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Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
Objective: Skin fibrosis is a dermal lesion associated with inflammatory factors.

However, the exact causal relationship between circulating inflammatory

proteins (CIPs) and skin fibrosis remains unclear. To investigate this potential

association and mediated effect, Mendelian randomization (MR) and two-step

MR were used.

Methods: Summary statistics from genome-wide association studies (GWAS)

were extracted from the GWAS Catalog for CIPs, blood metabolites (BMs), and

skin fibrosis. Two-sample MR and reverse MR were conducted to determine the

effect of CIPs on skin fibrosis. Two-step MR was then performed to investigate

the role of BMs in mediating the effect of CIPs on skin fibrosis. Reverse MR

analysis was performed to confirm the unidirectional causality between CIPs and

BMs, as well as between BMs and skin fibrosis.

Results: Bidirectional Mendelian randomization revealed negative associations

between skin fibrosis and the levels of T-cell surface glycoprotein CD6 isoform

(odds ratio [OR] 0.670 [95% confidence interval [CI] 0.472, 0.951], p = 0.025),

Delta and Notch-like epidermal growth factor-related receptor (OR 0.779 [95%

CI 0.609, 0.998], p = 0.048), and Interleukin-10 receptor subunit beta (OR 0.541

[95% CI 0.332, 0.884], p = 0.014). There was a positive association between skin

fibrosis and levels of Fibroblast growth factor 21 (OR 2.276 [95% CI 1.064, 4.870],

p = 0.034). Two-step MR showed that Retinol (Vitamin A) to the linoleoyl-

arachidonoyl-glycerol ratio (bM 0.108 [95% CI 0.006, 0.210], p = 0.004) and the

Cholesterol to linoleoyl-arachidonoyl-glycerol ratio (bM 0.238 [95% CI 0.002,

0.474], p = 0.048) were identified as mediators, which showed evidence of the

mediated effect of the levels of Fibroblast growth factor 21 on Keloid through

these mediators.
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Conclusion: The study presented credible evidence of a causal association

between CIPs and skin fibrosis, with BMs potentially acting as a mediator in this

association. These findings offer new insights into early screening and prevention

of skin fibrosis.
KEYWORDS

circulating inflammatory protein, skin fibrosis, bidirectional Mendelian randomization,
mediation analysis, blood metabolite
1 Introduction

Skin fibrosis refers to a group of skin conditions where there is an

excessive deposition of connective tissue components in the dermis. It

can be caused by damage from burns, surgery, or trauma, which

disrupts the balance between extracellular matrix synthesis and

degradation, leading to disease. Skin fibrosis, including keloid and

hypertrophic scars, can cause a loss of physiological architecture and

skin malfunction, resulting in physical and psychological distress for

patients (1, 2). Keloid is a refractory skin fibrotic disease with a

recurrence rate of up to 45%. It is commonly considered a benign skin

tumor due to its aggressive proliferation, which can result in limited

movement or disfigurement (3, 4). Early assessment and accurate

treatment of diseases are crucial. However, our current understanding

of diseases is imperfect, and efficient and rapid diagnostic methods are

lacking. Therefore, it is necessary to deepen our knowledge and

explore new diagnosis, prevention, and intervention methods.

Circulating inflammatory proteins (CIPs) plays an important

role in many diseases. For example, IL-10 has been demonstrated to

be implicated in cerebral microcirculatory defects and cognitive

impairment associated with type 1 diabetes (5). High plasma levels

of MIP-1b and TNF-a were positively related to atherosclerotic

plaques with high inflammatory activity (6). Investigating the

correlation between CIPs and diseases is essential for clarifying

disease mechanisms and developing disease prevention and

treatment strategies (7). TGFB is known to play crucial roles in

the occurrence and development of skin fibrosis, as evidenced by

their increased content in fibrotic skin tissue (8). However, there are

no significant differences in serum levels of TGFB between patients

with skin fibrosis and healthy individuals (9). The causal

relationship between CIPs and skin fibrosis is still unclear.

Blood metabolite (BMs) is a small molecule of metabolic

reaction. Serum BMs levels are influenced by various factors, such

as genetics and diseases. Furthermore, they can affect diseases and

serve as a therapeutic target (10, 11). For example, branched-chain

amino acids were identified as insulin analogues. The high levels of

branched-chain amino acids could eventually lead to insulin

resistance and diabetes (12). Currently, researchers have found

that metabolites might be associated with skin fibrosis. For

example, butyrate is shown to improve skin fibrosis in mouse

models (13). Furthermore, a decrease in L-tryptophan was
02
identified in patients suffering from systemic sclerosis. The level

of L-tryptophan in these patients exhibited a negative correlation

with inflammatory markers, such as IL-6 (14). However, the causal

relationship remains unclear. Determining the causal role of BMs in

skin fibrosis can identify effective intervention points for therapies.

