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Hypothyroidism, a common endocrine disorder, has a high incidence in women

and increases with age. Levothyroxine (LT4) is the standard therapy; however,

achieving clinical and biochemical euthyroidism is challenging. Therefore,

developing an accurate model for predicting LT4 dosage is crucial. This

retrospective study aimed to identify factors affecting the daily dose of LT4 and

develop a model to estimate the dose of LT4 in hypothyroidism from a cohort of

1,864 patients through a comprehensive analysis of electronic medical records.

Univariate analysis was conducted to explore the relationships between clinical

and non-clinical variables, including weight, sex, age, body mass index, diastolic

blood pressure, comorbidities, food effects, drug-drug interactions, liver

function, serum albumin and TSH levels. Among the models tested, the Extra

Trees Regressor (ETR) demonstrated the highest predictive accuracy, achieving

an R² of 87.37% and the lowest mean absolute error of 9.4 mcg (95% CI: 7.7–11.2)

in the test set. Other ensemble models, including Random Forest and Gradient

Boosting, also showed strong performance (R² > 80%). Feature importance

analysis highlighted BMI (0.516 ± 0.015) as the most influential predictor,

followed by comorbidities (0.120 ± 0.010) and age (0.080 ± 0.005). The

findings underscore the potential of machine learning in refining LT4 dose

estimation by incorporating diverse clinical factors beyond traditional weight-

based approaches. The model provides a solid foundation for personalized LT4

dosing, which can enhance treatment precision and reduce the risk of under- or

over-medication. Further validation in external cohorts is essential to confirm its

clinical applicability.
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1 Introduction

Hypothyroidism, a prevalent endocrine disorder, exhibits

varying incidence and prevalence across different demographic

groups (1). With a prevalence tenfold higher in women than in

men, its occurrence escalates with advancing age. Hashimoto’s

thyroiditis is the leading cause of hypothyroidism in iodine-

sufficient areas, affecting 20-30% of patients (2). It is part of a

spectrum of autoimmune thyroid disorders with a complex

pathogenesis involving genetic susceptibility and environmental

factors (3). The disease is characterized by lymphocytic

infiltration and follicular destruction, leading to thyroid atrophy

and fibrosis (2, 3). Both cellular and humoral immunity play crucial

roles, with defects in T regulatory cells and increased activation of

follicular helper T cells contributing to disease initiation and

perpetuation. Recent studies have identified multiple cytokine

networks involving thyroid cells in proinflammatory effects and

various T regulatory cell defects underlying the loss of self-tolerance

(4). Environmental factors, including improved hygiene, increased

dietary iodine intake, and certain medications, have been implicated

in the recent increase in HT incidence (3). Diagnosis primarily

relies on a combination of clinical and biochemical assessments

due to the nonspecific nature of symptoms. Thyroid hormone

replacement therapy has been used to treat hypothyroidism for

over a century (5). Levothyroxine (LT4) the standard therapy

for hypothyroid patients affecting approximately 5% of the global

population, has significantly enhanced the quality of life for

millions since its inception in 1949. Nonetheless, ensuring

consistent biochemical and clinical euthyroidism in LT4-treated

individuals remains a significant challenge (6). Given that LT4 is

typically administered lifelong, changes in physiology necessitate

adjustments in dosage to maintain euthyroidism (6). Moreover,

dose modifications may be imperative for patients with concurrent

medical conditions, those receiving specific medications, and

elderly patients. Individuals undergoing weight fluctuations or

hormonal changes may also necessitate dose adjustments, with

pregnant women often requiring increased LT4 doses. Achieving

the best treatment outcomes for hypothyroidism involves a

collaborative effort between the patient and the physician. The

physician’s role entails evaluating the patient’s condition through

comprehensive clinical and laboratory assessments, and making

necessary adjustments to LT4 therapy accordingly (6).

Drugs can change thyroid function in individuals without a

thyroid illness, with effects ranging from aberrant thyroid

biochemical parameters to overt thyroid malfunctions. The same

medications may change the LT4 needs of patients currently being

treated for hypothyroidism (7–9). These changes are exemplified by

estrogen (10) and androgens (11), potentially causing increased and

decreased LT4 requirements, respectively. Substances such as calcium

and iron are prone to binding to LT4 in the gastrointestinal tract,

potentially diminishing its absorption. Similarly, proton pump

inhibitors may hinder absorption by elevating gastric pH (12).
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Methimazole, propylthiouraci l , checkpoint inhibitors ,

alemtuzumab, interferon-a, amiodarone, sunitinib, and lithium are

among the medications that could be included in this category due to

their impact on thyroid hormone synthesis or release (13).

Normalization of serum thyroid-stimulating hormone (TSH) levels

before pregnancy is critical in patients with hypothyroidism (14).

Early in the first trimester of pregnancy, women treated for

hypothyroidism often require a 20%–30% increase in their LT4

dose. This increased demand is caused by mechanisms such as

increased hepatic thyroxine-binding globulin (TBG) production

and thyroid hormone metabolism by placental type 3 deiodinase

(15, 16). Multiple studies have indicated a reduction in the required

LT4 dose among elderly people (17–19). However, a recent study has

proposed that this decline in LT4 requirement may be attributed to

age-related changes in weight (20). Factors such as body weight, ideal

body weight, and lean body mass all play a role in determining the

necessary LT4 dosage, with higher levels of these factors correlating

with increased dosage requirements (17, 21). However, if actual body

weight is utilized to determine the dosage of LT4 needed by people

with obesity, the dose may be overestimated instead of being more

accurately predicted by optimum body weight (21). The use of LT4

for the treatment of thyroid disorders has been well established.

