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Introduction: Optical coherence tomography angiography (OCTA), a

noninvasive imaging technique, is increasingly used in managing ophthalmic

diseases like diabetic retinopathy (DR). This review examines OCTA’s imaging

principles, its utility in detecting DR lesions, and its diagnostic advantages over

fundus fluorescein angiography (FFA).

Methods: We systematically analyzed 75 articles (2015–2024) from the Web of

Science Core Collection, focusing on OCTA’s technical principles, clinical

applications in DR diagnosis, and its use in diabetes mellitus (DM) without DR

and prediabetes. The use of artificial intelligence (AI) in OCTA image analysis for

DR severity evaluation was investigated.

Results: OCTA effectively identifies DR lesions and detects early vascular

abnormalities in DM and prediabetes, surpassing FFA in noninvasiveness and

resolution. AI integration enhances OCTA’s capability to diagnose, evaluate, and

predict DR progression.

Discussion: OCTA offers significant clinical value in early DR detection and

monitoring. Its synergy with AI holds promise for refining diagnostic precision

and expanding predictive applications, positioning OCTA as a transformative tool

in future ophthalmic practice.
KEYWORDS

optical coherence tomography angiography, diabetic retinopathy, grading, lesion
recognition, artificial intelligence
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1 Background

Optical coherence tomography angiography (OCTA) is a

noninvasive imaging technique that captures detailed images of

the retinal and choroidal microvasculature. This method exploits

the reflectivity of laser light from the surface of moving red

blood cells, Although OCTA cannot directly display the

vascular structures, it can detect the presence of blood flow in

different regions and layers of the retina (1) Optical coherence

tomography (OCT), another retinal imaging technique, uses

multiple A-scans to generate a B-scan, providing valuable

information on the retina’s structural characteristics in a cross-

sectional view (2). OCTA detects and compares changes in blood

flow by taking multiple images at different time points, rather than

directly measuring blood flow velocity. These time-series images

enable OCTA to distinguish regional variations in different blood

flow rates (3).

Diabetic retinopathy (DR) is the most common and significant

ocular complication among individuals with diabetes.

Approximately one-third of diabetics show signs of DR, with

some experiencing vision-threatening retinopathy or macular

edema (4). DR results from diabetes-related damage to the eye’s

tiny blood vessels and can progress from non-proliferative diabetic

retinopathy (NPDR) to proliferative diabetic retinopathy (PDR).

Diabetic macular edema (DME), characterized by increased

blood vessel permeability, thickening, and hard exudates in the

macula, frequently occurs regardless of the DR stage (5, 6). OCTA,

an emerging imaging modality, enables the detection of effects

in various layers of the retina in DR, the impact of different

treatment modalities on retinal microvasculature and blood flow,

and the correlation between functional levels and anatomical

and vascular indicators. As a widely used method, OCTA aids

in diagnosing DR and its complications, assisting in DR grading

and early detection, particularly in diabetic patients who have

not yet developed the condition (7). OCTA’s imaging modality

can reveal more profound changes that ophthalmologists’

fundoscopy may not detect, helping predict and detect pre-

diabetic retinopathy stage changes. In clinical applications and

DR research, OCTA can identify promising and sensitive

biomarkers under different modalities, offering new insights

into the early-stage pathophysiology and treatment and screening

of DR (8).
2 History of OCTA

Since its introduction in 2014, OCTA has gained significant

traction in clinical practice and has witnessed extensive utilization

for various ocular diseases (9). The two most commonly employed

OCTA devices are Spectral-domain OCTA (SD-OCTA) and Swept-

source OCTA (SS-OCTA), both utilizing Fourier domain detection

techniques. However, in SD-OCTA instruments, a broadband near-

infrared superluminescent diode serves as the light source, currently
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operating at a center wavelength of approximately 840 nm, with a

spectrometer as the detector. With the advancement of the SD-

OCTA device, the clinical application of the prototype 1.0

micrometer SD-OCTA has also been reported. In contrast, SS-

OCTA instruments adopt a tunable swept laser with a central

wavelength of around 1050 nm and a single photodiode detector

(10). SS-OCTA offers the advantage of faster scanning speed

compared to SD-OCTA, enabling denser scan patterns and wider

scan areas within a given acquisition time. Additionally, the use of

longer wavelength in SS-OCTA leads to reduced sensitivity roll-off

and improved light penetration through the retinal pigment

epithelium (RPE) for better detection of signals from deeper

layers. Moreover, the longer wavelength used in SS-OCTA

ensures greater safety for the eye, allowing for higher laser power

to be employed. The combination of higher power and reduced

sensitivity roll-off enhances the ability to detect weaker signals from

deeper layers, thus overcoming the barrier posed by the RPE in SS-

OCT systems (11). The OCTA algorithm segments the resulting

image (ranging from 3 mm2–12 mm2) into four zones, as per the

standard: the superficial retinal plexus, deep retinal plexus, outer

retina, and choriocapillaris. When applied to an optical disk, this

encompasses the entire depth of the disk (12). While ultra-wide-

field OCTA (UWF-OCTA) images have been developed and

employed in clinical research, their practical clinical application

may be limited due to factors such as longer acquisition time and

image quality (13).
3 Methods of literature retrieval

This paper aimed to present an overview of OCTA for DR

applications. We obtained all the literature from the Web of Science

Core Collection (WoSCC), a leading global database of scholarly

information founded in 1985. The WoSCC contains both

authoritative and influential journals from a wide range of

disciplines. We used the WoS core set of journals indexed to the

Science Citation Index and combined titles and subjects to search

for subject terms to maximize accuracy while maintaining search

sensitivity. Our search formula was as follows: TS= ((“Optical

coherence tomography angiography” and “diabetic retinopathy”)