Genome-wide association studies (GWAS) contribute

significantly to our understanding of skin fibrosis in genetics (7).

With single nucleotide polymorphisms (SNPs) of GWAS, we can

performMendelian randomization (MR) analysis to infer a credible

causal relationship (15). As a widely used analytical method, MR

can help reduce bias and eliminate reverse causality. This is because

genetic variations are randomly assigned during meiosis and are

independent of environmental and other acquired factors (16).

Compared to traditional observational approaches, MR analysis

does not require unmeasured confounding between exposure and

outcome. Mediation analysis shares these strengths (17). MR

studies revealed a causal effect of CIPs on diseases, such as

osteoarthritis and colorectal cancer (18, 19). Currently, there is no

MR evidence to establish a causal association or mediated effect

between CIPs and skin fibrosis.

GWAS summary data from the GWAS Catalog were utilized to

perform MR and reverse MR analyses to examine the causal

relationship between CIPs and skin fibrosis. In addition, a two-step

MR (also referred to as network MR) analysis was conducted to

investigate the causal role of BMs in linking the effect of CIPs on skin

fibrosis. These findings may guide the exploration of mechanisms

and generate new ideas for reducing the risk of skin fibrosis.
2 Materials and methods

2.1 Design of study

Two-sample MR and inverse MR analyses were performed on

datasets from the GWAS catalog to determine the causal

relationship between CIPs (exposure), BMs (mediator), and skin

fibrosis (outcome) (Figure 1A). In step 1 of two-step of MR model,

we established the causal effect of CIPs (exposure) on BMs

(mediator) (Figure 1B). Then in step 2 of two-step MR model, we

established the causal effect of BMs (exposure) on skin fibrosis

(outcome) (Figure 1C). In the end, the mediated effect was
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calculated to determine the role of BMs in mediating the effect of

CIPs on skin fibrosis (20, 21).
2.2 Data preparation

The GWAS Catalog (GCST90274758–GCST90274848) was

used to extract summary statistics of CIPs traits, which

encompass 91 inflammation-related plasma proteins. All CIPs
Frontiers in Endocrinology 03
were listed in the “CIPs list” (Supplementary Table 1). The data

comprises 11 cohorts with a total of 14,824 participants of European

ancestry (7). Summary statistics of BMs traits, including 1,091

blood metabolites and 309 metabolite ratios, were extracted from

the GWAS catalog (GCST90199621-GCST90201020). The sample

size consists of 8,299 individuals of European ancestry (10). All BMs

were listed in the “BMs list” (Supplementary Table 1). The GWAS

summary statistics for skin fibrosis traits from the GWAS Catalog

(GCST90044522 & GCST90044521) include keloid scar and Scar
FIGURE 1

The design of the study. (A) The question is whether there is a causal role of BMs in mediating the effect of CIPs (exposure) on skin fibrosis
(outcome). The data on CIPs was extracted from the GWAS Catalog (GCST90274758–GCST90274848), the data on BMs was extracted from the
GWAS Catalog (GCST90199621–GCST90201020) and the data on skin fibrosis was extracted from the GWAS Catalog (GCST90044522 &
GCST90044521). (B) Step 1 of the two-step of MR model: establishing the causal effect of CIPs (exposure) on BMs (mediator). (C) Step 2 of the two-
step of MR model: establishing the causal effect of BMs (mediator) on skin fibrosis (outcome).
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conditions and fibrosis of skin (Figure 1A). GCST90044522

comprises 201 cases of European ancestry and 456,147 controls of

European ancestry, while GCST90044521 comprises 1,887 cases of

European ancestry and 454,461 controls of European ancestry (22).

All skin fibrosis traits were listed in the “Skin fibrosis list”

(Supplementary Table 1). A list of CIPs, BMs, and skin fibrosis

markers used for data extraction from GWAS in the study is also

presented in Supplementary Table 1.
2.3 SNPs selection

For each trait, only SNPs that showed a strong association (p < 5

× 10−7) were considered as instrumental variables (IVs). To avoid

weak IV bias, SNPs with an F-statistic < 10 were not defined as IVs.

