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The crucial role of hypertension
in determining latent classes of
metabolic syndrome in
northern Iran and predictive
power of these classes in
non-alcoholic fatty liver:
a gender-based insight
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Fatemeh Sheikholmolooki2, Esmaeel Gholizadeh1,
Azam Doustmohammadian1, Fahimeh Safarnezhad Tameshkel1,
Nima Motamed3, Mansooreh Maadi1, Masoudreza Sohrabi1,
Elham Sobhrakhshankhah1, Farhad Zamani1*†

and Hossein Ajdarkosh1*†

1Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran,
2Department of Nutrition, Health and Statistics Surveillance Research Center, Science and Research
Branch, Islamic Azad University, Tehran, Iran, 3Department of Social Medicine, Zanjan University of
Medical Sciences, Zanjan, Iran
Introduction: This study investigates the subclasses of metabolic syndrome

(Mets) and their relationship with non-alcoholic fatty liver (NAFLD) and the

probable predictive role of serum vitamin D and CRP levels.

Methods: This community-based, cross-sectional study was performed on

adults in the framework of the Amol cohort prospective study (AmolCPS). Mets

was defined as Adult Treatment Panel III criteria (ATP III) and ultrasound was used

to diagnose NAFLD. Anthropometric and blood pressure measurements were

conducted, and biochemical measurements were assessed after fasting. Data

analysis included Latent class analysis, two-tailed c2 statistics, one-way analysis

of variance, and logistic regression using Mplus (version 7.4) and spss (version

26) softwares.

Results: The study involved 2308 participants, with a mean age of 43.17 ± 12.30

years. Mets prevalence was 25.64%, with three identified classes: Mets with

Hypertension (HTN), Mets without HTN (Non-HTN), and Low Risk. Mets with

HTN had a high probability of at least four components, particularly high SBP.

Non-HTN had at least three high probable components, especially high TG and

low HDL but not high SBP and DBP. The low-risk class had a low probability of all

components except low HDL in women. Serum vitamin D and CRP levels did not

significantly predict Mets classes in men, while CRP level significantly predicted

the HTN class in women (OR:1.03, CI:1.004-1.067). Both HTN, and Non-HTN

Mets classes significantly increased the odds of NAFLD compared to the low risk
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Abbreviations: Mets, Metabolic syndrome; NAFLD, n

disease; LCA, Latent class analysis; HTN, Mets with Hy

Mets without HTN; ATP III, Adult Treatment Panel III
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class, especially in women (HTN class OR: 4.20 vs 2.94; non-HTN class OR: 5.60

vs 3.12 in women and men respectively).

Conclusion: The latent class analysis in northern Iran identified three Mets

classes: HTN, Non-HTN, and low-risk, with hypertension playing a crucial role

in determining these classes. These classes were stronger predictors of NAFLD in

women. Serum CRP and vitamin D levels did not emerge as significant predictors

of the classes, except for serum CRP in the HTN class among women.
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Introduction

Metabolic syndrome is characterized by a cluster of

interconnected metabolic abnormalities that elevate the risk of

stroke, cardiovascular diseases (CVD), type 2 diabetes (T2D),

non-alcoholic fatty liver disease (NAFLD), and various other

health complications (1–3). The prevalence of metabolic

syndrome in the global adult population is approximately 20-25%

(4–6) and it continues to rise, posing a significant public health

concern worldwide (1, 7). This upward trend has also been observed

in Iran. In 2018, the prevalence of metabolic syndrome was

estimated at 25.5% in women and 17.16% in men (8), which

further increased to 34% in women and 22% in men by 2020 (9).

Metabolic syndrome has been described in various manners

over the past decades, however, the metabolic abnormalities

typically considered for its diagnosis consist of abdominal obesity

(characterized by a large waist circumference or high waist-to-hip

ratio), elevated fasting blood glucose, increased fasting serum

insulin, reduced serum high-density cholesterol (HDL), elevated

serum triglyceride levels (TG), and high blood pressure (10–13). In

most definitions, the simultaneous presence of three or more of

these components in an individual indicates the presence of

metabolic syndrome, regardless of which specific three

components are present. Previous research suggests that there

may be distinct subgroups within this classification, with each

subgroup potentially representing a different pathophysiologic

state and carrying varying levels of risk for chronic diseases (14, 15).

Latent class analysis is a statistical method that enables the

identification of distinct subgroups of metabolic syndrome (16) and

reveals the alignment of metabolic syndrome components within a

population (17). Latent class analysis utilizes a model-based approach

to cluster individuals into different groups based on their responses to

observed categorical variables, while also estimating latent variables from

observed indicator variables (17). In Iran, several studies have utilized the

Latent class analysis to investigate metabolic syndrome and its
on-alcoholic fatty liver

pertension; Non-HTN,

criteria.
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components (17–20). However, it is important to note that the

prevalence of metabolic syndrome, its components, and its risk factors

vary across geographical regions (21–23). Therefore, the identification of

latent classes of metabolic syndrome within each specific area can greatly

assist doctors, healthcare providers, and policymakers from the Health

Ministry in developing tailored preventive programs for the residents of

that particular region (15). Previous research has primarily focused on

the relationship between latent classes of metabolic syndrome and CVD

(14, 19, 24, 25) However, to the best of our knowledge, no studies have

explored the association between latent classes of metabolic syndrome

and NAFLD. This study also takes into consideration the role of serum

vitamin D (26–29) and C-reactive protein (CRP) levels (30–32), two

important factors associated with NAFLD, in determining the

classification of individuals within the different metabolic syndrome

subclasses. So, this study aims to investigate: 1) whether there are any

subclasses of people with different profiles of metabolic syndrome

components in the north of Iran, 2) whether there is a relationship

between individual characteristics (such as age, BMI, serum vitamin D,

and CRP level) and the placement of individuals in any of the subclasses,

and 3) whether there is an association between the identified subclasses

and NAFLD.
Methods

Study population

This community-based cross-sectional study was conducted in

the framework of the Amol cohort prospective study (AmolCPS),

the second phase. A detailed description of AmolCPS was explained

in another article (33) but briefly, this study was conducted in

Amol, a city in the northern region of Iran, in two different periods:

2009-2010 (phase 1) and 2016-2017 (phase 2). Study subjects were

selected from 25 rural and 16 urban healthcare centers between the

ages of 10 to 90. Then, the subjects were divided into 16 groups

based on gender and age with ten-year intervals, 10-19, 20-29, 30-

39, 40-49, 50-59, 60-69, 70-79, and 80-89. The selection of studies in

each stratum was done using a simple randomization method,

which was proportional to the population of each stratum.
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The present study included all adults aged 18 to less than 65

years who had complete abdominal ultrasound and blood test

results in the second phase of the study. Participants who

followed a specific diet or exercise routine, had a history of liver

disorders such as Wilson’s disease, autoimmune liver disease,

hemochromatosis, viral infections, alcoholic fatty liver,

malignancies, thyroid problems, autoimmune disorders, high

alcohol consumption (more than 30 g/day in men and more than

20 g/day in women) (34, 35), were pregnant or breastfeeding were

excluded from the study. Ultimately, 2308 individuals, comprising

1135 men and 1173 women, were included for analysis. The mean

imputation method (replacing the missing values with the mean of

the relevant variables) was used to address a total of 13 missing data

points for weight and height.
Ethical approval

This study has been approved by the ethics committee of Iran

University of Medical Sciences by No. IR.IUMS.REC.1400.982 and

was conducted according to the Helsinki Declaration. The

participants entered the study after signing the informed consent

form with full knowledge of the study objectives.
Clinical information

In AmolCPS, medical, pharmaceutical, and demographic

information was collected by a standard questionnaire after

signing the informed consent form (33). Data on physical activity

were collected using a validated International Physical Activity

Questionnaire (IPAQ), which was expressed as metabolic

equivalent minutes per minute per week (MET-min/week) (36)

Anthropometric measurements (weight (kg), height (m), and waist

circumference (cm)) were done based on the standard protocol (37)

and Body mass index (BMI) was calculated as dividing weight in

kilograms by the square of height in meters. Blood pressure was

measured in a quiet room after 15 minutes of rest with a mercury

sphygmomanometer. The average of 2 times of measurement with

an interval of 1 minute was considered as the systolic and diastolic

blood pressure of the person.

Then, a venous blood sample was taken after 12 hours of fasting

for biochemical measurements (including fasting plasma glucose

(FPG), serum triglycerides (TG), high-density lipoprotein (HDL),

C-reactive protein (CRP), 25(OH) vitamin D, Creatinine (Cr),

Hemoglobin A1C (HbA1c)). According to the protocol using the

BS200 Auto analyzer (Mindray, China), FPG, TG, Cr, and HDL

were assessed enzymatically. The HbA1c level was measured by a

Variant machine (Bio-Rad, Hercules, CA, United States). Serum

concentration of 25 (OH) vitamin D was measured using an ELISA

Kit (Pishtaz Teb Zaman Diagnostics, Tehran, Iran), and serum CRP

level was quantitatively measured using a Bionic CRP kit,

Tehran, Iran.
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Definition of metabolic
syndrome components

Each of the metabolic syndrome components was determined

based on the definition of National Cholesterol Education Program

Adult Treatment Panel III criteria (ATP III) as follows (38):
• FPG ≥100 mg/dl or drug treatment for elevated

blood glucose

• Waist Circumference (WC) >102 cm in men or > 88 cm

in women

• Serum TG ≥150 mg/dl or drug treatment for

elevated triglycerides

• Serum HDL < 40 mg/dl in men or < 50 mg/dl in women or

drug treatment for low HDL

• Blood Pressure ≥130/or ≥85 mm Hg or drug treatment for

elevated blood pressure
NAFLD diagnosis

Ultrasound was used to diagnose NAFLD. Sagittal, longitudinal,

lateral, and intercostal views were obtained with a 3-5 MHz

transducer (Esaote SpA, Genova, Italy). The normal liver was

defined when the liver consistency was homogeneous, displayed

fine-level echoes, and was minimally hyperechoic or even isoechoic

in contrast to a regular renal cortex. Steatosis, on the other hand,

was identified as a mild to severe increase in liver echogenicity, with

severe cases exhibiting limited penetration of the posterior segment

from the right hepatic lobe and poor or no visual images of hepatic

vessels and diaphragm, in those without a history of excess alcohol

consumption, drug-induced steatosis or viral and hereditary

steatogenic hepatic conditions (39, 40). Ultrasound examinations

were performed by a radiologist who was completely blind to the

study protocol while the subjects were fasting.
Statistical analysis

The latent class analysis was used to analyze data. In this

statistical procedure, different subgroups are qualitatively

identified in a population that have some visible characteristics in

common [in this study, six dichotomous observable variables of

metabolic syndrome including high WC, high FPG, low HDL, high

TG, High SBP, and high DBP, based on specific thresholds for

metabolic syndrome definition (38)]. These subgroups are called

latent classes (41). In the first step, for determination of the number

of classes, the model is fitted with one class, and then in the next

steps, another class is added to the model in each run. With the help

of indices and tests (such as Akaike’s Information Criterion (AIC)

and Bayesian Information Criterion (BIC), Le Mandel Rubin’s

likelihood ratio test (LMR LR test), and entropy (Entropy)), the

model with the appropriate number of classes is selected. In our

study, individuals were assigned to latent classes based on their
frontiersin.org
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highest posterior probability of membership. Specifically, we used a

threshold of 0.50 for class assignment, meaning that individuals

with a probability greater than or equal to 0.50 were assigned to the

corresponding class. Then we employed the BIC and LMR test as

primary criteria for selecting the optimal number of classes. The

BIC is a widely used criterion in model selection that balances

model fit with complexity, penalizing models with more parameters

to avoid overfitting. A lower BIC value indicates a better-fitting

model. The LMR test, on the other hand, compares a k-class model

to a k-1 class model by assessing whether the added complexity of a

new class significantly improves the fit of the model. A significant

result (p-value < 0.05) indicates that the k-class model provides a

better fit than the k-1 class model. During our analysis, we

examined multiple models ranging from one to five classes. For

each class, the BIC was calculated. The BICs of the classes were

compared and finally the class with the lowest BIC to avoid

overfitting and underfitting and significant LMR LR test p-value

(p-value < 0.05) was selected as the model. We considered gender

differences in WC and serum HDL cutoffs in the definition of

metabolic syndrome but used the same metrics, such as BIC, AIC,

entropy, and the Lo-Mendell-Rubin test, for both sexes to be

consistent in our analytical approach.