OR (“OCTA” and “diabetic retinopathy”) OR (“Optical coherence

tomography angiography” and “DR”) OR (“OCTA” and “DR”)) OR

TI=((“Optical coherence tomography angiography” and “diabetic

retinopathy”) OR (“OCTA” and “diabetic retinopathy”) OR

(“Optical coherence tomography angiography” and “DR”) OR

(“OCTA” and “DR”)) AND (DT==(“ARTICLE”) AND LA==

(“ENGLISH”)). Within our search formula, TS=Topic, TI=Title,

DT=Document type, LA=Language. We restricted the documents

to essays and review papers, limited the language to English, and

excluded documents outside the year of the OCTA application.

A search of literatures revealed a total of 885 articles

published in the field over the last decade. 75 articles were

mentioned in this review after being screened by ophthalmic
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imaging specialists and retinal disease specialists. In this review,

many research directions within the field of OCTA in DR

applications are mentioned. The Literature Search and Review

Roadmap is shown in Figure 1.
4 Basic imaging features of OCTA

OCTA can produce a signal that reveals the impact of motor

blood flow on retinal and choroidal vessels, providing a clear view of

the superficial capillary network (SCN) in the ganglion cell layer

(GCL), deep capillary network (DCN), and choriocapillaris (CC) in

the outer plexiform layer. With its high sensitivity and specificity,

OCTA effectively detects neovascularization even in the presence of

blood flow (14). OCTA enables the detection of blood vessel shape

and distribution in various retina regions, the mean artery count is

7.0 ± 1.2, and the mean vein count is 6.9 ± 1.2 in the 3 mm × 3 mm

retina OCTA (15, 16).

OCTA’s capabilities extend beyond the detection of

neovascularization, as it also allows for the measurement of the foveal

avascular zone (FAZ) size and identification of areas without blood flow

in patients who exhibit no visible clinical symptoms. Additionally,
Frontiers in Endocrinology 03
OCTA facilitates a more detailed examination of the choroid’s

perfusion status, identification of choroidal capillaries, and detection of

neovascular complexes in certain non-exudative lesions (17).
5 The application of OCTA in DR

5.1 DR grading

DR, a potentially vision-threatening condition, poses three primary

threats to visual health: vitreous hemorrhages resulting from

neovascularization, retinal detachment that can cause substantial

vision loss, and localized damage to the macula or fovea, leading to

the loss of central vision (4). Historically, the classification and grading of

DR severity have been based on visible signs of increasing severity under

the color fundus photograph, progressing from no retinopathy to non-

proliferative or pre-proliferative stages, and finally to advanced

proliferative disease. The grading of DR is crucial in guiding and

preventing clinical management of the disease. Precise DR grading

can assist patients in better managing the condition, thereby reducing

the risk of vision loss. However, this grading system may not accurately

represent functionally severe disease, as maculopathy with significant
FIGURE 1

The literature search and review roadmap.
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visual loss can occur with moderate ophthalmoscopic signs. This has

necessitated the need for disease monitoring. By clearly visualizing key

DR pathological features—microaneurysms (MAs), retinal

nonperfusion, intraretial microvascular abnormalities (IRMAs), and

retinal neovascularizations (RNVs)—OCTA has been endorsed in

expert consensus guidelines as a critical adjunct assessment tool for

clinical staging and treatment decision-making in DR management

(18, 19).
5.2 Lesion recognition

OCTA is employed in clinical practice for the diagnosis of DR,

frequently to identify the characteristic lesions of various stages of

DR. This complements the diagnosis and grading of DR, such as

MAs, IRMAs, and RNVs, as shown in Figure 2 above.

5.2.1 Microaneurysm
Retinal microaneurysms (MAs) serve as an early symptom of

DR, with the type of MA correlating with visual acuity, DR

duration, and severity (20). The identification and study of MAs

are of interest because their morphological features and turnover

are associated with the risk of DR complications and adverse visual

outcomes. OCTA techniques can reliably classify retinal MAs (21).

Studies have identified various morphological types of MAs, such as

focal bulge, saccular/pedunculated, fusiform, and mixed types, and

found that these different typologies may correspond to DR

progression at varying stages. This understanding allows for the

assessment of the relationship between MAs and the progression of

clinical stages of DR.

5.2.2 Intraretinal microvascular abnormalities
Intraretinal microvascular abnormalities (IRMAs) were first

observed in the eyes of diabetic patients with severe NPDR and

PDR. It was initially unclear whether these vascular anomalies

indicated the development of new intraretinal blood vessels or the

expansion of existing ones (22). IRMAs are characterized by

abnormal branching or dilation of existing retinal capillaries, and
Frontiers in Endocrinology 04
their presence correlates with the severity and progression of DR (23).

These abnormalities may be a consequence of ongoing ischemia.

OCTA images reveal IRMAs as abnormal, branching, and

dilated retinal vessels that do not extend into the vitreous cavity

(24). OCTA enables the visualization of morphological changes in

IRMAs both before and after pan-retinal photocoagulation (PRP),

which aids in classifying IRMAs into more specific types.

Monitoring these morphological changes in IRMAs can facilitate

the early detection of severe signs of DR, potentially leading to

earlier treatment interventions (25).