Additionally, clumping was performed with the EUR population

reference (r2 < 0.01 and clump distance > 10000 kb) to eliminate

linkage disequilibrium (LD). SNPs related to confounders were also

excluded based on PhenoScanner V2. Finally, palindromic SNPs

were either harmonized or excluded using ‘TwoSampleMR’ R

package. After selection, the remaining SNPs were considered as

IVs for MR and reverse MR analyses (23–25).
Frontiers in Endocrinology 04
2.4 MR and reverse MR analyses

MR and reverse MR analyses between exposure and outcome,

between exposure and mediator, and between mediator and

outcome were performed by R (version 4.3.2) and R package

TwoSampleMR package (version 0.5.10).

Inverse variance-weighted (IVW), MR-Egger, weighted median,

simplemode, and weightedmodemethods were used to determine the

causal association. P-value > 5 × 10−2 showed statistically significant.

IVWwas considered the primary method because of providing a more

robust estimation (17). MR-Pleiotropy Residual Sum and Outlier

(MR-PRESSO) was utilized to remove outliers (26). In sensitivity

analysis, Cochran’s test was performed to assess heterogeneity while Q

statistic P-value > 5 × 10−2 showed no heterogeneity. MR-Egger test

was performed to assess horizontal pleiotropy while the P-value > 5 ×

10−2 showed no pleiotropy (27, 28). We assessed the horizontal

pleiotropy by a leave-one-out analysis (23).

First, we performed MR and reverse MR analyses between CIPs

and skin fibrosis to determine the causal effect of CIPs on skin

fibrosis, referred to as the total effect (b) (17, 21). The CIPs traits

with a causal association with skin fibrosis were used in step 1 of

two-step of MR model.
FIGURE 2

The causal association between CIPs and skin fibrosis. (A) The circle manhattan plot of the Keloid scar trait (GCST90044522) (threshold = 5 × 10−7).
(B) The manhattan plot of the Scar conditions and fibrosis of skin trait (GCST90044521) (threshold = 5 × 10−7). (C) Forest plot of casual effect
between CIPs and skin fibrosis.
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Due to the significant BMs traits, we conducted a two-sampleMR

analysis to identify the BMs traits that may be related to skin fibrosis.

These BMs traits were utilized in step 1 of two-step of MR model.

Then in step 1 of two-step ofMRmodel, we established the causal

effect of CIPs (exposure) on BMs (mediator) by MR and reverse MR

analyses (20, 21). The study referred to the effect as the b1 effect. In

step 2 of the two-step MR model, we used the BMs traits that have a

causal association with CIPs. We performed MR and reverse MR

analyses to determine the causal effect of BMs (mediator) on skin

fibrosis (outcome), which is referred to as the b2 effect.
In the end, the mediated effect (bM) was calculated by the product

of the coefficients method. The mediated effect (bM) = b – (b1 × b2).
3 Results

3.1 IVs selection

Due to a lack of SNPs (p < 5 × 10−8) associated with skin

fibrosis, we opted to extract SNPs with a P-value < 5 × 10−7 for

further analysis (Supplementary Table 2). A circular manhattan plot

was generated to display the chromosome positions and P-values of

SNPs associated with the Keloid scar trait. The manhattan plot

displayed the chromosome positions and P-value of SNPs

associated with Scar conditions and fibrosis of skin trait. The red

line represents the threshold line (p = 5 × 10−7) (Figures 2A, B).
3.2 Causal effects of the CIPs on
skin fibrosis

