement with this study, SMTP-44D attenuated the

upregulation of oxidative stress markers and inflammatory

molecules, including NADPH oxidase-1, MDA, IL-6, and monocyte

chemotactic protein 1, in IMS32 cells under hyperglycemic conditions

(72). SMTP-44D also inhibited the enhanced activity of soluble epoxide

hydrolase (sEH), which hydrolyzes epoxyeicosatrienoic acids (EETs) to

dihydroxyeicosatrienoic acids (DHETs). Since EETs are potent

endogenous signaling molecules associated with anti-inflammatory

reactions, the protective effects of SMTP-44D in diabetic conditions

may be mediated by its inhibition of sEH to sustain EET levels. These

findings suggest the potential efficacy of SMTP-44D for DPN through

its antioxidant and anti-inflammatory activities.

In addition to hyperglycemia, hypoglycemia due to intensive

diabetes therapy and fluctuating glucose levels (glycemic variability)

can trigger oxidative stress (73, 74). Recurrent short-term

hyperglycemic and hypoglycemic conditions have been used as an

in vitromodel of glycemic variability, leading to enhanced oxidative

stress and apoptosis in endothelial cells (75, 76), cardiomyocytes

(77), and astrocytes (78), compared to constant hyperglycemic

conditions. Similarly, intermittent short-term low and high

glucose levels induced oxidative stress and apoptotic cell death in

IMS32 cells (79). Since 4-phenyl butyric acid, an endoplasmic

reticulum (ER) stress inhibitor, suppressed the cell death and

oxidative stress induced by these conditions, glycemic variability-

induced apoptosis and oxidative stress in Schwann cells may be

mediated by ER stress responses (80). These findings suggest that

good glycemic control to avoid hyperglycemia, hypoglycemia, and

glucose fluctuation could prevent the onset and progression of

DPN (81).
2.5 Pyruvate as a key molecule for ATP
production under high glucose conditions

Endogenous pyruvate, produced from glucose through glycolysis,

plays a key role in energy production, while exogenous pyruvate, taken

up by cells via specific transporters, functions as a glycolysis

accelerator and an antioxidant (82). However, the significance of
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pyruvate under diabetic conditions has remained unclear. In our study

(83), exposure to high glucose (> 15 mM) in the absence of pyruvate

led to rapid and extensive IMS32 cell death. Similarly, primary

cultured adult rat DRG neurons, mouse mesangial MES13 cells, and

human aortic endothelial cells underwent rapid cell death after

exposure to the high-glucose conditions in the absence of pyruvate.

Metabolome analysis revealed that the levels of pyruvate and certain

TCA cycle intermediates, including 2-oxoglutarate, were significantly

reduced in IMS32 cells under the high-glucose and pyruvate-starved

conditions, and supplementation with these intermediates prevented

cell death. Furthermore, exposure of IMS32 cells to these conditions

resulted in a significant decrease in glycolytic flux and mitochondrial

respiration, accompanied by enhanced flux through the polyol and

other collateral glycolysis pathways. In our subsequent study using an

inhibitor of poly-(ADP-ribose) polymerase (PARP), PARP activation

under the high-glucose and pyruvate-starved conditions could

contributes to the reduced glycolytic ATP production through the

inhibition of glyceraldehyde-3-phosphate dehydrogenase (Figure 3).

In contrast, PARP is unlikely to play a role in the impaired

mitochondrial ATP production under those conditions (84). These

findings suggest that exogenous pyruvate plays a crucial role in

maintaining ATP production under high-glucose conditions

through PARP-dependent glycolysis and PARP-independent TCA

cycle in various cell types, including Schwann cells. Since

supplementation of sodium pyruvate, an investigational drug for

mitochondrial disease (85), ameliorated mechanical hypoalgesia and

improved intraepidermal nerve fiber density in the lower limb of STZ-

diabetic mice (Yako et al., in preparation), its potential therapeutic

efficacy for DPN is promising.
3 IWARS1, IKARS1, and 1970C3 cells

IWARS1 and IKARS1 cells spontaneously arose from long-term

primary cultures of adult wild-type and AR-deficient C57BL/6

mouse DRG and peripheral nerves, respectively (48). Schwann
Frontiers in Endocrinology 06
cell-enriched cultures were maintained under serum-free