However, recent studies have shown that this medication’s dosage

can significantly affect the liver (22–24). Appropriate LT4 dosage

adjustment is crucial for preventing liver injury. In some cases, it may

be necessary to base the dosage adjustment on the serum levels of

glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic

transaminase (GPT). As noted by Silva et al. (25), individuals with

elevated GPT levels may have a higher risk of abdominal

circumference and total cholesterol.

The practice of initiating dosing based on weight is thought to

be insufficient, as approximately 70% of patients often necessitate

dosage adjustments during their initial postoperative follow-up

(26). Additionally, administering an excessive LT4 dosage elevates

the risk of accelerated bone loss, fractures, heat intolerance,

diarrhea, and arrhythmias (27, 28). Conversely, underdosing of

LT4 dosing leads to symptoms of hypothyroidism, such as fatigue

and weight gain (29–31). Acknowledging these challenges, our

study aims to systematically investigate the factors influencing

LT4 dosage and develop a predictive model that incorporates the

diverse determinants of dose variability. This model is intended to

accurately estimate the appropriate levothyroxine dose, optimize

therapeutic precision, and improve patient outcomes in the

management of hypothyroidism.
2 Materials and methods

Our study, conducted in 2024, included data collected from the

electronic medical records of outpatients at Hai Phong

International Hospital between January 2022 and December 2023

who met the following criteria:
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2.1 Participants

2.1.1 Selection criteria
Fron
- Patients diagnosed with hypothyroidism based on ICD-10

codes, including E02, E03, E89.0.

- Patients meeting diagnostic criteria for hypothyroidism,

including overt hypothyroidism (elevated TSH levels with

low free thyroxine levels) and subclinical hypothyroidism

(elevated TSH levels with normal free thyroxine levels).

- Patients prescribed LT4 therapy at the study site.

D Patients with documented monthly follow-up visits at the

study site for at least three consecutive months.
2.1.2 Exclusion criteria

- Use of LT4 outside the study site.

- Missing TSH test results.

- Incomplete medical records lacking clinical information.
Hypothyroidism is diagnosed based on elevated levels of TSH

and reduced levels of free thyroxine (32). The normal reference

range for free thyroxine levels is approximately 12 to 22 pmol/L.

The normal reference range of serum TSH is within approximately

0.5–5.0 mU/L (17, 33).

2.1.3 Drug study
All patients were administered LT4 at 50 mcg or 100 mcg doses.

2.1.4 Data processing
During the study period, 3,794 medical records of patients

diagnosed with hypothyroidism were reviewed and screened.

The data extraction process involved accessing the hospital’s

electronic medical record (EMR) system, which stores

comprehensive patient information. A systematic query was

performed using predefined criteria to identify patients

diagnosed with hypothyroidism and prescribed LT4 between

January 2022 and December 2023. The query extracted

relevant data fields, including demographic information (e.g.,

age, sex, weight), clinical details (e.g., symptoms, comorbid

conditions), laboratory results (e.g., TSH levels, free T4 levels),

and prescription records.

Data cleaning and verification were then conducted to ensure

accuracy and completeness. Records were excluded if they indicated

LT4 use outside the study site, if follow-up visits were inconsistent

(less than three months), or if key information, such as TSH test

results or clinical history, was missing. Specifically:
- 788 records were excluded for LT4 use outside the study site

or insufficient follow-up.

- 328 records were excluded due to incomplete laboratory or

clinical data.
This resulted in a final dataset of 2,678 medical records for

analysis. Within this cohort, 69.6% (1,864 patients) achieved the
tiers in Endocrinology 03
hypothyroidism treatment goal after three months of follow-up,

defined as symptom resolution and normalization of serum TSH

levels within the reference range of 0.5–5.0 mU/L.

The extracted data was then anonymized to maintain patient

confidentiality and imported into a secure database for further

statistical analysis.
2.2 Statistical analysis

2.2.1 Analytical statistics
Quantitative variables, including age, weight, body mass index

(BMI), systolic and diastolic blood pressure, TSH levels, and LT4

dose, were assessed for normality using the Shapiro-Wilk test.

Variables following a normal distribution are presented as means

± standard deviations (SD), whereas non-normally distributed

variables are reported as medians and interquartile ranges (IQR).

Categorical variables, such as sex, comorbidities, food effects, and

drug-drug interactions, are summarized using frequencies

and percentages.

The relationships between LT4 dose and other quantitative

variables were examined using Pearson correlation coefficients for

normally distributed data and Spearman rank correlation for non-

normally distributed variables.

2.2.2 Variable selection
Univariate analyses, including t-tests, analysis of variance

(ANOVA), and chi-square tests, were conducted to identify

variables significantly associated with LT4 dose. Stepwise

regression (both forward and backward selection) was employed

to refine the subset of predictors included in the LT4 dose

prediction model, ensuring that only statistically significant and

clinically relevant variables were retained.
2.2.3 Model development and optimization
The dataset was randomly divided into a derivation cohort

(80%) and a validation cohort (20%) for developing the LT4 dose

prediction model. Multiple machine learning algorithms were

trained, including XGBoost, Random Forest, LightGBM, Ridge

Regression, Lasso Regression, Support Vector Regression (SVR),

Decision Tree Regressor (DTR), Gradient Boosting Regressor

(GBR), Extra Trees Regressor (ETR), AdaBoost Regressor (ABR),

K-Nearest Neighbors Regressor (KNR), Bagging Regressor (BR),

Multi-Layer Perceptron Regressor (MLPR), and CatBoost.

