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Ultrasonic radiomics in
predicting pathologic type for
thyroid cancer: a preliminary
study using radiomics features
for predicting medullary
thyroid carcinoma
Dai Zhang1,2,3,4†, Fan Yang1,2,3,4†, Wenjing Hou1,2,3,4, Ying Wang1,2,3,4,
Jiali Mu1,2,3,4, Hailing Wang1,2,3,4 and Xi Wei1,2,3,4*

1Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer
Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China, 2Tianjin’s Clinical
Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,
3State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin
Medical University Cancer Institute & Hospital, Tianjin, China, 4Key Laboratory of Cancer Prevention
and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
Introduction: Medullary thyroid carcinoma (MTC) is aggressive and difficult to

distinguish from papillary thyroid carcinoma (PTC) using traditional ultrasound.

Objective to establish a standard-based ultrasound imaging model for

preoperative differentiation of MTC from PTC.

Methods: A retrospective study was conducted on the case data of 213 thyroid

cancer patients (82 MTC, 90 lesions; 131 PTC, 135 lesions) from the Department of

Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer

Institute and Hospital. We constructed clinical model, radiomics model and

comprehensive model by executing machine learning algorithms based on

baseline clinical, pathological characteristics and ultrasound image data, respectively.

Results: The study showed that the comprehensive model observed the highest

diagnostic efficacy in differentiating MTC from PTC with AUC, sensitivity,

specificity, positive predictive value, negative predictive value and accuracy of

0.93, 0.88, 0.82, 0.77, 0.91, 85.8%. Delong test results showed that the

comprehensive model was significantly better than the clinical model (Z=-

3.791, P<0.001) and the radiomics model (Z=-2.017, P=0.044). Calibration

curves indicated the comprehensive model and the radiomics model exhibited

better stability than the clinical model. Decision curves analysis (DCA)

demonstrated that the comprehensive model had the highest clinical net benefit.
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Discussions: Radiomics model is effective in identifying MTC and PTC

preoperatively, and the comprehensive model is better. This approach can aid

in identifying the pathologic types of thyroid nodule before clinical operation,

supporting personalized medicine in the decision-making process.
KEYWORDS

ultrasound, medullary thyroid carcinoma, papillary thyroid carcinoma, radiomics,
personalized medicine
1 Introduction

Thyroid cancer has been reported to account for the 9th highest

incidence of all malignant tumors worldwide (1). Among these

cases, the majority are papillary thyroid carcinomas (PTCs) (2).

Although PTC is generally a low-risk tumor with a good prognosis,

some patients may choose to undergo active surveillance. However,

this approach is not suitable for patients with medullary thyroid

carcinomas (MTC). MTC originates from parafollicular C cells. It is

an aggressive thyroid malignancy with neuroendocrine features,

accounting for 1-2% of all thyroid cancers but contributing to 8-

13% of thyroid cancer-related deaths (3, 4).

Ultrasound is a valuable tool for detecting and diagnosing

thyroid disorders, particularly thyroid nodules. The American

College of Radiology (ACR) 2017 edition of the TI-RADS grading

system (2017-ACR-TI-RADS) has been widely recognized for its

ability to predict malignancy in thyroid nodules, though most

studies have primarily focused on PTC (5–10). Some

organizations have found that the ACR TI-RADS classification

remains valid for malignant risk management in MTC, but it is

less sensitive and less accurate than for PTC (11, 12). Therefore, it is

crucial for clinicians and patients to differentiate MTC from PTC to

facilitate early diagnosis and treatment of MTC, reduce mortality,

and minimize unnecessary surgical interventions.

Radiomics refers to the high dimension, automated extraction of

quantitative features frommedical images that are not recognizable to

the human eye, mining high-dimensional data to capture intra-tumor

heterogeneity (13). Studies have been published on the application of

radiomics in differentiating benign and malignant thyroid nodules
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and preoperatively predicting cervical lymph node metastasis in

thyroid cancers (14, 15). However, studies on the preoperative

differentiation of MTC from PTC based on radiomics are rarely

reported. Therefore, this study aims to construct a clinical model, a

radiomics model, and a comprehensive model to identify MTC and

PTC preoperatively and to investigate the clinical value of

these models.
2 Materials and methods

2.1 Study population

Clinical and ultrasound imaging data of patients diagnosed with

MTC and PTC, confirmed by surgical pathology, were

retrospectively collected from June 2018 to June 2022. The MTC

cases were consecutively selected, while the clinical data of patients

with PTC during the same period were randomly chosen.