The Shapiro-Wilks test was utilized to assess the normality of

continuous variables, and the assumption of normality for each

variable included in the parametric analyses was specifically

evaluated. Two-tailed c2 statistics were utilized to explore

differences for categorical variables. One-way analysis of variance

(ANOVA) and student’s t-tests were applied to assess differences in

continuous variables with a normal distribution, while non-

parametric Kruskall-Wallis and Mann-Whitney tests were used to

investigate differences for continuous variables without normal

distribution. Additionally, Bonferroni post hoc tests were used for

pairwise comparisons in the ANOVA Test, and adjusted Bonferroni

post hoc tests were used in the Kruskal Wallis test. The association

between subclasses of metabolic syndrome and other risk factors

such as age, BMI, serum CRP, and 25(OH) vitamin D were

evaluated using Multinomial Logistic Regression. Finally, logistic

regression was used to analyze the relationship between metabolic

syndrome subclasses and NAFLD adjusted for age, diabetes

diagnosis, serum vitamin D, CRP, and Cr level. The low-risk class

served as the reference group in regressions. Mplus (version 7.4)

and spss (version 26) software were used for data analysis.
Results

Participant characteristics

Figure 1 displays a flowchart outlining the criteria for inclusion

and exclusion. This study included 2308 participants

(men=49.17%) with a mean age of 43.17± 12.30 years. According

to ATPIII criteria, the prevalence of metabolic syndrome was

25.64% in the study population with a significantly higher

prevalence among women (33.3% vs. 17.7%, p<0.001). Women

were significantly younger (42.58 ± 12.28 vs 43.78 ± 12.30,

p=0.019), with higher BMI (29.68 ± 5.74 vs 26.54 ± 4.24,
Frontiers in Endocrinology 04
p<0.001), and higher prevalence of elevated WC (46.1% vs 8%,

p<0.00) and SBP (17% vs 13.9%, p=0.043). Women also had

significantly higher serum CRP levels (2.00 (1.00-4.90) vs 1.00

(0.40-2.50), p<0.001) and lower serum vitamin D (14.70 (8.70-

22.67) vs 19.34 (14.00-24.40), p=0.001) and Cr (0.96 (0.87-1.04) vs

1.13 (1.04-1.25), p<0.001) levels. Low serum HDL level was

significantly more prevalent in men (52.4% vs 29.8%, p<0.001).

They also displayed a significantly higher level of physical activity

and smoking habits but had a lower rate of diabetes diagnosis.

HbA1c and other components of metabolic syndrome including

high serum TG, FPG, and DBP were not significantly different

between the two sexes (Table 1).
The number of latent classes

The number of latent classes, best fitted in the study population,

was determined using the BIC value and LMR LR test p-value in

each sex separately. In both sexes, the BIC value decreased by

adding each class to the previous one until class 3. By adding class 4,

the BIC value started increasing again in both sexes. LMR LR test p-

values were also significant in class 3 in both men and women.

According to the indicators and test results, the model with 3 classes

had a better fit than other models for both sexes. The fit indices of

the model are summarized in Table 2.
Latent class profiles

All participants were assigned to the class where they were most

likely to have similar characteristics. One of the classes was named

“metabolic syndrome with Hypertension (HTN)”, with a prevalence

of 11.6% in men and 19.4% in women, showing a high probability

for at least 4 components of metabolic syndrome, especially high

SBP (men: 82.4%, women: 78.1%). The other class was called “

metabolic syndrome without HTN (Non-HTN)” which had a

prevalence of 19.4% in men and 21.2% in women. In this class, at

least 3 components of metabolic syndrome had high probability but

high SBP and high DBP were not among those components. The

two major prevalent components of metabolic syndrome in this

group were high TG and low HDL in men and High WC and low

HDL in women. In the “Low Risk” class, which included 68.9% of

men and 59.3% of women, the probability of all components of

metabolic syndrome were low except for low HDL in women.

(Table 3) (Figure 2).

Table 4 presents the characteristics of participants in each latent

class of metabolic syndrome. In Men, age was significantly different

between all 3 classes. HTN class was the oldest and the low-risk

class was the youngest. BMI was not significantly different between

the two classes of metabolic syndrome but the low-risk group had a

significantly lower BMI compared to the other classes. Men in the

HTN class also had a significantly higher incidence of diabetes and

were simultaneously more physically active. Mean WC, SBP, DBP,

FPG, and serum TG were significantly different between all the 3

classes. HTN class had the highest mean SBP, DBP, FPG, and WC

and Non-HTN class had the highest mean serum TG. Serum HDL
frontiersin.org
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was significantly lower only in the non-HTN class compared to the

other two classes. In comparison to the low-risk class, both the HTN

and Non-HTN classes showed significantly higher levels of HbA1c,

serum CRP, and Cr. Nevertheless, the difference between the two

groups was not considered statistically significant. Serum vitamin D

levels were not significantly different among the 3 classes in men.