Hyperparameter tuning was performed using grid search and

cross-validation to optimize model performance. The final

hyperparameters were selected based on the best combination of

mean absolute error (MAE), mean squared error (MSE), root mean

squared error (RMSE), and R² score.

The entire modeling process was implemented using

Python (version 11.0), with key libraries including scikit-learn,

XGBoost, LightGBM, CatBoost, pandas, numpy, matplotlib, and

seaborn. Feature scaling and preprocessing were performed using

StandardScaler from scikit-learn, while hyperparameter tuning was

conducted using GridSearchCV and RandomizedSearchCV.
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2.2.4 Model validation
The final LT4 dose prediction model was validated using 10-

fold cross-validation, repeated three times to ensure generalizability

and robustness. Validation was conducted in Python using the

scikit-learn library, specifically the cross_val_score function. The

model’s predictive accuracy was assessed based on the average

performance metrics across validation folds, including MAE,

MSE, RMSE, and R² score.

The optimized model’s performance before and after

hyperparameter tuning was compared using a paired sample t-

test to determine statistical significance.

The study flowchart is presented in Figure 1, and the raw data of

the study is provided in Supplementary Data Sheet 1.
2.3 Ethical considerations

The Institutional Review Board (IRB) of Hai Phong

International Hospital, Vietnam, approved and reviewed the

study protocols (IRB. 23.118). The study was conducted in

accordance with the Declaration of Helsinki and the International

Conference on the Harmonization of Technical Requirements for
Frontiers in Endocrinology 04
Registration of Pharmaceuticals for Human Use Good Clinical

Practice guidelines.
3 Results

Of the 3,794 patients diagnosed with hypothyroidism and

prescribed LT4, 2,678 met the inclusion criteria. Among the

selected patients, 1,864 (approximately 69.6%) met the treatment

goal and were included in the analysis and modeling of the LT4 dose

calculation (Figure 1). The median weight of participants was 54.00

kg (IQR: 47.00–62.43), with a median age of 49.00 years (IQR:

39.00–58.00). The median height was 155.00 cm (IQR: 150.00–

160.00), and the median BMI was 22.21 kg/m² (IQR: 19.16–26.59).

Blood pressure measurements revealed a median systolic blood

pressure (SBP) of 121.00 mmHg (IQR: 110.00–134.00) and a

median diastolic blood pressure (DBP) of 72.00 mmHg (IQR:

64.00–80.00). The number of concomitant diseases had a median

value of 3.00 (IQR: 2.00–4.00). For patients receiving LT4, the

median daily dose was 62.50 mcg (IQR: 50.00–92.80) with

individual prescriptions ranging from 25 to 175 mcg. 1,766

(94.74%) patients were prescribed LT4 after meals (Table 1).
FIGURE 1

Study flowchart.
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TABLE 1 Patients’ clinical characteristics (n = 1,864).

Variables Value (Median (IQR) Distribution in the dataset (N, %) Min;Max

Weight (kg) 54.00 (47.00-62.43) (31;89)

Sex (female) 1703 (91.36%)

Age (years) 49.00 (39.00-58.00) (6;86)

Children (6-12) 8.0 (7.0-9.0) 2 (0.11) (6.0;10.0)

Adolescents (13-18) 17.0 (16.25-18.0) 10 (0.54) (15.0;18.0)

Young adults (19-44) 35.0 (31.0-41.0) 722 (38.73) (19.0;44.0)

Middle-aged adults (45-59) 52.0 (48.0-56.0) 723 (38.79) (45.0;59.0)

Older adults (60-74) 65.0 (62.0-69.0) 381 (20.44) (60.0;74.0)

Elderly (75-89) 84.0 (78.0-86.0) 26 (1.39) (76.0;86.0)

Height (cm) 155.00 (150.00-160.00) (129;185)

BMI 22.21 (19.16-26.59) (13.24;41.24)

SBP (mmHg) 121.00 (110.00-134.00) (82;206)

DBP (mmHg) 72.00 (64.00-80.00) (33;130)

Number of concomitant diseases 3.00 (2.00-4.00) (1;14)

LT4 dose regimen

LT4 daily dose (mcg) 62.50 (50.00-92.80) (25;175)

LT4 taking after meal 1,766 (94.74%)

Complexity in drug use (ref: complexed) 1,423 (76.34%)

Comorbidities

Ulcerative colitis 23 (1.23%)

Helicobacter pylori infection 82 (4.4%)

Diabetes 423 (22.69%)

Hypertension 720 (38.63%)

Hypothyroidism cause

Post-surgical hypothyroidism 1094 (58.69)

Post-radioiodine therapy hypothyroidism 264 (14.16)

Autoimmune hypothyroidism 150 (8.05)

Drug-induced hypothyroidism 80 (4.29)

Unknown/Other 276 (14.81)

Pregnancy 94 (5.04%)

Concomitant intake of medications

Calcium supplement 189 (10.14%)

Iron Preparations 64 (3.43%)

Magnesium Salts 74 (3.97%)

Multivitamins 251 (13.47%)

PPI 134 (7.19%)

Alendronate 31 (1.66%)

Potassium chloride 59 (3.17%)

(Continued)
F
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The distribution of LT4 dosage among study participants is

visualized in Figure 2. The median LT4 dose was 62.5 mcg/day with

an interquartile range (IQR) of 50.0 to 92.8 mcg/day. The most

commonly prescribed dose was 50.0 mcg/day, accounting for

26.13% of participants. The histogram demonstrates a right-

skewed distribution, with most participants receiving doses

between 50 to 100 mcg/day. A smaller subset required higher

doses (>100 mcg/day), suggesting individualized dosing based on

patient-specific factors.