5.2.3 Retinal neovascularization
Retinal neovascularization (RNV) is a critical clinical feature of

PDR, representing a pathophysiological alteration resulting from

retinal ischemia in DR. This abnormal formation of blood vessels

signifies the progression of DR to PDR (26). RNV increases the risk

of severe vision loss due to complications such as vitreous

hemorrhage or traction retinal detachment. Early detection and

timely treatment of RNV are crucial for preventing disease

progression and subsequent vision loss (27).

Ophthalmologic fundoscopy can reveal RNV as irregular red

blood columns in the optic nerve head and retina. However, the

direct visualization of neovascularization is limited by the retinal

structure and laser spots formed after treatment. Although OCTA

has poor ability to detect NVD or NVE by the lack of detection of

leakage from RNV. On OCTA images, the most common

neovascular lesions are irregular hyperplasia of fine blood vessels,

while some RNVs appear as filamentous neovascular loops (28).

The identification of characteristic lesions of DR, as described,

often relies on OCTA as complementary information for DR

diagnosis. RNV identification was rigorously performed using B-

scan flow analysis, where neovascularization confirmation required

detectable flow signals above the internal limiting membrane (ILM),

thereby distinguishing true RNV from IRMA. Nevertheless, OCTA

has limitations; it cannot detect hard exudates, which are due to the

extravasation of lipids and proteins following the breakdown of the

blood-retina barrier, nor can it accurately identify vessels with low

blood flow velocities or hemodynamically abnormal capillaries.
FIGURE 2

Lesions in OCTA ((A): MA; (B): IRMAs; (C): RNV).
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5.3 OCTA imaging biomarkers for diabetes
mellitus patients without DR

In patients with diabetes mellitus (DM) without DR, OCTA

imaging parameters can detect potential microvascular and

neurological changes that may not be observable during

fundoscopic examination. A prospective study analyzing OCTA

data from patients with type 1 diabetes, in conjunction with clinical

data, found that metabolic markers and other patient data influenced

OCTA results (29). Several studies have indicated that microvascular

changes, such as enlargement and remodeling of the FAZ and

capillary nonperfusion zone, may begin before the clinical signs of

DR become apparent. OCTA is used to identify diabetic patients at

risk for retinopathy and to provide rapid, noninvasive screening for

diabetes prior to a systematic diagnosis (30). Retinal microvascular

abnormalities, including capillary dropout, dilated capillary loops,

tortuous capillary branches, patches of reduced capillary perfusion,

irregular FAZ contours, FAZ enlargement, and focal or diffuse

choriocapillaris flow impairment, have been observed in some

diabetic eyes without retinopathy. These abnormalities may serve

as early signs of DR and could potentially act as biomarkers for early

detection and monitoring of the disease (31).

OCTA metrics have proven valuable in anticipating the

advancement of DR in individuals with type 2 DM through the

assessment of thickness measurements, retinal nerve fiber layer, and

plexiform layer thickness measurements within the ganglion cell

layer. Changes in retinal vascular parameters in participants were

identified by OCTA measurements of retinal avascular zones,

including area, circumference, circularity, vascular density (VD),

and macular perfusion (MP) (29, 32, 33). In individuals diagnosed

with type 1 diabetes without any signs of DR, it was observed that

the VD of the superficial capillary plexus (SCP), deep capillary

plexus (DCP), and choroidal ciliary body was lower compared to

that of healthy individuals, indicating an earlier impact on both

retinal and choroidal circulation before the manifestation of DR

(34). Furthermore, patients with diabetes exhibited a reduced vessel

density in the superficial and deep retinas surrounding the central

fovea (35). However, various studies have reported conflicting

findings regarding changes in the size of the FAZ in the early

stages of DR. Some studies suggest a significant increase in FAZ size

among patients with diabetes (30), while others found no notable

differences in FAZ size between the SCP and DCP regions (36).

Given the considerable variability in the FAZ region among healthy

individuals, its association with DR requires further investigation

and verification (37).

In diabetic patients without DR, there is an association between

early changes in the morphology of blood vessels around the optic

nerve and the density of blood vessels in the retinal choroid

capillaries. These changes are linked to a decrease in the thickness

of the nerve fiber layer. Notably, alterations in surface vessel density

are more commonly observed in the peripapillary region than in the

macular area. It is important to note that patients with diabetes may

experience early damage to both neurons and small blood vessels,

even before clinical signs of DR are present (38). Furthermore,

individuals with diabetes exhibit a reduced vascular response to
Frontiers in Endocrinology 05
flash stimuli, and there is a decrease in perfusion density in the deep

capillary layer in those without DR (37). OCTA imaging reveals

damage in the retinal microvasculature, and it has been observed

that patients with type 2 diabetes who have microalbuminuria but

do not yet have DR exhibit changes in retinal microcirculation.

These alterations could potentially serve as an early monitoring tool

for tracking microvascular complications in such patients (39, 40).

RNV can arise from IRMAs. Early detection of IRMAs may serve

as a reliable method to predict the progression of PDR. Regular use of

OCTA to monitor the occurrence of IRMAs may aid in the timely

diagnosis of PDR (41). Identifying alterations in OCT and OCTA

parameters in specific diabetic patients at an early stage may serve as

an indicator of subsequent overt retinopathy (42). A decrease in

macular CC perfusion could potentially act as an initial marker for

clinically undetectable diabetic vasculopathy (43). The analysis of

intercapillary areas (ICAs) involves measuring the distance between

surrounding vessels and each pixel in the intercapillary region.