Inclusion criteria were as follows: (1) Patients who underwent

routine ultrasound examination within 1 week before surgery, with

standardized image retention, relevant imaging data, and diagnostic

results available. (2) Patients who visited our hospital and

underwent initial thyroid surgery. (3) Complete postoperative

pathology and immunohistochemistry results were available. (4)

No history of other tumors.

Exclusion criteria were defined as follows: (1) Poor quality of

ultrasound images affecting image segmentation and feature

extraction. (2) Patients who had undergone interventional

treatments, including radiofrequency ablation or microwave

intervention, or had isotope radiotherapy and radiotherapy to the

head and neck, prior to the examination. (3) Patients with

incomplete clinical information.

A total of 225 lesions from 213 eligible patients were ultimately

included in the study. The flowchart of this study is shown in

Figure 1. Among these, 82 patients had MTC, with a total of 90

lesions, consisting of 41 males and 41 females, with a mean age of

47.04 ± 12.94 years. Additionally, there were 131 patients with PTC,

comprising 135 lesions, including 29 males and 102 females, with a

mean age of 41.9 ± 11.68 years.

The Ethics Committee approved this study, and the

requirement for patients’ informed consent was waived.
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2.2 Instruments and methods

2.2.1 Ultrasonographic methods and
image analysis

A Toshiba Aplio500, Philips EPIQ5 and Philips IU22 diagnostic

ultrasound equipment were utilized during the examinations. The

corresponding probe models used were PVT-375BT, C5-1, and C5-

1, with frequency ranges of 2.5 to 7.0 MHz, 1.0 to 5.0 MHz, and 1.0

to 5.0 MHz, respectively. The patient was placed in the supine

position, and the head was tilted to fully expose the location of the

thyroid gland. A single 2D image of the largest cross-section of the

tumor was retained.

Basic clinical information of the patients was recorded,

including gender, age, and clinical symptoms, such as neck mass,

neck discomfort, and hoarseness. Furthermore, a comprehensive

record was maintained detailing the patient’s family history
Frontiers in Endocrinology 03
concerning thyroid cancer, their past history of Hashimoto’s

thyroiditis (HT), along with the occurrence of extrathyroidal

extension (ETE), lymph node metastasis, and the specific TNM

staging of the tumor. Ultrasound imaging findings were

documented and evaluated by three radiologists with 5-10 years

of experience in thyroid ultrasonography. The findings included the

location, size, composition, margin, echogenicity, aspect ratio,

calcification, and blood flow. Among these factors, blood flow

assessment includes intra-lesional blood flow testing (CDFI),

vascular distribution, and the Adler grading system. Vascular

distribution: Type I: no blood flow detected; Type II: blood flow

detected within the nodule; Type III: blood flow detected at the

periphery of the nodule; Type IV: blood flow detected both within

and at the periphery of the nodule (16). Blood flow grading was

assessed using the Adler semiquantitative method as follows (17):

Grade 0 indicates no blood flow in the lesion; Grade 1 shows 1-2
FIGURE 1

Project flowchart.
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punctate or rod-shaped vessels in the lesion; Grade 2 shows 3-4

punctate vessels or a distinct vessel that may be close to or longer

than the radius of the lesion; Grade 3 displays more than 5 punctate

vessels or two longer vessels in the lesion.

2.2.2 Image segmentation and data
pre-processing

A 2D image of the largest cross-section tumor was selected for

import into the ITK-SNAP software (version 4.0, www.itksnap.org).

Initially, a senior radiologist with 10 years of experience

(radiologist 1) outlined the edge of the lesion and identified the

region of interest (ROI) as shown in Figure 2. After 4 weeks, 2D

images of 30 randomly selected patients were outlined again by

radiologist 1. In parallel, radiologist 2, with 15 years of experience,

sketched the ROIs from 2D images of the above 30 patients as

described above. Notably, neither radiologist was aware of the

patient ’s pathology to ensure an unbiased assessment.

Additionally, we pre-processed the images before extracting the

features because there are differences in the settings and acquisition

parameters of ultrasound equipment from different brands, which

can affect the final prediction results. This preprocessing included

gray-scale normalization, discretization, and resampling of the

region of interest (ROI).