A subanalysis of 1,864 participants revealed that 12 (0.64%)

were in the pediatric group (6-18 years) and 1,852 (99.36%) were in

the adult group (>18 years). The pediatric group exhibited

significantly lower BMI (17.67 vs. 22.26 kg/m², p < 0.001) and
Frontiers in Endocrinology 06
LT4 dose requirements (33.75 vs. 62.5 mcg/day, p < 0.001)

compared to the adult group. Similarly, GOT (12.12 vs. 23.34 U/

L, p < 0.001) and GPT (21.8 vs. 24.7 U/L, p = 0.01) levels were

significantly lower in the pediatric group. No significant differences

were observed in TSH (2.39 vs. 2.53 mIU/L, p = 0.472) or ALB levels

(40.92 vs. 44.1 g/dL, p = 0.362) between the two groups (Table 2).

The linear regression analysis identified significant predictors of

LT4 dosage (Table 3). Among demographic factors, BMI (4.657 ±

0.065, P < 0.001) and age (1.013 ± 0.041, P < 0.001) showed strong

positive associations with LT4 dosage. Female sex (6.332 ± 2.308, P

= 0.006) and pregnancy (18.570 ± 2.938, P < 0.001) were also

significant contributors. Comorbidities such as ulcerative colitis

(54.456 ± 5.749, P < 0.001), diabetes (21.702 ± 1.467, P < 0.001),
FIGURE 2

Distribution of Levothyroxine dosage among study participants.
TABLE 1 Continued

Variables Value (Median (IQR) Distribution in the dataset (N, %) Min;Max

Concomitant intake of medications

Ciprofloxacin 4 (0.21%)

Zinc 6 (0.32%)

Clinical indices on prescription day

AST, U/l 23.28 (18.02-30.05) (10.01;157.13)

ALT, U/l 24.66 (21.22-31.05) (7.45;306.07)

TSH mIU/l 2.52 (1.50-3.77) (0.05;6.81)

Serum Albumin (mg/dl) 44.10 (33.23-54.13) (20.01;64.96)
SBP, systolic blood pressure; DBP: diastolic blood pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; SD, standard deviation.
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Helicobacter pylori infection (40.494 ± 3.026, P < 0.001), and

hypertension (13.437 ± 1.298, P < 0.001) were strongly associated

with increased LT4 requirements. Regarding hypothyroidism

causes, post-surgical hypothyroidism (10.889 ± 1.295, P < 0.001)

and post-radioiodine hypothyroidism (4.825 ± 1.860, P = 0.010)

were associated with higher LT4 doses, whereas autoimmune

(-14.430 ± 2.365, P < 0.001) and drug-induced hypothyroidism

(-19.645 ± 3.173, P < 0.001) were linked to lower LT4 requirements.

Concomitant medication use significantly influenced LT4 dosing.

Proton pump inhibitors (PPIs) (37.162 ± 2.363, P < 0.001),

potassium chloride (50.097 ± 3.525, P < 0.001), magnesium salts

(43.834 ± 3.169, P < 0.001), iron preparations (43.983 ± 3.419, P <

0.001), calcium supplements (19.294 ± 2.105, P < 0.001), and

multivitamins (18.996 ± 1.852, P < 0.001) were associated with

significantly increased LT4 requirements. Laboratory findings also

showed significant associations. Higher GOT (1.282 ± 0.037, P <

0.001) and GPT (0.701 ± 0.027, P < 0.001) levels were positively

correlated with LT4 dosage, while TSH levels after treatment (-2.996

± 0.406, P < 0.001) were inversely associated with LT4 dosage.

Serum albumin was positively associated with LT4 dosage (0.329 ±

0.051, P < 0.001). Other predictors included the number of

comorbidities (7.586 ± 0.239, P < 0.001), while taking LT4 before

meals (-10.439 ± 2.901, P < 0.001) was associated with a lower LT4

dose requirement.

Table 4 compares the performance of various regression models

based on MAE with 95% CI and R² values. The ETR achieved the

lowest MAE (9.4 [11.2, 7.7]) in the test set and the highest R²

(87.37%), making it the best-performing model. Other ensemble

methods, including the RFR and GBR, also demonstrated strong

predictive accuracy with MAE values around 9.6–9.9 and R² above

80%. Linear regression models (MLR, Ridge, Lasso, LSVR) had

significantly higher MAE values (13.5–13.8) and lower R² compared

to nonlinear models (p < 0.001 vs. ETR). Among nonlinear models,

SVR, NuSVR, and MLPR showed moderate accuracy, while ABR

had the highest test set error (12.5 [14.0, 10.9]) with an R² of
Frontiers in Endocrinology 07
80.08%. Overall, tree-based ensemble methods outperformed linear

and other nonlinear models, with ETR being the most accurate.