In womenmean age and BMI were significantly different between

all 3 classes. HTN class was the oldest and had the highest BMI while

the low-risk class was the youngest with the lowest BMI. Women in

the HTN group also had a significantly higher incidence of diabetes

and were simultaneously more physically active. Mean serum SBP,

DBP, and TG were significantly different between all three classes

with the HTN class having the highest SBP and DBP and Non-HTN

class having the highest mean serum TG level. The mean serumHDL

level was significantly lower in the non-HTN class compared to the

other classes. In comparison to the low-risk class, both the HTN and

Non-HTN classes showed significantly higher levels of FPG, WC,
Frontiers in Endocrinology 05
HbA1c, serum vitamin D, CRP, and Cr. Nevertheless, the difference

between the two groups was not considered statistically

significant. (Table 4).
Predictors of the metabolic
syndrome classes

In men, using the “Low Risk” class as the reference class, BMI

significantly predicted both classes of Mets (OR:1.26, CI:1.19-1.32,

and OR:1.99, CI:1.15-1.24, for HTN and non-HTN classes

respectively), while age only significantly predicted the HTN class.

HbA1c (OR:1.42, CI:1.19-1.70, and OR:1.31, CI:1.12-1.54) and

serum Cr (OR:2.93, CI:1.06-8.09, and OR:2.50, CI:1.06-5.88) were

significant predictors of both HTN and non-HTN classes

respectively, while serum vitamin D and CRP level were no

significant predictors of metabolic syndrome classes.
FIGURE 1

Inclusion-exclusion flow chart.
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In women, age (OR:1.16, CI:1.130-1.183, and OR:1.08,

CI:1.065-1.103), BMI (OR:1.22, CI:1.171-1.268, OR:1.16, CI:1.124-

1.207), HbA1c (OR:1.91, CI:1.60-2.29 and OR:1.75, CI:1.47-2.09),

and serum Cr (OR:4.61, CI:1.72-12.34, and OR:3.23, CI:1.22-8.55)

were significant predictors of both HTN and non-HTNMets classes

respectively, while serum CRP level only significantly predicted the

HTN class (OR:1.03, CI:1.004-1.067). Serum vitamin D was not a

significant predictor of metabolic syndrome classes (Table 5).
Association between latent classes
and NAFLD

Using the “Low Risk” class as the reference class, both classes of

metabolic syndrome significantly increased the OR for NAFLD in

both men and women. After combining data from both sexes, latent

class analysis revealed the same pattern across the population. In

women, both HTN and Non-HTN classes resulted in a considerably
Frontiers in Endocrinology 06
higher OR for NAFLD compared to men even after adjustments for

other covariates (age, serum vitamin D, serum c-reactive protein,

diabetes, physical activity, and smoking status) (HTN class OR: 4.20

vs 2.94; non-HTN class OR: 5.60 vs 3.12 in women and men

respectively) (Table 6).
Discussion

Latent class analysis has proven to be instrumental in

uncovering various patterns and subtypes of metabolic syndrome,

thereby greatly enhancing our comprehension of the diversity

within metabolic syndrome and its associated health

consequences. Consequently, it serves as a valuable instrument for

facilitating a more sophisticated comprehension of the condition

and potentially guiding personalized treatment approaches.

In this particular study, the utilization of the latent class analysis

allowed us to identify three distinct classes: HTN, non-HTN, and
TABLE 1 Baseline characteristic of the study participants (N =2308).

Variable Men (n =1135) Women (n =1173) Total (n =2308) P value

Age (year) 43.78 (12.30) 42.58 (12.29) 43.17 (12.31) 0.019 a*

BMI (kg/m2) 26.54 (4.24) 29.69 (5.74) 28.14 (5.30) <0.001 a*

PA (MET) 4162.0 (2724.0-5437.0) 3291.0 (2252.0-4741.0) 3700.0 (2404.0-5153.5) <0.001 c*

Positive Smoking status (%) 265 (23.3) 5 (0.4) 270 (11.7) <0.001 b*

Diabetes (%) 105 (9.3) 200 (17.1) 305 (13.2) <0.001b*

Serum Vitamin D (ng/mL) 19.34 (14.00-24.40) 14.70 (8.70-22.67) 17.30 (10.80-23.70) 0.001 c*

Serum CRP (mg/L) 1.00 (0.40-2.50) 2.00 (1.00-4.90) 1.40 (0.70-3.80) <0.001 c*

HbA1c (%) 4.56 (4.00-4.80) 4.56 (4.20-4.70) 4.56 (4.10-4.70) 0.12

Serum Cr (mg/dl) 1.13 (1.04-1.25) 0.96 (0.87-1.04) 1.04 (0.93-1.16) <0.001 c*

WC (cm) 88.58 (10.32) 87.61 (12.43) 88.09 (11.45) 0.043 a*

SBP (mm Hg) 110.00 (102.50-120.00) 109.00 (99.00-120.00) 110.00 (100.00-120.00) 0.033 c*

DBP (mm Hg) 71.66 (10.84) 70.37 (11.88) 71.01 (11.40) 0.006 a*

TG (mg/dl) 112.00 (84.00-164.00) 103.00 (79.00-153.00) 109.00 (81.00-159.00) 0.001 c*

FPG (mg/dl) 102.80 (29.96) 105.46 (36.32) 104.15 (33.36) 0.479 c

HDL (mg/dl) 40.00 (35.00-46.00) 45.00 (39.00-51.00) 43.00 (37.00-49.00) <0.001 c*

High FPG (%) 413 (36.4) 447 (38.1) 860 (37.3) 0.393b

High WC (%) 91 (8) 541 (46.1) 632 (27.4) <0.001b*

High serum TG (%) 349 (30.7) 319 (27.2) 668 (28.9) 0.060 b

Lows serum HDL (%) 540 (47.6) 823 (70.2) 945 (40.9) <0.001 b*

High SBP (%) 158 (13.9) 199 (17) 357 (15.5) 0.043 b*

High DBP (%) 125 (11) 133 (11.3) 258 (11.2) 0.804 b

Prevalence of Mets (%) 201 (17.7) 391 (33.3) 592 (25.6) <0.001 b*
Data are shown as mean (standard deviation) or median (interquartile range) for normally and non-normally distributed continuous variables. Categorical variables are shown as
numbers (percent).
at-test Student, bc2 test, cMann-Whitney test.
*Statistically significant and shown in Bold Font.
BMI, body mass index; CRP, c-reactive protein; FPG, fasting plasma glucose; WC, waist circumference; TG, triglycerides; HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure;
DBP, diastolic blood pressure; PA, Physical activity; MET, metabolic equivalent; HbA1c, Hemoglobin A1C; Cr, Creatinine.
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low-risk classes. The primary distinguishing factor of the HTN class

was the presence of hypertension, indicated by high SBP or DBP.