2.2.3 Radiomics feature extraction
The Pyradiomics module in Python 3.8.7 was utilized to extract

features. First, the intraclass correlation coefficient (ICC) was

computed to assess intra-observer and inter-observer consistency.

Features with an ICC > 0.9 both within and between groups were

retained. Next, any feature with zero variance was removed.

Subsequently, the maximum correlation minimum redundancy

algorithm (mRMR) was applied to select features with the highest

correlation and the lowest redundancy. The variance inflation factor
Frontiers in Endocrinology 04
(VIF) was then calculated to evaluate the collinearity between the

ultrasound features, and features with a correlation coefficient < 0.7

were selected. Finally, radiomics features with high robustness

were obtained.

2.2.4 Model building
Building machine learning models using the sklearn module in

Python 3.8.7.

The clinical model was based on various parameters extracted

from clinical baseline data, pathological features, and ultrasound

characteristics. Clinical indicators whose differences were

statistically significant in univariate analyses were included in

multivariate logistic regression analyses to screen for independent

predictors that differentiated between pathologic types of thyroid

cancer in order to construct the clinical model.

Based on the selected optimal radiomic feature set, four

radiomic models were constructed using Multilayer Perceptron

(MLP), Support Vector Machine (SVM), Random Forest (RF),

and XGBoost algorithms, respectively. Patients were divided into

a training group and a validation group in a 7:3 ratio using stratified

random sampling. To reduce overfitting, ten-fold cross-validation

was performed on each model. In order to optimize the predictive

performance of the models, a grid search method was used to fine-

tune the model parameters.

ROC curves were plotted to compare the area under the curve

(AUC) of the four radiomics models described above. The highest

performing radiomics model was selected to be combined with clinical

independent predictors to construct a comprehensive model.

2.2.5 Statistical methods
Statistical analysis was performed using Python 3.8.7, R 4.2.2,

and SPSS 26.0. Continuous variables were presented as mean ±

standard deviation, while categorical variables were presented as
FIGURE 2

(A, B) MTC and PTC original 2D image; (C, D) MTC and PTC region of interest (ROI) segmentation image.
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frequencies with percentages. The comparison between the two

groups was made using the two-independent sample t-test. The c2
test was employed to compare categorical variables between the

two groups.

The receiver operating characteristic (ROC) curve was utilized

to evaluate the ability of the clinical model, radiomics model, and

comprehensive model in distinguishing between MTC and PTC.

Additionally, the area under the ROC curve (AUC), sensitivity,

specificity, positive predictive value, negative predictive value and

accuracy based on these models were calculated. The AUC values of

different models were compared using the Delong test.

Calibration curves were applied to evaluate the performance of

the models. Furthermore, clinical decision curves analysis (DCA)

was utilized to assess the clinical utility of the three models.

A significance level of P < 0.05 was considered statistically significant.
Frontiers in Endocrinology 05
3 Results

3.1 Comparison of baseline clinical,
pathologic, and ultrasonographic features
of MTC and PTC

Table 1 shows that among 213 patients with thyroid cancer,

there were statistically significant differences between MTC and

PTC in terms of gender, age, clinical symptoms, past history of HT,

and tumor TNM stage (all P < 0.05). The differences in family

history of thyroid cancer, ETE and lymph node metastasis between

the two groups were not statistically significant (all P > 0.05).

As shown in Table 2, there were statistically significant

differences between the ultrasound characteristics of MTC and

PTC in terms of lesion size, composition, echogenicity, and
TABLE 1 Univariate analysis of baseline clinical and pathological characteristics (n).

Baseline information MTC
(n=82)

PTC
(n=131)

c2/t P

gender 17.745 0.000

male 41 (50%) 29 (22.1%)

female 41 (50%) 102 (77.9%)

age 47.04 ± 12.94 (20~72) 41.9 ± 11.68 (15~74) -2.925 0.004

symptoms 5.616 0.018

Yes 9 (11%) 3 (2.3%)

None 73 (89%) 128 (97.7%)

family history of thyroid cancer 0.000 0.998

Yes 5 (6.1%) 8 (6.1%)

None 77 (93.9%) 123 (93.9%)

HT 30.378 0.000

Yes 7 (8.5%) 58 (44.3%)