Consequently, employing OCTA in DM patients without existing

DR holds promise for early detection and prediction of DR

development (44). It is imperative to enhance the quantification of

retinal ischemia through various perspectives and integrate OCTA

imaging into routine clinical and scientific practices. The adoption of

standardized and device-independent image analysis methods

becomes essential in this regard (45). OCTA has demonstrated

remarkable potential in the management of prevalent ocular

complications among DM patients. The use of imaging tests for

preventing and controlling DR is particularly crucial for DM patients

with existing DR.
5.4 Prediabetes OCTA imaging biomarkers
recognition

Prediabetes, also known as impaired glucose regulation (IGR),

is a pathological condition characterized by blood glucose levels that

are higher than normal but have not yet reached the diagnostic

criteria for diabetes. According to the World Health Organization

(WHO), prediabetes is classified into two types: impaired fasting

glucose (IFG) and abnormal glucose tolerance (IGT) (46). The risk

of DR may be related to prediabetes. During examination by direct

ophthalmoscopy, vascular changes, such as a lower arteriole-to-

venule ratio and increased retinal arteriole or venular caliber, were

found in the retinas of patients with prediabetes, which may be

associated with the pre-diabetic state (47). The current application

of the OCTA technique for monitoring blood flow in

normoglycemia versus prediabetes shows that the paravascular

density in the SCP and DCP layers of the retina was reduced in

the prediabetes group compared with that in the normoglycemia

group (48).
5.5 OCTA imaging biomarkers of DR

In the application of OCTA for DR, several image markers can

be utilized to predict the severity of the disease and provide
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complementary information for DR diagnosis and management.

These markers include metrics for the FAZ and vascular and

perfusion densities, which have been extensively studied as

clinically interpretable features to gauge the severity of DR.

5.5.1 The foveal avascular zone
Foveal avascular zone (FAZ) corresponds to the region of the

human retina with the highest concentration of cone photoreceptors

and oxygen consumption (49). Researchers have extensively studied

the correlation between FAZ changes and various ocular diseases

(50). As DR progresses, the fovea, which is responsible for central

vision, can be affected. In such cases, abnormalities in the size and

shape of the FAZ can contribute to vision loss (51). OCTA

assessment of the FAZ area in patients with type 2 diabetes

enables early detection of macular changes that precede findings

from conventional retinography and SD-OCT examinations (52).

One study conducted an assessment of neurological dysfunction in

pre-diabetic individuals using multifocal electroretinography

(mfERG), analysis of neurodegeneration, and measurement of

retinal layer thickness with SD-OCT. Additionally, quantitative

parameters such as FAZ area, vessel area density (VAD), vessel

length fraction (VLF), vessel diameter index (VDI), and fractal

dimension (FD) were measured using OCTA. It should be noted

that the association between pre-diabetic neurodegeneration and

early microvascular damage is not yet fully understood. However, a

glycemic threshold was identified for pre-diabetic patients with

observable retinopathy (53, 54).

5.5.2 Vessel density
Vessel density (VD) was defined as the proportion of the

vascular area in the image to the total measured area and was

used to indicate microvascular perfusion (55, 56). The VD must be

corrected for the thickness of the retinal layers during analysis, such

as the macular ganglion cell inner plexiform layer (35). Moreover,

VD is related to scanning signal strength (57). During clinical

applications, poor-quality images should be deleted.

5.5.3 Vascular length density/skeleton density
Vascular length density (VLD)/skeleton density (SD) serves as a

metric similar to VD. However, because VD only considers the

density per unit area of the vascular area, VLD is deemed to be more

sensitive than VD to changes in perfusion at the capillary level (3).

5.5.4 Vessel diameter index
The vessel diameter index (VDI) and the average vessel caliber

(AVC) were determined by analyzing binarized and skeletonized

images. This metric quantifies the average size of blood vessels in

terms of their vascular caliber (54), increased VDI may be

associated with higher fasting blood glucose levels (58).

5.5.5 Fractal dimension
Fractal dimension (FD), an indicator of vascular network

complexity calculated via methods like box-counting or circular

mass-radius in OCTA images, reflects the self-similarity of the
Frontiers in Endocrinology 06
retinal capillary network, notably in the superficial (SCP) and deep

capillary plexus (DCP), and is automatically computed by artificial

intelligence (AI) as a potential biomarker for DR progression (59).

Research shows FD typically decreases in DR patients compared to

healthy controls and diabetics without DR, especially in the DCP,

with Singh et al. (2021) noting a significant reduction using the

circular mass-radius method (60)., and Zahid et al. (2016)

confirming lower FD in DR versus controls and non-DR diabetics

(60), suggesting vascular simplification due to capillary dropout.

The FD variation pattern differs across DR stages: in diabetic

patients without clinical DR signs, FD may align with healthy

controls (60), yet a 2022 study found it already lower, hinting at

early changes (61); in NPDR, FD drops below normal and non-DR

diabetic levels, particularly in the DCP, reflecting capillary dropout-

induced simplification (62); in PDR, FD further declines, with DCP

FD lower than in NPDR (60), likely due to intensified capillary loss,

though neovascular complexity in PDR may not be fully captured

by standard FD measures despite new vessel growth.

5.5.6 Other OCTA imaging biomarkers of DR
OCTA has the capability to identify and objectively detect

diseases through alternative biomarkers, such as the VDI, vessel

perimeter index (VPI), and vessel skeleton density (VSD) (63).

These biomarkers have been further detailed in the context of

detecting and categorizing DR during regular care for patients

with PDR (64). To quantify the extent of retinal ischemia, the

intercapillary area (ICA) is analyzed by measuring the distance

between each intercapillary pixel and adjacent vessels (45). The

capillary nonperfusion area (NPA) serves as a critical biomarker for

assessing DR progression by OCTA, with its distribution varying

among patients with different severities of DR (65). Certain OCTA

biomarkers and parameters are essential assessment criteria in

clinical studies of anti-VEGF drugs, although signal attenuation

artifacts can pose challenges to accurate quantification (66, 67).