Additionally, hyperglycemia played a significant role in this class.

On the other hand, the non-HTN class was characterized by
Frontiers in Endocrinology 07
dyslipidemia, specifically high serum TG and/or low HDL, with a

very low likelihood of hypertension.

The occurrence of subclasses of metabolic syndrome in this

investigation aligns with numerous prior investigations (17–20, 42,
TABLE 3 The prevalence of latent classes and the estimated probability of observed metabolic syndrome components for each class type.

Classes type Low risk class Mets with HTN class Mets without HTN class

Men

N (Latent class prevalence) 783 (0.689%) 132 (0.116%) 220 (0.194%)

High WC 0.033 (0.011,0.054) 0.224 (0.139,0.314) 0.138 (0.048,0.228)

High SBP 0.040 (0.012,0.067) 0.824 (0.618,1.029) 0.059 (0.139,0.314)

High DBP 0.022 (0.001,0.043) 0.645 (0.470,0.838) 0.074 (0.015,0.133)

High TG 0.120 (0.005,0.245) 0.408 (0.282,0.533) 0.783 (0.479,1.086)

High FBS 0.285 (0.239,0.330) 0.611 (0.509,0.713) 0.458 (0.358,0.558)

Low HDL 0.357 (0.276,0.437) 0.460 (0.155,0.615) 0.818 (0.557,1.078)

Women

N (Latent class prevalence) 696 (0.593%) 228 (0.194%) 249 (0.212%)

High WC 0.238 (0.136,0.339) 0.725 (0.662,0.787) 0.699 (0.529,0.869)

High SBP 0.011 (0.005,0.027) 0.781 (0.704,0.857) 0.000 (0.000,0.000)

High DBP 0.002 (0.007,0.012) 0.535 (0.462,0.607) 0.000 (0.000,0.000)

High TG 0.084 (0.011,0.156) 0.464 (0.393,0.534) 0.497 (0.307,0.687)

High FBS 0.168 (0.095,0.240) 0.715 (0.648,0.782) 0.544 (0.381,0.706)

Low HDL 0.627 (0.566,0.688) 0.751 (0.692,0.810) 0.812 (0.717,0.906)
For metabolic syndrome components data are presented as probability (95% Confidence Interval).
The probability of a “No” response can be calculated by subtracting the item-response probabilities shown above from 1.
Item-response probabilities >.5 in bold to facilitate interpretation.
FPG, fasting plasma glucose; WC, waist circumference; TG, triglycerides; HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; Mets, metabolic
syndrome; HTN, hypertension.
TABLE 2 Model fit indices for latent class models of metabolic syndrome.

Number of
subclasses

Number of
parameters

df AIC BIC Entropy LMR LR test
p-value

Class counts

Men

1- class 6 57 6808.784 6838.991 — — 1135

2- class 13 50 6574.923 6640.370 0.738 < 0.0001 171, 964

3- class* 20 43 6500.833 6601.520 0.649 0.0006 132, 783, 220

4- class 27 36 6497.418 6633.347 0.689 0.0474 56, 744, 106, 229

5- class 34 29 6500.564 6671.733 0.776 0.445 495, 472, 39, 48, 81

Women

1- class 6 57 7890.487 7920.891 — — 1173

2- class 13 50 7356.736 7422.611 0.721 < 0.0001 297, 876

3- class* 20 43 7287.461 7388.807 0.625 < 0.0001 228, 696, 249

4- class 27 36 7278.420 7415.238 0.650 0.0266 124, 105, 695, 249

5- class 34 29 7281.711 7453.999 0.681 0.1882 70, 217, 144, 46, 696
In this research, the model selection criterion was based on the lower BIC values and significant LMR LR test p-value.
AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; LMR, Lo-Mendell-Rubin likelihood ratio test.
*The optimal class number according to the model fit criteria and also shown in bold font.
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43). Ghahramanloo et al. conducted a study in Qom, Iran, which

identified three distinct latent classes among urban adult men (non-

Mets, 55.1%; at risk, 21.3%; and Mets, 23.6%). Consistent with our

findings in men, one of these classes exhibited a higher prevalence

of high TG and low HDL, while the other class had a higher

prevalence of hypertension. Additionally, the group with

hypertension had a higher likelihood of hyperglycemia (20).

Another study by the same author in Tehran, identified four

latent classes of metabolic syndrome: non-Mets, low risk, high

risk, and MetS. Similar to our findings, hypertension and

hyperlipidemia were the primary components of the last two

classes, but in contrast to our results, hyperglycemia was more

closely associated with hyperlipidemia (17). In another study by

Galvão et al, researchers used latent class analysis to identify

different patterns of metabolic syndrome among women in the

ELSA-Brasil cohort. Similar to our own findings, they identified

three patterns that one them was characterized by high serum TG

and low HDL, while the other pattern was associated with central

obesity, hyperglycemia, and hypertension. The third pattern had
Frontiers in Endocrinology 08
low probabilities of all abnormalities, except for central obesity (44).

Another study analyzed data from the Multi-Ethnic Study of

Atherosclerosis (MESA) to identify patterns of metabolic

syndrome components. This study also highlighted the

importance of hypertension, low HDL, and hyperglycemia in

defining different subgroups of metabolic syndrome (45).

The existence of a HTN latent subgroup within the population

diagnosed with metabolic syndrome where hypertension and

hyperglycemia are the two most important components can be

elucidated through various mechanisms. Prior studies suggest that

insulin resistance and endothelial dysfunction could link

hypertension and hyperglycemia. Insulin resistance impairs the

ability of insulin to promote glucose uptake in tissues, leading to

hyperglycemia. Meanwhile Insulin has vasodilatory effects. When

cells are resistant to insulin, this vasodilatory effect is diminished,

contributing to increased vascular resistance and hypertension (46).