The results of MR and reverse MR analyses indicated that T-cell

surface glycoprotein CD6 isoform (CD6) levels were negatively

associated with Keloid (odds ratio [OR] 0.670 [95% confidence

interval [CI] 0.472, 0.951], p = 0.025). Fibroblast growth factor 21

(FGF21) levels were positively associated with Keloid (OR 2.276 [95%

CI 1.064, 4.870], p = 0.034). Delta and Notch-like epidermal growth

factor-related receptor (DNER) levels were negatively associated with

Scar conditions and fibrosis of skin (OR 0.779 [95% CI 0.609, 0.998], p

= 0.048). Interleukin-10 receptor subunit beta (IL1RB) levels were

negatively associated with Scar conditions and fibrosis of skin (OR

0.541 [95% CI 0.332, 0.884], p = 0.014) (Figure 2C). More details

could be found in Supplementary Table 3. A leave-one-out analysis,

forest plot, and scatter plot were performed to verify the credibility of

the results (Supplementary Figures S1-4).
3.3 Causal effects of the CIPs on BMs

There were 30 BMs potentially associated with keloid (IVW p <

5 × 10−2) and 19 BMs potentially associated with Scar conditions and

fibrosis of skin (IVW p < 5 × 10−2) (Figures 3A, B). More details could

be found in Supplementary Table 4. In step 1 of two-step of MR

model, we found that CD6 levels were negatively related to Carotenoid

levels (cryptoxanthin) (OR 0.942 [95% CI 0.892, 0.994]). FGF21 levels

were positively related with Indolebutyrate levels (OR 1.358 [95% CI
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1.121, 1.645]), 3-methylglutaconate levels (OR 1.278 [95% CI 1.113,

1.468]) and Cis-3,4-methyleneheptanoylglycine levels (OR 1.259 [95%

CI 1.093, 1.450]). FGF21 levels were negatively related with Carotene

diol (1) levels (OR 0.730 [95% CI 0.635, 0.840]), Retinol (Vitamin A)

to linoleoyl-arachidonoyl-glycerol ratio (OR 0.818 [95% CI 0.706,

0.948]) and Cholesterol to linoleoyl-arachidonoyl-glycerol ratio (OR

0.720 [95% CI 0.603, 0.861]). All the IVW P-values were < 5 × 10−2

(Figure 4A). DNER levels were negatively related to 4-

hydroxyphenylacetoylcarnitine levels (OR 0.878 [95% CI 0.779,

0.989]). IL10RB levels were positively related to X-23659 levels (OR

1.315 [95% CI 1.068, 1.619]) and N-acetylasparagine levels (OR 1.372

[95% CI 1.095, 1.719]). IL10RB levels were negatively related to N-

delta-acetylornithine levels (OR 0.692 [95% CI 0.555, 0.863]). All the

IVW P-values were < 5 × 10−2 (Figure 4B). More details could be

found in Supplementary Table 5.
3.4 Causal effects of the BMs on
skin fibrosis

In step 2 of two-step of MR model, Retinol (Vitamin A) to

linoleoyl-arachidonoyl-glycerol ratio was negatively related
FIGURE 3

BMs potentially associated with skin fibrosis. (A) BMs related to
keloid. (B) BMs related to Scar conditions and fibrosis of skin.
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to Keloid (OR 0.583 [95% CI 0.349, 0.976]). Cholesterol to

linoleoyl-arachidonoyl-glycerol ratio was negatively related

to Keloid (OR 0.483 [95% CI 0.243, 0.960]) (Figure 5A). 4-

hydroxyphenylacetoylcarnitine levels were negatively related to
Frontiers in Endocrinology 06
Scar conditions and fibrosis of skin (OR 0.774 [95% CI 0.613,

0.976]). X-23659 levels were positively related to Scar conditions

and fibrosis of skin (OR 1.283 [95% CI 1.007, 1.635]). N-

acetylasparagine levels were positively related to Scar conditions
FIGURE 4

The causal association between CIPs and BMs. (A) Forest plot of casual effect between Keloid scar related CIPs and BMs. (B) Forest plot of casual
effect between Scar conditions and fibrosis of skin related CIPs and BMs.
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and fibrosis of skin (OR 1.114 [95% CI 1.024, 1.212]). All P-values

were < 5 × 10−2 (Figure 5B). More details could be found in

Supplementary Table 6.
3.5 Mediation analysis

Using the product of coefficients method, we calculated the

indirect mediation effect based on the results of the two-step MR

model. FGF21 levels were positively associated with Keloid (OR

2.276 [95% CI 1.064, 4.870]). It was found that there is a negative

association between FGF21 levels and Retinol (Vitamin A) to

linoleoyl-arachidonoyl-glycerol ratio (OR 0.818 [95% CI 0.706,

0.948]). Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol

ratio was negatively related to Keloid (OR 0.583 [95% CI 0.349,

0.976]) (Figure 6A). It was found that there is a negative association

between FGF21 levels and Cholesterol to linoleoyl-arachidonoyl-

glycerol ratio (OR 0.720 [95% CI 0.603, 0.861]). Cholesterol to

linoleoyl-arachidonoyl-glycerol ratio was negatively related to

Keloid (OR 0.483 [95% CI 0.243, 0.960]) (Figure 6B). Then

mediated effect analysis showed evidence of the mediated effect of

FGF21 on Keloid through Retinol (Vitamin A) to linoleoyl-

arachidonoyl-glycerol ratio (bM 0.108 [95% CI 0.006, 0.210], p =

0.004) and Cholesterol to linoleoyl-arachidonoyl-glycerol ratio (bM
0.238 [95% CI 0.002, 0.474], p = 0.048) with a mediated proportion