None 75 (91.5%) 73 (55.7%)

ETE 1.779 0.182

Yes 44 (53.7%) 58 (44.3%)

None 38 (46.3%) 73 (55.7%)

LN metastasis 0.066 0.798

Yes 48 (58.5%) 79 (60.3%)

None 34 (41.5%) 52 (39.7%)

TNM staging 23.270 0.000

T1N0M0 24 (29.3%) 44 (33.6%)

T1N1M0 22 (26.8%) 55 (42.0%)

T2N0M0 10 (12.2%) 8 (6.1%)

T2N1M0 13 (15.9%) 23 (17.6%)

T3N1M0 13 (15.9%) 1 (0.8%)
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margins (all P < 0.05). However, no statistically significant

differences were observed in location, aspect ratio, calcification

and blood flow (all P > 0.05)

Data with P < 0.05 in univariate analysis were included in a

multivariate logistic regression model to determine the independent

factors affecting the differentiation between MTC and PTC.

Ultimately, the study found that the patient’s gender, symptoms,
Frontiers in Endocrinology 06
TNM staging, previous history of HT, as well as the margin and

echogenicity of the lesion were independent factors influencing the

differentiation between the two (all P < 0.05), as shown in Table 3.
3.2 Radiomics feature selection

The Pyradiomics software package was utilized to select 2D

images of the maximum tumor cross-section, from which a total of

873 features were extracted. After performing dimensionality

reduction using regression, 16 radiomics features were retained.

These features consist of 5 first-order features (Firstorder), 3 Shape

features (Shape), 2 gray level run length matrices (GLRLM), 3 gray

level size zone matrices (GLSZM), and 3 gray level dependence

matrices (GLDM). The Spearman correlation heatmap of each

radiomics feature was depicted in Figure 3.
3.3 Modeling and predicting
diagnostic efficacy

Figure 4 shows the ROC curves for the radiomics models

constructed using the four machine learning algorithms. In total,

we used four machine learning algorithms to develop radiomics

models. In the training set, the RF and XGboost algorithm models

exhibited overfitting with an AUC of 1.000, making these two

algorithm models unsuitable for continued use in this study.

Compared to the MLP algorithmic model, the SVM algorithmic

model showed a higher AUC in the training set, with an AUC of

0.96 and 95% CI of 0.93-0.99. Therefore, the SVM algorithm model

was ultimately selected as the radiomics model for the validation set,

and we proceeded to the next phase of the study to construct a

comprehensive model.

Ultimately, three models, namely a clinical model, a radiomics

model, and a comprehensive model were constructed based on

baseline clinical, pathologic, ultrasonographic data and radiomics

features. The final test results of these models are shown in Table 4.

Figure 5 illustrates the performance of the three models. The

results of the Delong test indicated that the comprehensive model

had a significant advantage in diagnostic performance, with a

larger area under the ROC curve compared to both the radiomics

model (Z = -2.017, P = 0.044) and the clinical model (Z = -3.719,

P < 0.001), and these differences were statistically significant.

However, there was no statistically significant difference in the

area under the ROC curve when comparing the radiomics model to

the clinical model (Z = -1.712, P = 0.087).

In addition, the calibration curves and decision curves for the

three models are shown in Figures 6 and 7, respectively.
4 Discussion

MTC, a malignant neuroendocrine tumor, has a much lower

incidence compared to PTC. Over the years, there has been rapid

progress in both basic and clinical research on MTC, leading to a

significant increase in our understanding of the disease (18, 19).
TABLE 2 Univariate analysis of ultrasound characteristics (n).

Ultrasound
sonogram

MTC
(n=90)

PTC
(n=135)

c2/t P

size (cm) 2.13 ± 1.49
(0.43-6.3)

1.52 ± 0.78
(0.45-4.21)

3.608 0.000

location 0.427 0.514

left 48 (53.3%) 66 (48.9%)

right 42 (46.7%) 69 (51.1%)

margin 35.371 0.000

smooth 31 (34.4%) 6 (4.4%)

rough 59 (65.6%) 129 (95.6%)

echogenicity 17.104 0.000

hypoecho 70 (77.8%) 68 (50.4%)

extremely- hypoecho 20 (22.2%) 67 (49.6%)

calcification 2.020 0.155

Yes 74 (82.2%) 120 (88.9%)