Figure 3 provides an in-depth analysis of model performance

and feature importance in LT4 dose estimation. Figure 3a illustrates

the relative importance of predictive features, with BMI (0.516 ±

0.015) emerging as the most influential factor, followed by

comorbid diseases (0.120 ± 0.010) and age (0.080 ± 0.005). Other

significant predictors include post-radioiodine therapy (0.051 ±

0.009), post-surgical hypothyroidism (0.047 ± 0.010), drug-

induced hypothyroidism (0.047 ± 0.009), and the number of

medications (0.046 ± 0.005), while sex (0.036 ± 0.005), baseline

TSH (0.032 ± 0.002), and autoimmune hypothyroidism (0.025 ±

0.007) play a smaller role. Figure 3b presents the correlation matrix,

highlighting BMI as the strongest predictor of LT4 dosage (r = 0.86,

p < 0.001), with age (r = 0.50, p < 0.001) and comorbid diseases (r =

0.59, p < 0.001) also showing moderate correlations. Other

variables, including post-radioiodine therapy (r = 0.23, p < 0.001)

and post-surgical hypothyroidism (r = 0.19, p < 0.001), exhibit

weaker associations, whereas sex (r = 0.06, p = 0.04) and baseline

TSH (r = 0.06, p = 0.02) contribute minimally. Figure 3c displays the

error distribution, showing a near-normal pattern with a mean

prediction error of 0.58 (SD = 10.84) and an interquartile range

from -7.2 to 8.9, suggesting that most predictions remain within an

acceptable range despite occasional outliers. Figure 3d presents the

actual vs. predicted LT4 dosage, demonstrating a strong alignment

along the y = x reference line (R² = 0.85), indicating high predictive

accuracy. However, deviations are more pronounced at higher

dosages, suggesting areas where model refinements could improve

estimation reliability.
4 Discussion

This study provides valuable insights into the clinical and

biochemical factors influencing LT4 dosage among patients with

hypothyroidism. Among the 2,678 participants analyzed, 1,864

individuals (69.6%) achieved treatment goals, forming the basis

for dose modeling. The findings underscore the significant

variability in LT4 dose requirements, with a median dose of 62.5

mcg/day (IQR: 50.0–92.8 mcg/day) and doses ranging from 25 to

175 mcg/day. These findings align with previous reports that

estimate median LT4 dose requirements at 1.3 mg/kg/day (IQR:

0.94,1.60), emphasizing the role of patient-specific metabolic and

physiological factors in determining optimal LT4 replacement

therapy (34). Our analysis highlights key predictors of LT4

dosage, which are consistent with findings from previous studies.

BMI emerged as the strongest predictor, with a positive association

(4.657 ± 0.065 mcg/kg/m², p < 0.001). The majority of patients were

female (1,703; 91.36%). Research findings consistently indicate a

higher prevalence of hypothyroidism in women compared to men.

Reports suggest that hypothyroidism is approximately 4-6 times

more prevalent in women than in men (35). However, the

underlying reasons for this gender disparity remain incompletely

understood. Some studies propose hormonal factors, such as

estrogen, as potential contributors to the higher prevalence of
TABLE 2 Comparison of clinical and biochemical parameters between
pediatric (6-18 years) and adults (>18 years).

Age Group Pediatric
(6-18) Adults (>18)

p-value

n (%) 12 (0.64) 1852 (99.36)

BMI (kg/m²)
Median (IQR) 17.67 (15.38-18.47) 22.26 (19.2-26.65) <0.001

LT4 Dose (mcg/day)
Median (IQR) 33.75 (25.0-50.0) 62.5 (50.0-93.0) <0.001

TSH (mIU/L)
Median (IQR) 2.39 (1.68-3.14) 2.53 (1.5-3.78) 0.472

GOT (U/L)
Median (IQR) 12.12 (11.7-15.55) 23.34 (18.14-30.11) <0.001

GPT (U/L)
Median (IQR) 21.8 (18.73-23.7) 24.7 (21.25-31.21) 0.01

ALB (g/dL)
Median (IQR) 40.92 (29.48-50.21) 44.1 (33.36-54.15) 0.362
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hypothyroidism in women, given their influence on thyroid

function. Other research suggests lifestyle factors, including diet

and physical activity, may also influence the gender difference (36).

Notably, the prevalence of hypothyroidism varies across diverse

populations and regions, emphasizing the need for further

investigation to gain a comprehensive understanding of gender

differences in hypothyroidism prevalence.

Our analysis highlights BMI as a key predictor of LT4 dosage,

consistent with previous studies emphasizing its role in thyroid

hormone replacement therapy. In our study, BMI demonstrated a

strong positive association with LT4 dose (4.657 ± 0.065 mcg/kg/

m², p < 0.001), reinforcing the metabolic demands of patients with

higher body mass. This aligns with prior research indicating that

weight-based dosing alone may be insufficient for achieving

euthyroidism, particularly in overweight and underweight

individuals (28, 37). Studies have shown that patients with higher
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BMI require higher absolute LT4 doses but lower doses relative to

body weight, suggesting a complex interplay between body

composition and thyroid hormone metabolism (38, 39). While

BMI-based dosing algorithms have been developed and have

improved euthyroidism rates at follow-up, recent studies advocate

for more sophisticated dosing models incorporating multiple

clinical parameters (40). Notably, some researchers argue that

TSH, body weight, and BMI alone may be insufficient for precise

LT4 titration, highlighting the need for individualized,

multifactorial approaches to therapy optimization (28).

As per the investigation, the mean age of the patients was 48.42

± 13.72, ranging from 6 to 86 years old. The prevalence of

hypothyroidism varies across age groups. According to previous

research, the highest prevalence of hypothyroidism is observed in

older people (41). This study highlights significant differences in

clinical and biochemical parameters between pediatric and adult
TABLE 3 Linear regression coefficients for factors influencing LT4 dosage (mcg/day).