conditions in the presence of neuregulin-b, where fibroblasts

ceased to grow. In the first attempt, IKARS1 cells were

successfully established, but not IWASR1 cells. Therefore, 1970C3

cells, which were established from normal C57BL/6 mice, were used

as a control for IKARS1 cells (18) until IWARS1cells were obtained

in a second attempt. All the cell lines display distinct Schwann cell

phenotypes, such as spindle-shaped morphology with intense

immunoreactivity for glial cell markers and the synthesis and

secretion of neurotrophic factors (18, 25). However, no studies

have been conducted to determine whether these cells possess the

capability to myelinate neurites in co-culture with neurons.
3.1 Physiological roles of AR

Enhanced AR activity and polyol pathway flux under

hyperglycemic conditions have been implicated as a major cause

of DPN and other diabetic complications. However, the

physiological roles of the polyol pathway remain largely unclear.

A recent study (86) suggests that the polyol pathway monitors

intracellular glucose levels and regulates metabolic activities in

response to glucose availability, but this function has not been

verified in Schwann cells or the PNS. AR is a member of aldo-keto

reductase (AKR) superfamily and participates in the detoxification

of numerous aldehydic substances (87). Exposure to reactive

aldehydes, including 3-deoxyglucosone, methylglyoxal (MG), and

4-hydroxynonenal (4HNE), significantly upregulated the mRNA

expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in

1970C3 cells (18). Since no significant differences in viability

between these two cells were observed after exposure to these

aldehydes, aldehyde detoxification might be carried out by

AKR1B7 and AKR1B8 in the absence of AR (aka AKR1B3). In

addition to AKRs, the glyoxalase system is responsible for MG

detoxification. Schwann cells deficient in glyoxalase 1 (GLO1)

created using the CRISPR/Cas9 technique, did not show elevated
FIGURE 3

Possible mechanisms of IMS32 cell death under high-glucose and pyruvate-starved conditions. Deprivation of exogenous pyruvate reduces TCA
cycle intermediates and mitochondrial ATP production, subsequently inhibiting glycolytic flux. Furthermore, enhanced activity of PARP under these
conditions contributes to the suppression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. This cascade results in the inhibition of
glycolysis and a metabolic shift toward collateral pathways.
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MG concentrations. However, AR inhibition in GLO1-deficient

Schwann cells increased intracellular MG levels and oxidative stress,

suggesting that AR can compensate for the loss of GLO1 (88).
3.2 Glucoselysine as a novel AGE in the
polyol pathway

In the second step of the polyol pathway, sorbitol is converted

into fructose by sorbitol dehydrogenase (SDH). Fructose is further

metabolized into dicarbonyl compounds such as 3-deoxyglucosone

(3-DG) and MG, both recognized as potent glycating agents that

contribute to the formation of AGEs. In addition to AGE-induced

Schwann cell injury (89), 3-DG and MG have been shown to exert

direct toxicity against Schwann cells (38, 90, 91). Recent studies have

highlighted the AGEs produced from both exogenous (diet-derived)

and endogenous (polyol pathway-derived) fructose as novel

pathogenic factors in various diseases, including diabetic

complications (92). Glucoselysine (GL) has been identified as a

novel AGE primarily produced from fructose, and GL levels were

found to increase in the eye lenses of STZ-diabetic rats in a time-

dependent manner (93). Furthermore, exposure to high-glucose

conditions increased both intracellular and extracellular GL levels

in IWARS1 cells, but not in IKARS1 cells (28). Since the polyol

pathway is absent in IKARS1 cells, it is likely that GL is produced via

the polyol pathway and released from Schwann cells under diabetic

conditions. A clinical investigation involving patients with type 2

diabetes and healthy participants revealed that serum GL levels were

significantly higher in the diabetic patients. Moreover, GL levels in

these patients were correlated with the duration of diabetes, as well as

the presence of renal dysfunction and vascular complications (28).