High blood glucose levels can also damage the endothelium. This

damage impairs the production of nitric oxide (NO), a molecule

that helps blood vessels relax (47). Additionally, hyperglycemia can
FIGURE 2

Probabilities of metabolic syndrome items in the 3 latent classes (A) Men, (B) Women.
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TABLE 4 Characteristics of participants by latent classes of metabolic syndrome.

Low-Risk class HTN class Non-HTN class P value

Men (n=1135)

Age (year) 42.40 (12.53) 50.64 (11.74) 44.57 (10.27) <0.001 a*

BMI (kg/m2) 25.55 (3.93) 29.17 (4.24) 28.48 (4.02) <0.001 a*

Vitamin D (ng/mL) 19.60 (14.10-24.61) 19.57 (13.22-24.12) 18.60 (14.22-23.17) 0.344 b

CRP (mg/L) 1.00 (0.27-2.20) 1.20 (1.00-3.00) 1.60 (0.90-3.27) <0.001 b*

Diabetes (%) 46 (5.9) 29 (22.0) 30 (13.6) <0.001 c*

Positive Smoking status, n (%) 183 (23.4) 28 (21.2) 54 (24.5) 0.77 c

PA (MET) 4126.0 (2655.0-5407.0) 4483.5 (3053.5-5881.2) 4050.5 (2722.5-5265.0) 0.024 b*

HbA1c (%) 4.56 (4.00-4.60) 4.56 (4.32-5.07) 4.56 (4.10-4.90) <0.001 b*

Cr (mg/dl) 1.12 (1.04-1.24) 1.18 (1.06-1.30) 1.16 (1.08-1.25) 0.001 b*

WC (cm) 86.09 (9.58) 95.77 (10.34) 93.13 (9.25) <0.001 a*

SBP (mm Hg) 109.00 (100.00-117.50) 137.50 (130.00-146.87) 115.00 (107.50-120.00) <0.001 b*

DBP (mm Hg) 68.35 (9.08) 87.67 (9.38) 73.86 (7.94) <0.001 a*

TG (mg/dl) 98.00 (78.00-126.00) 129.50 (93.25-191.25) 200.00 (169.25-271.25) <0.001 b*

FPG (mg/dl) 94.00 (88.00-100.00) 104.50 (98.00-120.00) 98.00 (91.00-106.00) <0.001 b*

HDL (mg/dl) 43.00 (37.00-48.00) 42.00 (35.00-48.00) 34.00 (31.00-37.00) <0.001 b*

Women (n=1173)

Age (year) 37.32 (11.39) 52.45 (7.98) 48.22 (9.61) <0.001 a*

BMI (kg/m2) 27.69 (5.39) 33.13 (5.63) 32.12 (4.21) <0.001 a*

Vitamin D (ng/mL) 13.50 (8.21-20.54) 16.25 (9.65-24.07) 16.10 (9.56-25.30) <0.001 b*

CRP (mg/L) 1.60 (0.62-3.90) 3.05 (1.00-6.72) 3.10 (1.00-6.00) <0.001 b*

Diabetes (%) 34 (4.9) 83 (36.4) 83 (33.3) <0.001 c*

Positive Smoking status, n (%) 3 (0.4) 0 (0.0) 2 (0.8) 0.40 c

PA (MET) 3388.0 (2308.7-4780.0) 3635.0 (2297.5-5327.5) 2893.0 (1997.0-4185.5) <0.001 b*

HbA1c (%) 4.56 (4.00-4.56) 4.60 (4.50-5.50) 4.56 (4.568-4.90) <0.001 b*

Cr (mg/dl) 0.95 (0.87-1.03) 0.97 (0.88-1.06) 0.96 (0.88-1.05) 0.028 b*

WC (cm) 82.26 (10.89) 94.93 (10.87) 95.87 (9.59) <0.001 a*

SBP (mm Hg) 101.25 (95.00-110.00) 137.50 (130.37-147.50) 110.00 (102.50-119.00) <0.001 b*

DBP (mm Hg) 65.84 (8.88) 85.91 (10.37) 68.78 (8.13) <0.001 a*

TG (mg/dl) 89.00 (69.00-113.00) 141.00 (100.00-187.00) 165.00 (113.00-213.50) <0.001 b *

FPG (mg/dl) 90.00 (85.00-96.00) 109.00 (97.00-134.75) 105.00 (100.00-123.50) <0.001 b *

HDL (mg/dl) 46.42 (11.92) 45.10 (10.40) 43.84 (9.13) 0.005 a*
F
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aANOVA Test, bKruskal Wallis test, cc2 test.
Data are shown as mean (standard deviation) or median (interquartile range) for normally and non-normally distributed continuous variables. Categorical variables are shown as
numbers (percent).
*P<0.05 was considered statistically significant and shown in Bold Font.
BMI, body mass index; FPG, fasting plasma glucose; WC, waist circumference; TG, triglycerides; HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood
pressure; CRP, c-reactive protein; HbA1c, Hemoglobin A1C; Cr, Creatinine; PA, Physical activity; MET, metabolic equivalent.
Post Hoc Tests: In the ANOVA Test, Bonferroni post hoc tests and in the Kruskal Wallis test adjusted Bonferroni post hoc tests were used for pairwise comparisons.
In Men: Significant mean difference between HTN and low-risk classes: Age, BMI, WC, DBP, SBP, TG, CRP, FPG, Cr, HbA1c, and PA.
Significant mean difference between HTN and non-HTN classes: Age, WC, DBP, SBP, TG, HDL, and FPG.
Significant mean difference between low-risk and non-HTN classes: BMI, WC, FPG, HDL, Age, DBP, SBP, CRP, TG, Cr, and HbA1c.
In Women: Significant mean difference between HTN and low-risk classes: Age, DBP, SBP, TG, BMI, Vitamin D, FPG, CRP, WC, Cr, and HbA1c.
Significant mean difference between classes HTN and non-HTN class: BMI, Age, DBP, SBP, TG, and PA.
Significant mean difference between classes low risk and non-HTN classes: BMI, Vitamin D, FPG, CRP and WC, HDL, Age, DBP, SBP, TG, HbA1c, Cr, and PA.
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lead to the formation of advanced glycation end-products (AGEs),

which further damage the endothelium and promote inflammation,

contributing to hypertension (47, 48). Insulin resistance and

hyperglycemia can also activate the sympathetic nervous system,

which increases heart rate and constricts blood vessels, leading to

higher blood pressure (49).