Category Variable Estimate Standard Error (SD) t-value p-value

Demographics

Weight (kg) 1.976 0.039 51.113 < 0.001

BMI (kg/m²) 4.657 0.065 72.166 < 0.001

Age (years) 1.013 0.041 24.643 < 0.001

Female sex 6.332 2.308 2.743 0.006

Pregnancy 18.57 2.938 6.321 < 0.001

Comorbidities

Hypertension 13.437 1.298 10.355 < 0.001

Diabetes 21.702 1.467 14.789 < 0.001

Ulcerative colitis 54.456 5.749 9.473 < 0.001

Helicobacter pylori infection 40.494 3.026 13.382 < 0.001

Hypothyroidism Cause

Post-surgical hypothyroidism 10.889 1.295 8.407 < 0.001

Post-radioiodine hypothyroidism 4.825 1.86 2.594 0.01

Autoimmune hypothyroidism -14.43 2.365 -6.102 < 0.001

Drug-induced hypothyroidism -19.645 3.173 -6.191 < 0.001

Concomitant intake
of medications

Proton pump inhibitors 37.162 2.363 15.724 < 0.001

Potassium chloride 50.097 3.525 14.212 < 0.001

Magnesium salts 43.834 3.169 13.833 < 0.001

Iron preparations 43.983 3.419 12.863 < 0.001

Calcium supplements 19.294 2.105 9.164 < 0.001

Multivitamins 18.996 1.852 10.258 < 0.001

Laboratory findings

Serum albumin (mg/dL) 0.329 0.051 6.398 < 0.001

GOT (U/L) 1.282 0.037 34.549 < 0.001

GPT (U/L) 0.701 0.027 26.278 < 0.001

TSH baseline (mIU/L) 0.251 0.1 2.521 0.012

TSH after treatment (mIU/L) -2.996 0.406 -7.388 < 0.001

Other factors
Number of comorbidities 7.586 0.239 31.698 < 0.001

LT4 taken before meals -10.439 2.901 -3.598 < 0.001
SBP, systolic blood pressure; DBP: diastolic blood pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; SD, standard deviation.
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TABLE 4 Comparison of regression models for predicting levothyroxine dosage: mean absolute error (MAE) and R² values.

Regression
models

MAE (Training Set)
[95% CI]

MAE (Test Set)
[95% CI]

R²
(Training Set)

R²
(Test Set)

P values
(vs. MLR)

P values
(vs. ETR)

MLR 13.5 [13.6, 13.3] 13.6 [14.7, 12.5] 76.24 74.49 – < 0.001; < 0.001

RidgeR 13.6 [13.7, 13.4] 13.7 [14.7, 12.6] 76.24 74.5 0.005; 0.695 < 0.001; < 0.001

LassoR 13.5 [13.7, 13.3] 13.6 [14.7, 12.5] 76.11 74.54 0.210; 1.000 < 0.001; < 0.001

LSVR 13.6 [14.1, 13.2] 13.8 [14.7, 12.8] 75.41 75.52 0.023; 0.576 < 0.001; < 0.001

ETR 5.4 [5.6, 5.3] 9.4 [11.2, 7.7] 100 87.37 < 0.001; < 0.001 –

KNR 2.4 [2.5, 2.2] 9.6 [11.6, 7.5] 84.48 78.34 < 0.001; < 0.001 0.743

BR 5.8 [6.0, 5.6] 9.6 [11.7, 7.5] 97.38 83.67 < 0.001; < 0.001 0.681

RFR 6.6 [6.8, 6.4] 9.6 [11.7, 7.7] 98.12 85.39 < 0.001; < 0.001 0.634

XGBR 8.4 [8.6, 8.1] 9.9 [11.2, 8.5] 99.54 84.92 < 0.001; < 0.001 0.234

GBR 7.9 [8.1, 7.8] 9.9 [11.4, 8.4] 89.14 83.55 < 0.001; < 0.001 0.251

DTR 7.3 [7.8, 6.7] 10.1 [12.1, 8.1] 100 71.85 < 0.001; < 0.001 0.142

SVR 7.8 [8.2, 7.3] 10.3 [12.0, 8.7] 43.57 45.68 < 0.001; < 0.001 0.034

NuSVR 8.1 [8.4, 7.9] 10.3 [12.0, 8.6] 43.57 45.68 < 0.001; < 0.001 0.038

MLPR 10.6 [10.9, 10.2] 11.0 [12.5, 9.5] 84.14 78.24 < 0.001; < 0.001 < 0.001

ABR 12.3 [12.4, 12.1] 12.5 [14.0, 10.9] 83.15 80.08 < 0.001; 0.002 < 0.001
F
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MLR, Multiple Linear Regression; RidgeR, Ridge Regression; LassoR, Lasso Regression; LSVR, Linear Support Vector Regression; ETR, Extra Trees Regressor; KNR, K-Nearest Neighbors
Regressor; BR, Bagging Regressor; RFR, Random Forest Regressor; XGBR, Extreme Gradient Boosting Regressor; GBR, Gradient Boosting Regressor; DTR, Decision Tree Regressor; SVR,
Support Vector Regression; NuSVR, Nu-Support Vector Regression; MLPR, Multilayer Perceptron Regressor; ABR, Adaptive Boosting Regressor.
FIGURE 3

Model performance and feature importance. (a) Feature Importance; (b) Correlation Matrix; (c) Error Distribution; (d) Actual vs. Predicted LT4
Dosage. BMI, Body Mass Index; TSH, Thyroid-Stimulating Hormone; LT4, Levothyroxine; Autoimmune, Autoimmune Hypothyroidism; Conco.di,
Concomitant Diseases (Comorbidities); Drug.induced, Drug-Induced Hypothyroidism; Num.drug, Total Number of Medications; Post-radioiodine,
Post-Radioiodine Therapy; Post-surgical, Post-Surgical Hypothyroidism.
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patients on LT4 therapy, consistent with findings in existing

literature. Pediatric patients often require higher weight-based

LT4 doses compared to adults (42), likely due to age-related

variations in thyroid hormone metabolism and persistent

hypothalamic-pituitary resistance in congenital cases. The lower

BMI (17.67 vs. 22.26 kg/m², p < 0.001) and LT4 dose requirements

(33.75 vs. 62.5 mcg/day, p < 0.001) observed in the pediatric group

reflect differences in body composition and metabolic rates.