None 16 (17.8%) 15 (11.1%)

composition 4.823 0.028

solid 85 (94.4%) 134 (99.3%)

cystic-solid 5 (5.6%) 1 (0.7%)

CDFI 0.865 0.352

Yes 53 (58.9%) 71 (52.6%)

None 37 (41.1%) 64 (47.4%)

Blood
vessel distribution

1.532 0.675

Type I 37 (41.1%) 64 (47.4%)

Type II 6 (6.7%) 7 (5.2%)

Type III 10 (11.1%) 10 (7.4%)

Type IV 37 (41.4%) 54 (40%)

Adler grade 1.881 0.597

0 37 (41.1%) 64 (47.4%)

1 5 (5.6%) 6 (4.4%)

2 5 (5.6%) 11 (8.1%)

3 43 (47.8%) 54 (40%)

aspect ratio 3.840 0.050

Yes 38 (42.2%) 75 (55.6%)

No 52 (57.8%) 60 (44.4%)
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Ultrasound is considered the most valuable imaging modality for

assessing the risk of malignancy in thyroid nodules. However, some

MTC and PTC cases share significant similarities in ultrasound

imaging presentations. This limitation can be overcome by

leveraging radiomics, which allows for the quantitative extraction

of features from medical images, enabling the identification of

features that are not discernible to the naked eye.

By accurately distinguishing between MTC and PTC before

surgery, radiomics can greatly assist clinicians in selecting the

optimal treatment plan, thereby promoting individualized and

targeted treatment strategies (20, 21).

In this study, we constructed a clinical model based on patients’

clinical baseline data, pathological information and ultrasonic

features to predict the pathologic type of thyroid cancer before

surgery. The sensitivity and accuracy of this model were found to be

0.85 and 77.8%, respectively. The findings suggested that patient

gender, symptoms, past history of HT, TNM staging, lesion margins

and echogenicity are pivotal in distinguishing MTC from PTC.

Studies have shown that the incidence of MTC was relatively

comparable in males and females, while PTC was more prevalent in

females (P < 0.001). Certain studies have demonstrated that a

greater proportion of sporadic MTC patients are female, whereas

familial MTC appears to be more frequently inherited in male

patients (19). Numerous studies have proven a direct correlation

between the expression of estrogen receptor alpha (ERa) in females

and the occurrence of MTC, thus explaining the elevated incidence

of PTC in the female population (22).

Additionally, in contrast to PTC, MTC is often associated with

distressing symptoms such as hoarseness, neck pain, or neck

masses, which is consistent with previous research (23).

We found that patients with PTC were more likely to have a

past history of HT (P < 0.001). Several studies have demonstrated

that patients with PTC have a higher risk of coexisting with

autoimmune thyroid disorders (especially HT) (24). HT patients
Frontiers in Endocrinology 07
often have elevated serum levels of thyroglobulin antibodies (TgAb)

and thyroid peroxidase antibodies (TPOAb). These antibodies not

only induce immune-mediated damage to the thyroid tissue, but

may also promote the progression and metastasis of PTC.

Furthermore, studies have indicated that heightened levels of

TPOAb and TgAb may be key factors influencing the onset and

progression of PTC (24).

We also found that the TNM staging of MTC patients was

generally higher than that of PTC patients (all P< 0.05). This may be

related to factors such as the biological characteristics, disease

progression, and timing of diagnosis and treatment of the two

thyroid cancers (25). In general, MTC is more aggressive and

malignant, and may progress faster than PTC, all of which may

contribute to higher TNM staging for MTC patients.

In our study, 34.4% of MTC cases exhibited the characteristic of

smooth edges, a proportion significantly higher than the 4.4% observed

in PTC cases, and this observation is consistent with the findings of

other studies (26). These findings suggest that MTC may present

ultrasound features similar to those of benign thyroid nodules.

Hypoechoic appearance is a common ultrasonic feature of

thyroid malignancies (27). In our study, all lesions were

hypoechoic or extremely hypoechoic, while PTC was more likely

to be extremely hypoechoic (lower than the anterior cervical

muscle). This distinction in echo patterns may serve as one of the

characteristics for differentiating PTC from MTC.

However, in other aspects, MTC did not show significant

differences compared to PTC, indicating that there is some

overlap in the sonogram performance of the two pathologic types.