GL is expected to be a valuable biomarker for assessing the severity of

DPN and other complications, as well as a potential therapeutic target

in the polyol pathway-related pathogenesis.
3.3 Proteostatic disturbances

In addition to combined use with IKARS1 cells, IWARS1 cells

can also be used individually as one of the mouse Schwann cell lines,

similar to IMS32 cells. In our recent study (26), findings from a

Drosophilamodel of DPN were further validated through proteome

analyses using IWARS1 cells. High-sugar diet (HSD)-fed flies

developed hyperglycemia and reduced insulin sensitivity,

subsequently displaying DPN-like phenotypes, such as impaired

noxious heat avoidance and atrophy of leg sensory neurons. Genetic

screening of these flies identified the proteasome 26S subunit, non-

ATPase 9 (PSMD9), as one of the modifier genes associated with

impaired heat avoidance. PSMD9 gene polymorphisms have been

linked to DPN risk (94), and PSMD9 is involved in proteasome

activity (95). These findings suggest that proteasome activity via

PSMD9 is linked to sensory dysfunction in HSD-fed flies.

Supporting this hypothesis, glia-specific PSMD9 knockdown or

proteasome inhibition suppressed the effects of HSD.

Additionally, treatment with Ixazomib, an oral proteasome

inhibitor, alleviated heat avoidance impairment and prevented
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atrophic changes in leg sensory neurons in HSD-fed flies.

Subsequent proteome analyses using IWARS1 cells revealed that

Ixasomib upregulated heat shock proteins (HSPs), including HSP40

and HSP70, suggesting that HSPs play a role in Ixazomib’s

restorative effects. Furthermore, glia-specific knockdown of

HSP40 or related genes negated the effects of Ixazomib. The glial

proteasome is thus a promising therapeutic targets for DPN, and

the exosomal secretion of HSPs from the glia may mediate the

protective effect of proteasome inhibition (96).
4 IFRS1 cells

IFRS1 cells spontaneously arose from long-term primary

cultures of adult Fischer 344 rat DRG and peripheral nerves

under serum-free conditions in the presence of neuregulin-b and

forskolin (17). IFRS1 cells display distinct Schwann cell phenotypes,

including a spindle-shaped morphology with intense

immunoreactivity for glial cell markers, as well as the synthesis

and secretion of neurotrophic molecules (97, 98). Additionally,

IFRS1 cells have been shown to myelinate neurites in co-culture

with primary cultured adult rat DRG neurons (17), NGF-primed

PC12 cells (21), rat neural stem cell-derived neurons, mouse

embryonic stem cell-derived motor neurons (99), and NSC-34

motor neuron-like cells (100). Due to their capability to form

myelin structure, IFRS1 cells are advantageous for studying the

molecular mechanisms of myelination (101, 102) and

demyelination (103, 104).

Unlike IMS32 cells, IFRS1 cells do not appear useful for

studying the polyol pathway; exposure of IFRS1 cells to high-

glucose conditions did not increase intracellular sorbitol and

fructose levels (Sango et al., unpublished data). However, these

cells have been utilized to explore other pathogenic factors in DPN,

including impaired insulin signaling, glycation, and oxidative

stress-induced autophagy.
4.1 Insulin signaling

Insulin plays a central role in regulating blood glucose levels,

and impaired insulin signaling in muscle and adipose tissue is a

known contributor to type 2 diabetes. It is important to note that

insulin receptors are present not only in these tissues, where insulin

regulates blood glucose uptake, but also in neurons and Schwann

cells in the PNS (105, 106), where blood uptake occurs in an insulin-

independent manner. These findings suggest that insulin may have

neurotrophic and neuroprotective roles (107, 108), and that

impaired insulin signaling in the PNS may contribute to the

pathogenesis of DPN, as discussed in the context of glucosamine

toxicity [2.2].