Among these biomarkers, the extrafoveal avascular area (EAA)

correlates well with DR severity and demonstrates high sensitivity

in differentiating between diabetic and healthy populations (68). In

the management of diabetic maculopathy, OCTA can detect

changes in reflectance at different stages of progression, which

aids in understanding the characteristics of microaneurysms and

improves the timing of treatment for diabetic maculopathy lesions,

facilitating a more individualized treatment plan (69). OCTA’s

potential in managing patients with diabetic macular

degeneration has been highlighted by a study showing that some

patients with early DR macular degeneration (characterized by

microaneurysms, leakage, neovascularization, and internal

microvascular abnormalities) exhibit more pronounced changes

in the FAZ, despite a relatively normal clinical presentation (52).
5.6 OCTA in DME

Utilizing OCTA, the identification and structural assessment of

DME now extend beyond merely delineation of internal

morphological disruptions. This enhanced investigative modality
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also affords a nuanced in-depth visual interrogation of the macular

microvasculature in DME and enables precise monitoring of

dynamic alterations using quantifiable OCTA parameters (70).

5.6.1 Diabetic Macular Ischemia (DMI) and its role
in DME progression

The progression of DME is intrinsically linked to the

development of DMI. Clinically, DMI presents with enlargement

and irregularity in the FAZ, along with the loss of retinal capillaries,

predominantly in regions not directly bordering the macula (71).

Analysis of outcomes through Fundus fluorescein Angiography

(FFA) and OCTA revealed consistent observations, thereby

substantiating the gradability of DMI via OCTA (72).

5.6.2 Prognostication and quantitative
assessment for DME

Underpinning studies on Diabetic Macular Ischemia have

elucidated a predictive capacity within OCTA, particularly through

the evaluation of SCP and DCP. This allows for the prognostic

discrimination of DME’s advancement. Severe presentations of DME

exhibit irregular FAZ morphology and extensive vascular damage

within the Deep Vascular Plexus (DVP), compounding vision

impairment ancillary to escalated degrees of DME severity,

expanded FAZ regions, and accentuated central macular thickness

(73). Furthermore, VD has been demonstrated to bear potential in

managing DME. Among individuals with DME, there exists a

statistically significant decrease in DCP’s VD compared to those

without evidence of DME (74).

5.6.3 Role of OCTA in anti-VEGF Therapy for
DME

OCTA applications within research about anti-VEGF treatment

for DME have been pivotal. By quantifying changes within macular

microvasculature through OCTA parameters, enhanced insight and

evaluation of the anti-VEGF therapy’s efficacy are facilitated. The

integrity of the DCP is closely correlated with the treatment

outcomes concerning VEGF inhibitors in DME management. The

extent of DCP has been identified as a significant predictor of the

response to anti-VEGF therapies (75). A comparative analysis

between DME patients and those without DME highlights a

distinct deterioration in visual function across multiple quadrants

for those with DME. Particularly, after treatment with VEGF

inhibitory agents, a superior post-treatment visual prognosis is

observed in patients with higher visual deficits in both the SCP

and DCP (76).
5.7 Impact of age on OCTA parameters in
DR assessment

In the assessment of DR using OCTA, age significantly

influences the baseline values of parameters such as VD, fractal

dimension (FD), and NPA. In healthy populations, VD and FD

exhibit a physiological decline with age—for instance, macular VD

decreases by approximately 1.5-2.0% per decade (77)—whereas in
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DR patients, pathological changes superimpose upon age-related

degeneration, increasing the complexity of clinical interpretation. In

younger patients (<50 years), OCTA parameters are more sensitive

to early microvascular changes, with VD reductions reaching 10-

12% during the NPDR stage (78), though rapid disease progression

can confound results. In older patients (≥60 years), vascular

network degeneration may obscure early ischemic signs, and

systemic factors such as hypertension often exacerbate parameter

heterogeneity—for example, peripapillary vessel tortuosity

increases by 15% (79).
6 Comparison of OCTA and FFA in DR

OCTA is capable of accurately detecting changes in the retinal

vasculature, although it has limitations in identifying specific lesions

in clinical practice. Primarily, OCTA provides supplementary

information for the management and diagnosis of patients with

DR. FFA, an essential diagnostic tool for evaluating the clinical

fundus characteristics of DR, can detect primary vasculopathy and

vascular anomalies, such as venous bead-like changes and retinal

microvascular anomalies, during the development of vasculopathy

in DR. In cases of retinal nonperfusion, characterized by dark areas

surrounded by large blood vessels, neovascularization is often

marked by significant leakage of fluorescent dye into the vitreous

cavity on FFA (80). The FFA procedure involves injecting a

fluorescent dye into the anterior vein, typically via a short

posterior ciliary artery, which then reaches the optic and choroid

regions 8 to 12 seconds later. The choroid circulation appears as

choroidal flush, a patchy, mottled hyperfluorescence, as the choroid

lobules fill (81). Retinal circulation occurs 1 to 3 seconds later (11-

18 seconds after injection). Early arteriovenous malformation

(AVM) is associated with the filling of the retinal arteries,

arterioles, and capillaries, followed by an advanced arteriovenous

or laminar venous phase as the dye fills the veins in a laminar

fashion. After about 10 minutes, the complete emptying of the dye

occurs, and during this phase, the optic disc, Bruch’s membrane,

choroid, and sclera are stained (82). The normal stages of FFA

include: 1. choroidal phase; 2. arterial phase; 3. arteriovenous phase;

4. venous phase; and 5. recirculation phase. The features of DR, as

identified by OCTA and FFA, are summarized in Table 1.