Tumor inhomogeneity in conventional ultrasound sonograms

can potentially indicate intra-tumor heterogeneity, but this feature is

challenging for human eyes to discern. Therefore, this study employs

machine learning techniques to identify images, screen features, and

express the heterogeneity within the tumor, subsequently predicting

the pathological types of thyroid nodule (28).
TABLE 3 Multivariate Logistic regression analysis of clinical, pathological, and ultrasound characteristics.

Variable B value standard error Wald c2 P OR (95%CI)

gender 1.830 0.417 19.456 0.000 6.289 (2.778-14.239)

age 0.017 0.017 1.070 0.301 1.017 (0.985-1.051)

symptoms -2.194 0.981 5.002 0.025 0.111 (0.016-0.762)

HT 2.209 0.557 15.712 0.000 9.108 (3.055-27.152)

TNM staging 6.140 0.029

TNM staging (1) -4.821 2.216 4.734 0.030 0.008 (0.000-0.620)

TNM staging (2) -5.043 2.152 5.491 0.019 0.006 (0.000-0.438)

TNM staging (3) -4.102 1.847 4.933 0.026 0.017 (0.000-0.618)

TNM staging (4) -3.760 1.830 4.223 0.040 0.023 (0.001-0.840)

size -0.550 0.431 1.624 0.203 0.577 (0.248-1.344)

composition 1.190 2.040 0.340 0.560 3.287 (0.060-179.365)

margin -2.245 0.686 10.709 0.001 0.106 (0.028-0.406)

echogenicity 1.239 0.413 9.012 0.003 3.453 (1.538-7.755)
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FIGURE 4

ROC curve and area under the curve (AUC) of four machine learning models.
FIGURE 3

Correlation heat map of MTC and PTC ultrasound-radiomics features. Color indicates correlation, and the darker the color, the higher the
correlation. Red indicates a positive correlation and blue indicates a negative correlation.
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In this study, a total of 873 radiomics features were extracted

by selecting the 2D images of the largest cross-section of the tumor,

and 16 highly robust features were retained after dimensionality

reduction. These features included 5 first-order features, 3 shape

features, 2 GLRLM features, 3 GLSZM features, and 3 GLDM

features. The first-order features are based on the pixel gray

distribution of the original image and the image after various

filters. The related feature had original first order, original

first order skewness, exponential_firstorder_10Percentile,

logarithm_firstorder_90Percentile, and square root first-order

maximum. The results of this study suggest that PTC was more

widely distributed than MTC, and the asymmetry was

more significant.

Shape features mainly describe the shape of the lesion and its

similarity to sphericity. The relevant features of this study were

original shape elongation, original shape minor axis length, and

original shape sphericity. The results showed that PTC had a more

irregular morphology and larger elongation compared to MTC.

This may be related to the characteristics of PTC. Smaller PTC often

displays morphological characteristics with aspect ratios > 1. With

the growth of PTC, its anterior and posterior diameters are limited

by the thyroid capsule, but it can grow in other directions, including

outward growth. As a result, PTC had a more irregular morphology

than MTC.

Texture features are visual features that reflect homogeneity in

images. Although both MTC and PTC are malignant tumors, they
Frontiers in Endocrinology 09
have different origins, compositions, internal roughness and gray

distributions of nodules. However, these differences are not easily

detected by the naked eye and can be identified through texture

features, which are not influenced by subjective factors (29). This

study selected eight texture characteristics, including gradient
FIGURE 5

ROC curve and area under the curve (AUC) of the three models.
FIGURE 6

Calibration curves of the three models. The closer to the dotted line,
the better the stability of the model.
TABLE 4 The clinical effectiveness of three models in differentiating MTC from PTC.

AUC 95%CI Sensitivity Specificity Positive predictive
value

Negative predictive
value

Accuracy

Clinical model 0.83 0.78-0.89 0.85 0.67 0.64 0.87 77.8%

Radiomics model 0.90 0.85-0.94 0.93 0.71 0.69 0.96 84.4%

Comprehensive
model

0.93 0.90-0.97 0.88 0.82 0.77 0.91 85.8%
FIGURE 7

Decision curves of the three models. Within the threshold range of
0.0 to 1.0, the comprehensive mode has the best clinical net
benefit, followed by the omics model, and the clinical model is
the worst.
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GLSZM large area high gray level emphasis, gradient GLSZM size

zone non-uniformity, gradient GLSZM zone entropy, original GLDM

small dependence low gray level emphasis, gradient GLDM small

dependence high gray level emphasis, wavelet – LH GLDM

dependence variance, original GLRLM run variance, and square

root GLRLM long run high gray level emphasis. In this study, the

number of texture features was the largest, indicating that the internal

structure and heterogeneity of the tumor were closely related to the

pathological classification of nodules, and PTC exhibited rougher

texture and higher heterogeneity than MTC (30, 31).