Furthermore, research suggests that the impact of insulin

resistance on endothelial function may vary depending on gender.

One potential explanation for this is the presence of hormonal

disparities. Estrogen is known to have a protective effect on

endothelial function, whereas testosterone’s relationship with

endothelial function is more intricate (50). Another factor to
Frontiers in Endocrinology 10
consider is the inflammatory response. Insulin resistance often

coincides with an inflammatory state, and the inflammatory

reaction may differ between males and females. Some studies

propose that males might be more vulnerable to the adverse

effects of inflammation on endothelial function (51). This

phenomenon could clarify why men in the present study

displayed elevated systolic blood pressure and hyperglycemia even

in the absence of abdominal obesity (low prevalence of increased

waist circumference), unlike women. Boyko et al. also suggest that

this connection between hypertension and hyperglycemia may not

be influenced by central adiposity (as was noted in men in the

present study) (15).

Impairment in renal function could potentially be the other link

connecting hyperglycemia and hypertension. Previous studies have

shown that prediabetes can worsen kidney function, while chronic

kidney disease can exacerbate hypertension by affecting the body’s

fluid and electrolyte balance (52, 53). In contrast, hypertension can

further advance chronic kidney disease by putting stress on the

kidneys, causing damage to blood vessels, and reducing their ability

to effectively filter waste products (54, 55). In the current study,

both HbA1c and serum Cr were found to be significant predictors of

metabolic syndrome classes, particularly the HTN class. This

finding strengthens the connection between kidney function

impairment, hyperglycemia, and hypertension. Endothelial

dysfunction caused in all the above mechanisms could be a key

factor in the adverse effects of hypertension and hyperglycemia,

even in the absence of diabetes, leading to a decline in function,

vascular issues, and Alzheimer’s disease (56–58). Therefore, the

presence of both high blood pressure and hyperglycemia, as seen in

the HTN latent class identified in this study, highlights the urgent

need to address these conditions to prevent organ damage and

associated complications.

In the current study, the presence of non-HTN latent subgroup

that was characterized by dyslipidemia, specifically high serum TG

and/or low HDL, with a very low likelihood of hypertension, could

be explained through mechanisms related to lipoprotein

metabolism and genetic factors that do not necessarily involve

hypertension such as hepatic overproduction of VLDL (59),

impaired lipoprotein lipase activity or lipoprotein metabolism (60,

61). Understanding these mechanisms is crucial for developing

targeted interventions for metabolic syndrome subclasses.
TABLE 5 Predictors of the Mets classes.

HTN class
OR (95% CI)

non-HTN class
OR (95% CI)

Men (n=1135)

Age (year) 1.07 (1.047, 1.090) 1.01 (0.999, 1.026)

BMI (kg/m2) 1.26 (1.198, 1.329) 1.99 (1.150, 1.247)

Serum Vitamin D
(ng/mL)

0.99 (0.969, 1.006) 0.99 (0.982, 1.009)

Serum CRP (mg/L) 0.80 (1.004, 0.970) 1.01 (0.980, 1.034)

HbA1c (%) 1.42 (1.19-1.70) 1.31 (1.12-1.54)

Serum Cr (mg/dl) 2.93 (1.06-8.09) 2.50 (1.06- 5.88)

Women (n=1173)

Age (year) 1.16 (1.130, 1.183) 1.08 (1.065, 1.103)

BMI (kg/m2) 1.22 (1.171, 1.268) 1.16 (1.124, 1.207)

Serum Vitamin D
(ng/mL)

0.99 (0.977, 1.001) 1.00 (0.994, 1.013)

Serum CRP (mg/L) 1.03 (1.004, 1.067) 1.03 (0.977, 1.056)

HbA1c (%) 1.91 (1.60-2.29) 1.75 (1.47-2.09)

Serum Cr (mg/dl) 4.61 (1.72-12.34) 3.23 (1.22-8.55)
The reference category in classes is: low-risk class.
Data are shown as Odds Ratio (OR) and 95% Confidence Interval (CI). Multinomial
Regression was used to evaluate the association between subclasses of Mets and the risk
factors where low risk class served as the reference group.
BMI, body mass index; CRP, c-reactive protein; HbA1c, Hemoglobin A1C; Cr, Creatinine.
Bold Font: statistically significant predictors (P<0.05).
TABLE 6 Association between latent classes of metabolic syndrome and NAFLD.

Low-Risk class

Men Women Total

Single
OR(CI)

Multiple
OR(CI)

Single
OR(CI)

multiple
OR(CI)

Single
OR(CI)

multiple
OR(CI)

Reference Reference Reference Reference Reference Reference

HTN class 3.14
(2.13-4.64)

2.94
(1.98-4.37)

5.52
(3.94-7.74)

4.20
(2.96-5.95)

4.29
(3.33-5.52)

3.48
(2.69- 4.51)

Non-HTN class 3.12
(2.27-4.28)

3.17
(2.30-4.35)

5.60
(4.02-7.80)

4.68
(3.35-6.59)

4.15
(3.30-5.20)

3.74
(2.97-4.71)
Data are shown as Odds Ratio (OR) and 95% Confidence Interval (CI). Logistic regression was used to evaluate the association between subclasses of Mets and NAFLD where the low-risk class
served as the reference group (adjusted for age, serum vitamin D, serum c-reactive protein, diabetes, physical activity, and smoking status).
*Statistically significant ORs are shown in Bold Font.
NAFLD, Non-alcoholic fatty liver; HTN, Hypertension.
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Serum CRP and vitamin D levels were not significant predictors

of metabolic syndrome classes in the present study, except for

serum CRP for HTN class in women. CRP is a protein produced by

the liver in response to inflammation, primarily triggered by

interleukin-6 (IL-6) and other inflammatory cytokines (62).