FFA offers a wider field of view and can dynamically display

retinal blood flow. In contrast, OCTA provides a clearer

visualization of dynamic blood flow at various retinal levels under

different parameters, although it may be slightly less effective in

detecting specific lesions with inaccessible or localized blood

turbulence (80). The primary clinical disadvantage of FFA is its

invasiveness and time-consuming nature. The contrast agent used

in FFA can cause several potential side effects, including nausea,

vomiting, hives, seizures, allergic reactions, and even death (83).

Therefore, the benefits of FFAmust be weighed against the potential

risks and the availability of less invasive imaging procedures in

clinical practice, as presented in Figure 3 below.

As a noninvasive, dye-free method for ocular vascular

visualization, OCTA complements other diagnostic investigations
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in diagnosing, screening, and managing patients with DR. The

advent and development of UWF-OCTA have partially addressed

the limitations of OCTA’s small-image recognition area. UWF-

OCTA can detect a broader range of retinal images during the

actual acquisition process, but its longer image acquisition time may

result in more artifacts and lower resolution. Thus, it is crucial to

find the optimal balance between scanning area and parameter

settings for UWF-OCTA under different circumstances (13, 84).

When assessing the severity of DR, UWF-OCTA has

demonstrated promising results in evaluating DR retinal blood

flow status. It captures more detailed information about retinal

blood flow operations at once compared to standard OCTA due to

its larger image range (40, 85). Furthermore, when used as input
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data for artificial intelligence (AI) analysis, UWF-OCTA reflects the

significant potential of integrating AI with clinical applications, as it

contains richer image information (86).
7 OCTA in DR-related clinical
researches

In clinical studies, OCTA imaging modalities facilitate the

identification of complications that may lead to retinal ischemia

and assess the natural course and progression of retinal ischemia in

DR, emphasizing the importance of prevention (87). However, in

certain cases where patients have background retinal structures and
TABLE 1 Comparison of OCTA and FFA.

Lesion type Etiology OCTA FFA

MA

Elevation of capillary pressure due to loss of
perivascular and endothelial cells and smooth
muscle cells, etc., leading to focal dilatation

of capillaries.

Demarcated, saccular or fusiform shapes of
focally dilated capillary vessels in the

superficial and deep plexuses.

Early stage shows hyperfluorescent pinpoint
dots; late stage shows focal leakage.

IRMA
Remodeling of retinal capillaries due to

retinal hypoxia.

Clusters of irregular tortuous vessels or
dilation of existing capillaries, without
proliferative changes. Intraretinal flow

below ILM.

Can be distinguished from neovascularization
by no or less profuse leakage on FFA. These
vessels do not extend over vascular branches.

RNV
Proliferation of fibroblasts due to hypoxia after

localized closure of retinal capillaries.
Lesions show retinal new vessels breaching

the ILM.

Early stage is strongly fluorescent abnormal
vascular network; late fluorescent leakage is

clumped strong fluorescence.

DME
Accumulation of fluid, lipids, and proteins in
the retina that occurs after rupture of the

blood-retinal barrier.
/ Hyperfluorescent areas.
MA, Microaneurysm; IRMA, Intraretinal Microvascular Abnormalities; RNA, Retinal Neovascularization; DME, Diabetic Macular Edema; FFA, Fundus Fluorescein Angiography.
FIGURE 3

Lesions in FFA (A) and OCTA (B).
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laser scars, the detailed manifestation of the disease may not be

visualized solely through color fundus photograph examination.

OCTA has proven effective in accurately detecting various types of

neovascularization, particularly beneficial for monitoring patients

with a history of retinal surgery (28). OCTA is extensively used in

diverse clinical studies, such as assessing retinal inner layer (DRIL)

and ellipsoid zone (EZ) losses, leading to the identification of

biomarkers that contribute to visual function evaluation in

patients’ eyes (88).

The assessment of GCL and inner plexiform layer (IPL) thickness

for detecting retinal neurodegenerative changes has revealed a

correlation between retinal vascular closure and the advancement

of DR severity in patients with NPDR. This suggests that OCTA

vascular closure measurements can serve as an indicator of DR

progression severity. Post-analysis of OCTA images has shown that

retinal neurodegeneration exhibits consistent and stable progression,

potentially due to a reduction in vessel density, including vessel

closure, caused by alterations in the DCP (89, 90). The analysis of

biomarkers, such as VAD, VLF, and VDI, provides quantitative

insights into neuronal damage observed in DR patients, indicating

that it cannot be attributed solely to microvascular damage (42). The

increasing use of OCTA in clinical research underscores its growing

significance in advanced ophthalmic studies, including investigating

potential retinal microvascular damage caused by different treatment

modalities. This technique effectively assesses the number and

circulatory condition of peripapillary microvessels, evaluating

surgical outcomes and prognoses in clinical settings. For example,

OCTA can be used when evaluating the efficacy and follow-up of

surgical procedures like pars plana vitrectomy (PPV) combined with

ILM peeling for epiretinal membrane (ERM) cases (91). It can also be

applied in combination with certain drugs in proliferative DR and

various neovascularization-related retinal diseases (92), assessing the

efficacy of drug application in DR patients, and comparing the

efficacy and safety after different drug applications (93). When

applied to DR, OCTA parameters have been found to be good

predictors of the efficacy of anti-VEGF drugs (ranibizumab (94),

bevacizumab (95)) and also play a role in observing the therapeutic

efficacy of other fundus implants (e.g., drug nanoparticles) (96).