In this study, we chose the ten-fold cross-validation method,

which divides the dataset into ten subsets and ensures that each subset

has the opportunity to be used as both a training set and a test set,

resulting in more reliable model performance. This rigorous validation

approach helped minimize the variance of performance estimates and

provided a comprehensive understanding of the model’s ability to

generalize over unseen data, thereby reducing the risk of overfitting.

Additionally, we utilized four machine learning algorithms to

construct the radiomics model, and ultimately selected SVM as the

optimal classifier for inclusion in the experiment. SVM classifier

demonstrates numerous unique advantages in handling small

sample sizes, nonlinear patterns, and high-dimensional pattern

recognition, making it the optimal choice for preoperative

identification of MTC and PTC.

The results of the present study demonstrated that the

comprehensive model had higher diagnostic validity compared with

the clinical and radiomics models, which is consistent with previous

findings (32–34). The design of the comprehensive model capitalizes on

the strengths of the two separate models, resulting in higher specificity,

negative predictive value, accuracy, and AUC than the separate models.

Statistically significant differences were noted when comparing the

comprehensive model with the clinical model (Z=-3.791, P<0.001)

and the radiomics model (Z=-2.017, P=0.044). However, no

statistically significant difference was found when comparing the

clinical model with the radiomics model (Z=-1.712, P=0.087).

Moreover, calibration curves demonstrated that the

comprehensive model and the radiomics model exhibited better

stability than the clinical model. DCA results revealed that the

comprehensive model provided greater net benefit in preoperative

prediction of thyroid nodule pathology type within the threshold

range of 0.0 to 1.0, and its advantages were more pronounced.

Recently, some researchers have proposed that machine learning-

based lateral cervical lymph node metastasis (LLNM) prediction models

have demonstrated a good prediction performance in MTC patients

(35). This study used a larger sample size and combined clinical and

ultrasound data, demonstrated a good discriminatory ability in

predicting LLNM in patients with MTC, especially in predicting

occult LLNM (35). Another investigator developed and validated a

predictive model capable of predicting the risk of distant metastasis

(DM) early after MTC (36). Patient age, surgical approach, T-stage and

N-stage were found to be independent risk factors that are associated

with the risk of early DM after MTC, and the developed prediction

model demonstrated good discriminatory ability in the prediction of the

risk of early DM after MTC, and was able to efficiently screen out high-

risk patients (36). However, the machine models constructed in these

two studies only incorporated textual information from patients’ clinical
Frontiers in Endocrinology 10
baseline, pathology, and ultrasound image data, and did not perform

machine learning tasks such as reading and analyzing image images for

MTC and extracting image histology features.

There are some limitations to this study: (1) This was a single-

agency retrospective study, which may introduce bias in the results.

A prospective multi-center study could be conducted to further

validate the stability of the findings. (2) The images used in this

study were obtained from three different ultrasound instruments of

various brands and models, which may lead to image heterogeneity.

(3) Because the possibility of MTC was not considered

preoperatively in some patients, these cases did not undergo

preoperative serum calcitonin test. The aim of this study was to

investigate the difference between PTC and MTC without

considering the effect of serum calcitonin. Moreover, there were

relatively few MTC cases, and no stratified analysis based on nodule

size was performed in this study. Future studies will collect more

cases, incorporate preoperative serum calcitonin indicators into

clinical models, and stratify analysis based on nodule size.

5 Conclusion

Radiomics allows for the quantitative analysis of tumors by

extracting high dimensional features from images that are difficult

to discern with the naked eye, thereby paving the way for accurate

cancer diagnosis. In this study, we successfully developed and

validated a radiomics model to differentiate MTC from PTC,

providing a more objective and informative approach to reflect

the internal heterogeneity of the lesion. This advancement is critical

in assisting physicians in making optimal management decisions in

the era of personalized medicine.
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