Research suggests that adipose tissue can produce inflammatory

cytokines, leading to increased levels of CRP (63–65). In the current

research women exhibit significantly higher BMI, waist

circumference, and double serum CRP levels, indicating that the

association between serum CRP level and HTN class in women

might indicate a heightened inflammatory state in women, which

can contribute to the pathophysiology of hypertension (66). Studies

have also shown that CRP levels are higher in individuals with

specific components of metabolic syndrome, such as abdominal

obesity, insulin resistance, and hypertension (67–72).

Regarding the association between serum vitamin D level and

metabolic syndrome, different studies have reported inconsistent

results. While some research has indicated a higher likelihood of

developing metabolic syndrome and its components with low

serum vitamin D levels (73, 74), others have not found such a

connection (75, 76). These results imply that the association

between serum vitamin D levels and metabolic syndrome may

vary among different populations and age groups. In Iran, factors

like limited sunlight exposure, low intake of vitamin D-rich foods

(77), cultural norms regarding clothing that limits sun exposure

(78), economic constraints affecting access to nutrition and

healthcare (77), low physical activity, and air pollution (79, 80) all

contribute to a high prevalence of vitamin D deficiency. The mean

serum vitamin D level of 17.30 ng/mL in this study further

underscores the prevalence of Vitamin D deficiency in Iran. This

deficiency may complicate the ability to identify associations

between vitamin D levels and metabolic syndrome classes, as low

levels of serum vitamin D are commonly found in all classes,

potentially masking differences that would otherwise be noticeable.

Understanding these factors can provide valuable context for

interpreting the lack of association between vitamin D status and

metabolic syndrome classes in our study, highlighting the

complexity of this relationship within specific demographic groups.

Concerning the correlation between the identified metabolic

syndrome classes and NAFLD, both the HTN and non-HTN classes

exhibited a similar increase in the OR of NAFLD for each gender.

However, the ORs of both classes were significantly higher in

women compared to men, approximately three times higher. This

notable difference in ORs can potentially be attributed to the higher

prevalence of visceral adiposity in women within both metabolic

syndrome classes. According to our finding 71.1% and 88.0% of

women in HTN and Non-HTN classes had high waist

circumference. In men, the frequencies were 35.2% and 38.5% for

the HTN and Non-HTN classes, respectively (Supplementary

Table 1). Visceral adiposity is a crucial risk factor for NAFLD,

and its higher occurrence in women may explain the considerably

higher ORs of both HTN and non-HTN classes for NAFLD in

women compared to men. Our findings align with the study

conducted by Ahanchi et al, which reported that the relationship

between subclasses of metabolic syndrome and incident CVD
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varied by gender. They suggested that the etiology of metabolic

syndrome involves multiple pathways, and it is necessary to

reconsider the equal weighting of each component or the use of

the same cut-off values in both genders (19).

Our findings indicate that there may be distinct latent classes

within the defined metabolic syndrome that exhibit varying

pathophysiology or different levels of risk for non-communicable

diseases. The main finding in this study was the significance of

hypertension in the classification of metabolic syndrome. Our study

demonstrates a conditional probability of approximately 0 for SBP

and DBP in both men and women in the “non-HTN” class,

indicating excellent classification and high specificity of the SBP

and DBP components for these classes. Conversely, there is a

simultaneous high probability of hyperglycemia in the HTN class,

suggesting a shared underlying mechanism for these two

components, separate from dyslipidemia. Another noteworthy

observation is the presence of elevated visceral adiposity in both

classes among women, but not men, which may indicate a disparity

in the role of visceral adiposity in the pathophysiological

mechanism of metabolic syndrome between the two sexes.

Comprehension of the diversity within metabolic syndrome and

its related health consequences helps in better identifying

individuals who may be at a higher or lower risk of developing

related conditions like NAFLD. Precise risk categorization allows

for focused interventions and more frequent monitoring of those at

high risk. Customizing interventions according to the specific

metabolic syndrome subclass can maximize the effectiveness of

lifestyle changes, medication, and monitoring methods.

The study’s notable strength lies in its utilization of a substantial

population-based cohort study, thereby enhancing the credibility

and reliability of our findings. Furthermore, we performed latent

class analysis separately for each gender, thereby presenting distinct

patterns for both males and females. This study also offers

important information on the subclasses of metabolic syndrome

and their connection to NAFLD. Nevertheless, it is crucial to

recognize the limitations of this research. It is vital to

acknowledge the potential impact of unobserved factors such as

socioeconomic status, genetic traits, and lifestyle variables

influencing the results. Being cross-sectional and observational is

another limitation to consider when interpreting the results.

Furthermore, although we have adjusted the association between

latent classes of metabolic syndrome and NAFLD we suggest

future-tailored research with higher sample sizes that can assess

the associations in covariate-based stratified groups in each sex to

address the unique health needs of both male and female

participants based on the gender-specific insights from our study.

Overcoming these limitations in future studies will improve our

comprehension of the intricate relationships between NAFLD and

metabolic well-being.
Conclusion

In the northern region of Iran, the latent class analysis revealed

the presence of three distinct classes of metabolic syndrome: HTN,
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Non-HTN, and low-risk classes. Hypertension played a crucial role

in determining these classes. Furthermore, both HTN and Non-

HTN classes exhibited a higher prevalence of visceral adiposity and

served as stronger predictors of NAFLD in women. Notably, serum

CRP and vitamin D levels did not emerge as significant predictors of

metabolic syndrome latent classes, except for serum CRP in the

HTN class among women.
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