OCTA has played a crucial role in assessing retinal nerve damage

and microvascular changes in several experimental studies (97).
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Compared to other imaging techniques, such as FFA, OCTA is

more accurate in detecting specific lesions in clinical research and

has gained broader application due to its noninvasive, user-friendly,

and harmless nature.
8 AI for OCTA in DR

The diagnosis of DR and the selection of treatment approaches

and timing heavily depend on digital imaging data, encompassing

OCT and FFA. Targeted feature extraction and objective feature

quantification present significant opportunities for biomarker

discovery, disease burden assessment, and prediction of treatment

response. With the recent advancements in AI in ophthalmic

applications, AI-assisted image analysis and OCTA data

acquisition, generation, and collection can be technologically

integrated. Machine learning-based techniques are particularly

well-suited for leveraging OCTA to gather a vast amount of

information. AI can transform the generation of OCTA images

from a motion-contrast measurement to an image transformation

problem, potentially reducing artifacts that are challenging to

manage in traditional OCTA image formation (98). For diabetic

patients without overt DR signs, OCTA’s quantitative vascular

metrics (e.g., vessel density and morphological parameters) serve

as tools for early screening and follow-up (99). The application of

AI in analyzing and processing various biomarkers derived from

OCTA has revealed the potential of specific biomarkers to serve as

new imaging biomarkers for the early detection of DR (Table 2).
8.1 AI for OCTA quantitative parameter
analysis

The FAZ, a central avascular region in the macula, typically

enlarges in DR due to capillary dropout, with studies showing

significantly higher median FAZ area in DR patients, especially in

severe NPDR and PDR stages (105). AI, via deep learning (DL)

automates FAZ quantification; Guo et al. (2021) demonstrated strong

consistency with manual measurements (68), underscoring AI’s

precision in measuring FAZ area as a potential DR severity biomarker.
TABLE 2 Performance summary of AI techniques in OCTA application.

Reference AI Technique Used Performance Metrics Journal/Conference

Le D, et al. (2020) (100) Transfer learning with VGG16 CNN
Cross-val Acc 87.27%, Ext-val

Acc 70.83%
Translational Vision Science

& Technology

Eladawi N, et al. (2018) (101) ANN with blood vessel reconstruction Acc 94.3%, Spec 87%, Sens 97.9% Medical Physics

Xu X, et al. (2023) (102) AV-casNet neural network for segmentation
Arteriole Acc 94.2%, Venule

Acc 93.5%
IEEE Trans Med Imaging

Afarid M, et al. (2022) (61) Feature analysis using radiomics features AUROC 0.87 for FAZ area BMC Ophthalmol

Schottenhamml J, et al.
(2021) (103)

Computational method for segmentation
(graph-based)

Mean absolute error: ~0.91 pixel Biomed Opt Express

Ryu G, et al. (2021) (104). Deep Learning (CNN) AUC 0.976, Sens 96%, Spec 98% Scientific Reports
Acc, Accuracy; Spec, Specificity; Sens, Sensitivity; AUROC, Area Under the Receiver Operating Characteristic Curve; Cross-val, Cross-validation; Ext-val, External validation.
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Vessel density, reflecting overall retinal vascular density,

decreases in DR progression, notably in superficial and deep

capillary plexuses, indicating vascular loss. Research highlights a

marked VD reduction with increasing DR severity, particularly

post-VEGF inhibitor treatment (106). AI employs DL for vessel

segmentation and density quantification, with Wang et al. (2020)

validating high consistency with manual measurements (107),

affirming AI’s efficacy in assessing VD as a DR progression marker.

FD measures vascular complexity, with varying findings in DR.

Some studies report reduced FD in DR patients, reflecting network

simplification; Hashmi et al. (2021) found significantly lower FD

using the circular mass-radius method (108), supported by Zahid

et al. (2019) in the deep capillary layer (60). Conversely, early DR

may show FD increases due to abnormal vessels or microaneurysms,

though OCTA-specific evidence is limited. AI rarely measures FD

directly, relying on image processing algorithms, but may implicitly

learn FD-related features for DR classification. These parameters,

analyzed via AI, serve as potential biomarkers for DR severity and

progression, though FD variability warrants further investigation.

AI enhances DR detection accuracy through parameter analysis.

Kim et al. (2021) achieved an AUC of 0.976, sensitivity of 96%, and

specificity of 98% using a CNN model (104). Le et al. (2020)

reported a cross-validation accuracy of 87.27% with VGG16

transfer learning, dropping to 70.83% in external validation,

highlighting generalization issues (100). Eladawi et al. (2018) used

support vector machines (SVM) to extract FAZ area and VD

features, achieving 94.3% accuracy (101).
8.2 Intelligent classification of DR

The rapid advancement of AI has revolutionized DR classification

through convolutional neural networks (CNNs) and transfer learning

models. Studies demonstrate high diagnostic accuracy, such as Kim

et al.’s CNN model achieving an AUC of 0.976 with 96% sensitivity

and 98% specificity using 6×6 mm² OCTA images (104). However,

generalization challenges persist, exemplified by Le et al.’s VGG16

transfer learning model showing an 87.27% cross-validation accuracy

that dropped to 70.83% in external validation (109).