Insulin receptors have been identified in IFRS1 cells, where

insulin application induces phosphorylation of AKT, mitogen-

activated protein kinase kinase (MEK), and extracellular signal-

regulated kinase (ERK) (22). Further studies using specific

inhibitors for PI3K/AKT and MEK/ERK signaling pathways

revealed that short-term insulin treatment promotes IFRS cell
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proliferation, likely through the PI3K/Akt pathway rather than the

MEK/ERK pathway. In contrast, long-term insulin exposure

upregulated the protein expression of MPZ via the MEK/ERK

pathway and myelin basic protein (MBP) via the PI3K/AKT

pathway. These findings indicate that the PI3K/AKT and MEK/

ERK pathways are involved in insulin-induced proliferation,

survival and differentiation of Schwann cells in distinct ways.

Supporting this idea, MEK/ERK signaling has been shown to

regulate Schwann cell mitosis (109), while disrupting insulin-

PI3K/AKT signaling in Schwann cells leads to sensory

neuropathy with impaired myelination (110). Targeting PI3K/

AKT and MEK/ERK pathways in the PNS may thus represent a

novel therapeutic strategy against DPN (111).
4.2 Glycation

Galectin-3 (GAL-3), a member of the b-galactoside-binding
animal lectin family, is involved in various cell-to-cell and cell-to-

matrix interactions. Recent studies have highlighted both

physiological and pathological roles of GAL-3 in nervous tissue

(112). Similar to RAGE, GAL-3 is recognized as an AGE-binding

protein; however, the actions of these two proteins appear to be

oppositional under diabetic conditions. While the AGEs-RAGE

interaction can contribute to the development of DPN and other

diabetic complications (113, 114), GAL-3 may act as a cytoprotective

molecule by alleviating AGEs toxicity (115, 116). Exposure of IFRS1

cells to high glucose (30 mM) and 3-deoxyglucosone (3-DG; 0.2 mM),

a precursor of AGEs, induced an upregulation of GAL-3 expression.

Additionally, treatment with exogenous recombinant mouse GAL-3

(1 µg/mL) led to an upregulation of the anti-apoptotic marker Bcl-2

and a downregulation of the oxidative stress marker 4HNE in IFRS1

cells (91). These findings suggest that increased GAL-3 expression in

Schwann cells under diabetes-mimicking conditions may play a

pivotal role against DPN progression, although its precise

mechanisms of action remain to be elucidated.

In addition to AGEs, their precursors−including MG, glyoxal, 3-

DG, glyceraldehyde and glycolaldehyde (GA)−have shown detrimental

effects on neurons and Schwann cells (38, 91, 117, 118). Among these,

GA has been identified as the most harmful metabolite for IFRS1 cells

and ND7/23 sensory neuron-like cells (118). Further analysis suggests

that c-jun N-terminal kinase (JNK) and p-38 mitogen-activated kinase
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(p-38MAPK) signaling pathways are involved in GA-induced ND7/23

cell death. It remains unclear whether GA toxicity against IFRS1 cells

(118) and primary cultured rat Schwann cells (117) is associated with

the activation of JNK and/or p-38 MAPK pathways. Nevertheless, GA

and GA-induced intracellular AGEs accumulation may lead to ER

stress, thereby being potentially contributing to DPN and other

complications (117, 119).
4.3 Oxidative stress-induced autophagy

Autophagy is a catabolic process that maintains cellular

homeostasis by eliminating damaged intracellular components

through lysosomal degradation. Dysregulation of autophagy

contributes to the progression of various diabetic complications,

including DPN (120). It has been suggested that either excessive or

impaired autophagy in Schwann cells under hyperglycemic

conditions is associated with DPN pathogenesis (11, 121). Since

autophagy is activated in response to increased ROS production

(122), ROS accumulation induced by hyperglycemia in Schwann

cells may enhance autophagic reactions.