Developmental variations in liver enzyme activity may explain the

significantly lower GOT (12.12 vs. 23.34 U/L, p < 0.001) and GPT

(21.8 vs. 24.7 U/L, p = 0.01) levels in pediatric patients, as children

are known to metabolize LT4 differently, potentially leading to

increased reactive metabolite formation (43). Despite these

differences, comparable TSH levels (2.39 vs. 2.53 mIU/L, p =

0.472) across groups suggest effective dose titration strategies,

aligning with the principle that age-specific reference intervals for

thyroid function tests may be necessary (44). The small sample size

in the pediatric group is a limitation of this study. Further research

with larger cohorts is needed to validate these findings and refine

LT4 dosing strategies, particularly for pediatric patients, to mitigate

risks such as iatrogenic hyperthyroidism observed in initial dosing

(45). Age-specific approaches remain critical to optimizing thyroid

hormone replacement therapy and preventing overtreatment or

undertreatment in diverse populations.

In our participants, we observed several notable comorbidities

and conditions that warrant attention in the management of LT4

dose. Among patients with hypothyroidism, a substantial proportion

(52.58%) underwent thyroidectomy, indicating a significant

prevalence of surgical interventions in this population. A novel

Poisson regression model incorporating seven variables predicted

60.9% of the doses (p=0.031) based on the data of 598 patients who

attained euthyroidism after total or complete thyroidectomy for

benign diseases (46). Furthermore, hypertension emerged as the

most prevalent comorbidity among patients with hypothyroidism,

affecting 38.63% of the individuals in our study cohort. Diabetes

mellitus was also observed to be prevalent among hypothyroid

patients, affecting 22.69% of the individuals. This finding

underscores the bidirectional relationship between thyroid

dysfunction and metabolic disorders and emphasizes the need for

integrated management strategies to address both conditions

simultaneously. Interestingly, adenocarcinoma of the thyroid gland

was identified in 29.51% of patients with hypothyroidism, indicating

a notable prevalence of thyroid malignancies within this population.

In addition to these common comorbidities, this study investigated

the prevalence of gastrointestinal diseases in patients with

hypothyroidism. Notably, a significant proportion of patients

receiving LT4 (LT4) treatment present with concurrent conditions

that can potentially impair intestinal absorption of the medication.

Conditions such as gastroesophageal reflux disease (GERD), irritable

bowel syndrome (IBS), food allergies, lactose intolerance, gastric

bypass, Helicobacter pylori infection, gastroparesis, celiac disease,

ulcerative colitis, Crohn’s disease, and atrophic gastritis can all

interfere with the absorption of LT4, thus affecting treatment efficacy

and patient outcomes (47, 48). In our study, ulcerative colitis was

identified in 1.23% of patients, while Helicobacter pylori infection was
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observed in 4.4%. Ulcerative colitis can significantly affect LT4

absorption, leading to an increased need for the medication in

hypothyroid patients. Studies have shown that ulcerative colitis

patients require approximately 26% higher LT4 doses compared to

controls to achieve similar TSH levels (47). This malabsorption may

persist even during clinical remission of UC. Various gastrointestinal

disorders, including inflammatory bowel diseases, can impede LT4

absorption (7, 49). The development of new oral formulations, such as

liquid LT4, may help overcome malabsorption issues in patients with

gastrointestinal disorders (50). Patients requiring unusually high LT4

doses should be evaluated for potential malabsorption conditions (51).

The LT4 absorption test can be useful in distinguishing between true

malabsorption and pseudomalabsorption (52). Additionally,

Ulcerative colitis may affect bile acid absorption, which could further

impact medication absorption (53). Our study also included a

subgroup analysis focused on pregnant women in the study cohort.

Pregnancy was associated with markedly higher LT4 requirements

(18.570 ± 2.938 mcg, p < 0.001), consistent with studies demonstrating

that thyroid hormone demand increases significantly during gestation

to maintain maternal and fetal euthyroidism (54, 55). This heightened

demand is driven by increased thyroid-binding globulin levels, hCG

stimulation of TSH receptors, and elevated peripheral thyroid

hormone metabolism (56). Our findings align with previous reports

indicating that 84–85% of hypothyroid women require LT4 dose

increases during pregnancy, typically within the first 5–7 weeks of

gestation (57). These results underscore the critical importance of early

LT4 dose adjustments, particularly in the first trimester, to maintain

optimal thyroid function. While trimester-specific TSH targets are

widely used, clinical approaches to screening and dose adjustment vary

across regions, particularly in Europe and Asia (58, 59).