of 13.1% and 29% of the total effect, respectively (Figures 6C, D).
Frontiers in Endocrinology 07
Frost plots were also exhibited for the other traits, but their

credible mediated effect and proportion could not be calculated

(Supplementary Figure S5).
4 Discussion

The results of MR analyses revealed a causal association

between CIPs and skin fibrosis. The levels of CD6, DNER, and

IL10RB were negatively related to skin fibrosis while FGF21 was

associated with an increased risk of skin fibrosis. According to

mediation analysis, we found the evidence of mediated effect of

FGF21 on skin fibrosis through Retinol (Vitamin A) to linoleoyl-

arachidonoyl-glycerol ratio and Cholesterol to linoleoyl-

arachidonoyl-glycerol ratio.

The role of inflammatory factor is crucial in the development of

many diseases and is often targeted for therapeutic intervention. For

example, the presence of ILR supports the maintenance of a CD8+ T

cell population that sustains anti-tumor immunity (29). CD6 was

identified as a therapeutic target of lupus nephritis (30). Changes in

the expression levels of inflammatory factors, such as TGFB, can be

detected in skin fibrotic tissues (8). Early diagnosis and treatment

help prevent irreversible sequelae, such as cutaneous and

subcutaneous atrophy. However, obtaining information for

prevention and early diagnosis without tissue sampling or

resection can be challenging. While CCL18 has been reported as a
FIGURE 5

The causal association between BMs and skin fibrosis. (A) Forest plot of casual effect between Keloid scar related BMs and Keloid scar. (B) Forest plot
of casual effect between Scar conditions and fibrosis of skin related BMs and Scar conditions and fibrosis of skin.
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biomarker of skin fibrosis as an inflammation-related plasma

protein, the investigation of CIPs in this area is still ongoing (9).

There is a lack of causal association between CIPs and skin fibrosis.

It is unclear whether CIPs is solely an index of skin fibrosis, or it can

be considered as a target for diagnosis and treatment. For example,

c-reactive protein (CRP) was considered as a biomarker of sepsis

and COVID-19 disease progression (31, 32). However, it may not

be appropriate to consider CRP as a therapeutic target for these

diseases. In the present study, it was demonstrated that CD6,

DNER, FGF21 and IL10RB exhibited a casual association with

skin fibrosis. This finding suggests that these CIPs could be

considered as potential therapeutic targets as well as biomarker.

The CD6 lymphocyte receptor has been implicated in psoriasis, a

chronic inflammatory skin disease (33). Targeting CD6 is an

effective and well-tolerated novel biological therapy in moderate
Frontiers in Endocrinology 08
to severe psoriasis (34). In addition, CD6 was reported to be able to

delay skin senescence induced by ultraviolet radiation b radiation

(35). As we know, skin fibrosis is a typical aging-related pathological

process (36). Modulating cellular senescence can inhibit fibrosis (37,

38). Further exploration of CD6 function provides insights into

novel targets for addressing skin fibrosis. FGF21 was reported to be

positively related to senescent cell accumulation at systemic and

cellular levels (39). Besides, FGF21 is upregulated in tissue and can

promote migration and differentiation of epidermal cells during

wound healing (40). The disorder of plasma FGF21 may have an

influence in disturbance of the tissue repair mechanism, which can

ultimately result in skin fibrosis. What’s more, IL10RB has been

demonstrated to limit liver fibrosis by inducing stellate cell

senescence upon binding to IL22 (41). IL10 inhibits autophagy in

hypertrophic scar fibroblasts via IL10-IL10R-STAT3 pathway
FIGURE 6

The causal association among CIPs, BMs and skin fibrosis. (A, B) Forest plot of casual effect among CIPs, BMs and keloid scar. (C, D) The effect and
causal pathways among CIPs, BMs and keloid scar.
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which is helpful for treating skin fibrosis (42). The function of

DNER is still unclear in fibrosis. These CIPs could be potential

therapeutic targets for preventing and diagnosing skin fibrosis early.