The antioxidant activities of DHA toward IMS32 cells (68) and its

potential efficacy in DPN has been described in the context of

oxidative stress [2.4]. In a subsequent study (123), DHA

pretreatment was shown to alleviate tBHP-induced oxidative stress,

excessive autophagy, and cell death through the AMP-activated

protein kinase-dependent signaling pathway in IFRS1 cells. In

another study, melatonin reduced high glucose-induced ER stress

and autophagy in RT4-D6P2T rat Schwann cells (124). These

findings suggest that excessive autophagy induced by oxidative

and/or ER stress in Schwann cells under diabetic conditions may

be a viable therapeutic target for DPN. However, further evidence

from animal and clinical studies is required to verify this hypothesis.
5 Translational findings in patients
with DPN

This article summarizes the major findings on both classical and

novel pathogenic factors of DPN identified using rodent Schwan

cell lines established in our laboratory, including IMS32, 1970C3,

IWARS1, IKARS1, and IFRS1. Additionally, we introduce potential
FIGURE 4

Immortalized Schwann cells as useful tools for the study of DPN.
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therapeutic approaches targeting these factors. Some of these

findings may have translational relevance for DPN in humans.
5.1 Schwann cell differentiation

Schwann cell dedifferentiation is considered a key pathogenic

factor in peripheral nerve disorders, including DPN. Conversely,

promoting Schwann cell differentiation may have therapeutic

potential for DPN [2.1]. A promising candidate in this regard is

ONO-2910 ((E)-3-(2-((5-(3-(phenylsulfonamido)phenyl)pent-4-

en-1-yl)oxy)phenyl)propanoic acid, a novel Schwann cell

differentiation enhancer developed by Ono Pharmaceutical Co.,

LTD, Osaka, Japan. Clinical trials for ONO-2910 in patients with

DPN are currently underway.
5.2 Imeglimin as a promising antioxidant
remedy for DPN

Imeglimin, a novel anti-hyperglycemic agent available in Japan,

exerts a unique mechanism targeting mitochondrial dysfunction.

Mitochondrial dysfunction is a key contributor to impaired glucose

uptake in muscles, excessive gluconeogenesis in the liver, and

increased pancreatic b-cell apoptosis. By protecting mitochondrial

function and reducing ROS production, imeglimin improves

glycemic control (125). Given that oxidative stress is a significant

pathogenic factor for DPN and other diabetic complications [2.4],

imeglimin may offer benefits beyond glycemic control, ameliorating

these conditions. Our ongoing study demonstrates that imeglimin

alleviates oxidative stress and apoptotic cell death in IMS32 cells

exposed to high-glucose, low-glucose, and recurrent glucose

fluctuation conditions (Kato et al., in preparation). Furthermore,

a recent clinical study highlighted imeglimin’s favorable effects on

body weight and lipoprotein profiles in type 2 diabetes patients

(126). However, further studies are needed to evaluate its efficacy for

chronic complications, including DPN.
5.3 The efficacy of GLP-1 receptor agonists
for DPN

Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist

(GLP-1RA), has demonstrated efficacy in ameliorating DPN in

STZ-diabetic mice, independent of its blood glucose-lowering

effects (127). Consistently, Ex-4 has been shown to enhance the

survival and neurite outgrowth of rat DRG neurons (128), promote

survival/proliferation and migration of IFRS1 Schwann cells, and

myelination in DRG neurons-IFRS1 co-cultures (101). These findings

suggest neuroprotective properties of Ex-4 and its potential role in

targeting DPN. However, evidence supporting the efficacy of Ex-4

and other GLP-1RAs in humans remains controversial (129). A

recent study associated Ex-4 therapy with improvements of nerve

excitability in patients with type 2 diabetes (130). Additionally, GLP-

1RA therapy has shown improvements in nerve conduction velocities

and axonal excitability, and morphological abnormalities assessed
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using peripheral nerve ultrasonography in DPN patients (131).

Nonetheless, further clinical research is required to establish the

therapeutic efficacy of GLP-1RA for DPN.
6 Conclusion

Despite extensive research efforts, no FDA-approved disease-

modifying therapies for DPN currently exist. We hope this article

will aid researchers studying DPN in gaining a deeper

understanding of the unique characteristics of the immortalized

Schwann cells described here and facilitate their use in developing

effective treatments (Figure 4).
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