In our study, we also assessed the effect of concurrent

medications along with LT4. These included calcium supplements

(10.14%), iron preparations (3.43%), magnesium salts (3.97%),

multivitamins (13.47%), proton pump inhibitors (PPIs) (7.19%),

alendronate (1.66%), potassium chloride (3.17%), ciprofloxacin

(0.21%), and zinc supplements (0.32%). Notably, all these

medications have been documented to potentially influence the

pharmacokinetics or dosage requirements of LT4. Calcium

supplements, for instance, may interfere with LT4 absorption

when administered simultaneously, whereas iron preparations can

bind to LT4 in the gastrointestinal tract, reducing its absorption

(60). Similarly, magnesium salts and PPIs are associated with

decreased LT4 absorption, potentially necessitating dosage

adjustments. Multivitamins containing iron or calcium, such as

alendronate, potassium chloride, and ciprofloxacin, may also affect

LT4 absorption. Zinc supplementation may also interfere with LT4

absorption, albeit to a lesser extent (61). Our findings are consistent

with the existing literature regarding the influence of these

medications on the daily dosage requirements of LT4, except

ciprofloxacin and zinc. However, ciprofloxacin and zinc did not

appear to significantly affect the daily LT4 dosage requirements in

our study. While these medications have been reported to interact

with LT4 in some contexts, our findings suggest that their impact on

LT4 dosage may be minimal or negligible within our study

population (62, 63).
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In our study, we found an influence of liver function (AST and

ALT levels) and serum albumin levels on LT4 dosage. These

parameters are of particular interest owing to their potential roles

in thyroid hormone metabolism and distribution within the body.

The liver plays a crucial role in the metabolism and clearance of

thyroid hormones, including LT4. Impaired liver function can affect

the synthesis of binding proteins such as TBG, which may in turn

influence the distribution and availability of circulating thyroid

hormones (64). Liver dysfunction can alter the metabolism of

medications and potentially affect LT4 pharmacokinetics.

Similarly, the serum albumin level is an important determinant of

thyroid hormone transport and distribution. Albumin serves as the

major carrier protein for thyroid hormones in the bloodstream,

facilitating their transport to target tissues. Changes in albumin

levels can affect the binding capacity of thyroid hormones and alter

their distribution and availability for cellular uptake (65).

Our study confirms the effectiveness of machine learning

models in predicting LT4 dosage with high accuracy, aligning

with previous research. Among the tested models, ensemble

methods such as Extra Trees Regressor (ETR) and Random

Forest demonstrated superior performance, with ETR achieving

the highest R² (0.87) and the lowest mean absolute error (MAE) in

the test set. These findings are consistent with prior studies where

XGBoost outperformed standard dosing guidelines by integrating a

broader range of clinical variables beyond BMI and age (66).

Additionally, our results highlight the significance of diverse

predictors, including pregnancy, comorbidities, and concomitant

medications, in determining LT4 requirements. This aligns with

Singh et al., who employed multivariable linear regression for LT4

dose prediction, achieving early euthyroidism in 68% of participants

(67, 68). Similar approaches were observed in the studies by Liu

et al. and Zaborek et al., where machine learning models

consistently outperformed conventional weight-based dosing

methods. Notably, Zaborek et al. identified Poisson regression as

the most accurate model among 13 machine learning algorithms

(46). Collectively, these findings suggest that integrating machine

learning into clinical practice can improve personalized LT4 dosing,

enhancing treatment outcomes for hypothyroid patients.

The machine learning-based LT4 dosing model developed in

this study offers a precise, data-driven approach to optimizing

hypothyroidism treatment. By integrating key clinical variables—

including BMI, age, sex, comorbidities, drug interactions, and

biochemical markers—our model outperforms traditional weight-

based dosing strategies, reducing variability and improving dose

accuracy. Feature selection ensured clinical relevance, with ETR

achieving the lowest MAE (9.4 [11.2, 7.7]) and highest R² (87.37%),

demonstrating superior predictive performance. The low MAE

highlights the model’s precision in capturing individual LT4

requirements, reducing the need for trial-and-error adjustments

and facilitating faster achievement of target TSH levels. This

approach could streamline clinical workflows, minimize

unnecessary follow-ups, and enhance treatment outcomes. The

model’s integration into clinical decision support systems or

electronic health records could provide real-time, personalized

dosing recommendations, improving efficiency in hypothyroidism
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management. Further validation in external cohorts and

prospective trials is needed to confirm its real-world applicability.

One limitation of this study is its retrospective design, which relies

on data collected from electronic medical records. Retrospective

studies are prone to inherent biases and limitations, such as

incomplete or missing data, variable data quality, and the inability

to establish causality. Additionally, this study did not account for

patient adherence to LT4 therapy, a critical factor influencing

treatment efficacy. Non-adherence to LT4 is a well-recognized issue

that can lead to fluctuations in thyroid hormone levels, suboptimal

symptom control, and potential misinterpretation of dosage

requirements. Variability in adherence may also contribute to

differences in biochemical parameters observed between pediatric

and adult patients. Future prospective studies incorporating

objective measures of adherence, such as pharmacy refill data or

serum LT4monitoring, along with long-term treatment outcomes and

quality-of-life assessments, are needed to refine LT4 dosing strategies

and optimize management for individuals with hypothyroidism.
5 Conclusions

In conclusion, we comprehensively examined both clinical and

non-clinical variables, uncovering significant relationships with

numerous factors, such as weight, sex, age, BMI, diastolic blood

pressure, comorbidities, food effect, drug-drug interactions, liver

function, serum albumin, and TSH levels. Machine learning models

were developed to predict LT4 dosage, with the Extra Trees Regressor

demonstrating the best performance (MAE: 9.4 [11.2, 7.7], R²:

87.37%), outperforming linear and other nonlinear models. BMI

was the strongest predictor of LT4 dosage, followed by comorbid

conditions and age. Additional significant factors included post-

radioiodine therapy, post-surgical hypothyroidism, drug-induced

hypothyroidism, and medication use. Correlation analysis

confirmed BMI (r = 0.86, p < 0.001) as the primary determinant.

Model residuals showed a near-normal distribution, and actual vs.

predicted dosage plots demonstrated high predictive accuracy. These

findings highlight the potential of machine learning in individualized

LT4 dose optimization, improving precision in hypothyroidism

management. Further validation is necessary for clinical application.
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