Improving our understanding of CIPs is expected to improve

patients’ quality of life and provide insights into novel targets for

addressing skin fibrosis.

Targeting CIPs may be a difficult task. We can focus on

substances that are easy to regulate to intervene in the effect of

CIPs on skin fibrosis. BMs is currently a focus and hotspot of

research as it plays a crucial role in both tumor and non-tumor

diseases (11, 43). BMs levels can be regulated by many factors, such

as diet and lifestyle (10). Given the reported correlation between

BMs and CIPs, regulating BMs may be a viable strategy (13, 14).

There is evidence of the mediated effect of CIPs on skin fibrosis

through BMs in our study. According to mediation analysis, both

Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol ratio and

Cholesterol to linoleoyl-arachidonoyl-glycerol ratio mediated the

effect of CIPs on skin fibrosis. The mediated effect of Retinol

(Vitamin A) to linoleoyl-arachidonoyl-glycerol ratio was 0.108,

and the mediated proportion was13.1%. In comparison, the

mediated effect of Cholesterol to linoleoyl-arachidonoyl-glycerol

ratio was 0.238 and the mediated proportion was 29%. Retinol has

been shown to promote various anti-aging benefits for the skin (44,

45). In addition, it has been documented that retinol has an

influence on the specification and differentiation of fibroblasts,

indicating an anti-fibrotic effect (46). Cholesterol is a vital skin

barrier lipid that plays a crucial role in maintaining skin

homeostasis. The impairment of the skin barrier and disruption

of skin homeostasis, which can lead to leaky epithelia and disease

(47, 48). A cholesterol deficiency can lead to skin damage which

may cause skin fibrosis (2, 49). It is important to maintain adequate

levels of cholesterol for healthy skin. However, excessive intake of

cholesterol can harm organs such as the liver and cardiovascular

system (50). Compared with cholesterol, it is a better choice to

promote the intake of retinol when intervening in the effect of

FGF21 on skin fibrosis through retinol. Concurrently, it is also

necessary to maintain the equilibrium of cholesterol levels within

the plasma. Moreover, a more profound understanding of the

interactions between the CIPs and BMs may facilitate the

development of more efficacious treatments.

However, there are some limitations in our study. Caution

should be exercised when interpreting these results as the study was

analyzed at the genetic level. As the study individuals were

predominantly of European ancestry, it is worth investigating

whether these results apply to other ethnic groups, despite the

large sample size (20). Furthermore, in the absence of a sufficiently

extensive CIP dataset, it becomes challenging to conduct analyses

encompassing all categories of CIPs such as CD8, CCL18 and CRP.

Consequently, the present study is unable to explore the casual

association between these CIPs and skin fibrosis, as well as whether

BMs act as a mediating role in it. Large MR analyses were conducted

on 1400 BMs traits, 91 CIPs traits, and two skin fibrosis traits. It is

difficult to perform Bonferroni correction to obtain statistically
Frontiers in Endocrinology 09
significant results. Therefore, caution should be exercised when

interpreting results with IVW-derived P values less than 5 × 10−2.
5 Conclusions

Skin fibrosis is a chronic dermatological condition characterized

by a disruption of skin homeostasis. Early clinical manifestations of

skin fibrosis are characterized by the expansion of sclerotic lesions.

Early screening and treatment can prevent extensive skin

involvement and avoid irreversible sequelae such as contractures

and severe atrophy. MR analyses were performed to ascertain the

causal association between the CIPs, CD6, FGF21, IL1RB, and

DNER, and skin fibrosis. The results suggested that CIPs could be

a potential target for skin fibrosis. Mediated effect analysis showed

evidence of the mediated effect of FGF21 on the skin fibrosis

through Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol

ratio and Cholesterol to linoleoyl-arachidonoyl-glycerol ratio. The

analysis showed that BMs mediated the effect of CIPs on

skin fibrosis.

It is essential to investigate the role of specific CIPs in

dermatological conditions for precise and personalized treatments.

Compare with tissue sampling or resection, the level of

inflammation-related plasma protein could be detected in a rapid

and efficient manner for early screening and diagnosis. Besides, the

targeting of both specific CIPs and BMs may provide novel

therapeutic strategies for patients. By detecting the level of the

specific CIPs, it is possible to evaluate the effect of treatment and

modify the therapeutic strategy. Improving the understanding of the

impact of CIPs on skin fibrosis has the potential to improve patients’

quality of life and facilitate the development of innovative strategies

for skin fibrosis.
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