AI algorithms predict DR severity by analyzing biomarkers

including NPA, macular ganglion cell/inner plexiform layer

thickness, retinal arteriole/venule conditions, and extrafoveal

vessel density (102). CNN-based approaches further classify DR

into five stages (Normal to PDR) by processing OCTA parameters,

enhancing grading precision (85). Despite these advancements,

variability in imaging protocols and instrument settings

underscores the need for standardized acquisition parameters to

ensure broader clinical applicability.
8.3 Other AI applications for OCTA in DR

In the application of AI to OCTA images of DR patients,

motion correction techniques can be employed to eliminate

artifacts caused by eye movements, thereby enhancing the clarity

of images, DR characteristic retinopathy, and surrounding features
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(110). During the collection and processing of information by AI, it

is advisable to construct a standard computer-aided diagnostic

(CAD) system as defined in each learning model. OCTA, as part

of ophthalmic imaging examinations, has demonstrated significant

effectiveness in retinal assessment when combined with DL and

machine learning (ML) methods, along with other patient imaging

data (111). Some studies suggest that collaborative DL can yield

comparable outcomes to conventional DL, achieved by utilizing

jointly learned models and merging databases for microvessel

segmentation and DR classification. These findings highlight the

potential applicability of jointly learned models across various

domains in OCT and OCTA data (112).

Enhancing the objectivity of OCTA image interpretation in

future research, longitudinal tracking, and the integration of

computational models to create automated diagnostics and

clinical decision-support systems can augment their practical

applications. Advances in computational technologies, including

DL and radiomics, offer the possibility of developing distinct

imaging phenotypes. The construction of these ocular imaging

phenotypes can facilitate personalized disease management and

increase opportunities for precision medicine. These quantifiable

biomarkers and automated methods can be applied to

individualized medicine, where treatments are tailored to patient-

specific, longitudinally trackable biomarkers, and response

monitoring can be achieved with high accuracy. Despite the

integration of AI with OCTA image information in DR research,

a standardized CAD system remains elusive. The evaluation criteria

for learning models across different AI clinical studies are not well-

defined. It is crucial to assess these models based on uniform and

standardized criteria to enhance the overall proficiency of AI

clinical studies in DR applications using OCTA (113).
9 Shortcomings of OCTA in DR

OCTA has several limitations, including a limited field of view

and an inability to visualize certain DR-characteristic lesions such

as vascular leakage, as well as increased susceptibility to artifacts

during the technique’s application, such as blinking, motion, and

vascular reimaging. Additionally, OCTA cannot detect blood flow

below the slowest detectable flow rate (66). Traditional markers for

DR diagnostic grading, such as blood-retinal barrier disruption and

vascular leakage, lack clear diagnostic markers in OCTA. The

standardization of output from different OCTA instruments also

significantly impacts the subsequent processing of image data.

Current OCTA imaging also faces challenges, such as the inability

to detect some ischemic vessels, specific blood flow rate

requirements, low imaging efficiency for larger resolution images,

and the inevitable formation of noise and artifacts due to subject eye

movements during the imaging process. OCTA has a limitation in

effectively identifying detailed lesion structures and comprehending

the overall architecture of the retinal vasculature in DR.

Further research is needed to determine the utility of OCTA in

clinical settings, given its relatively short history of clinical

application, and to explore its potential for detailed visualization

of the retinal vasculature. Subsequently, OCTA parameters and
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settings need to be standardized, and standardized guidelines based

on the application of OCTA for DR diagnostic grading should be

developed. Despite these disadvantages, OCTA offers the advantage

of being noninvasive and capable of obtaining volume scans

segmented to a specific depth within seconds. Future

advancements should focus on obtaining a larger field of view,

faster scanning speeds, and higher resolution.

While AI demonstrates high accuracy (100), automation, and

potential for early screening in resource-limited settings, its clinical

application faces challenges: 1) High-cost dependency on large

annotated datasets for training robust models; 2) Limited

generalizability, exemplified by Le et al.’s (2020) external validation

accuracy of 70.83% (114); 3) Reduced clinical trust due to the black-

box nature of DL; 4) Misclassification risks from artifacts (e.g.,

projection artifacts, motion artifacts); 5) Widespread neglect of age-

stratified corrections in current models, leading to misdiagnosis of

age-related VD/FD decline as DR progression or underestimation of

early pathological signs in younger patients.

Future advancements should prioritize: developing

interpretable AI frameworks with age-adaptive feature decoupling

to distinguish physiological aging from pathological changes;

establishing multicenter age-stratified cohort validation systems

and age-specific reference standards; optimizing artifact

correction through interdisciplinary collaboration; and promoting

standardized CAD systems (115) for unified evaluation. Despite

challenges in data scalability, model generalizability, and image

quality dependency, the synergy of AI and OCTA holds

transformative potential for precise DR management (116).

Crucially, AI should be positioned as a clinical aid to enhance

diagnostic objectivity, not as a replacement for expert judgment.
10 Conclusion

Since the advent of OCTA imaging technology, numerous clinical

studies have explored its applications. OCTA is a common

noninvasive method for examining retinal diseases, offering

simplicity and convenience. Its advantages—noninvasiveness, dye-

free imaging, rapid processing, and accurate blood flow localization—

have led to its swift adoption in ocular examinations.

Initially, OCTA was primarily an auxiliary imaging tool for DR

due to its unique imaging capabilities. However, as clinical studies

progressed and the technology evolved, OCTA has increasingly been

used to assess retinal nerve and vascular function in DR. It is

particularly sensitive in detecting subtle lesions indicative of DR and

DM before they manifest. OCTA aids in diagnosing and classifying

established DR and can predict and manage retinal conditions in DM

patients without DR. It can also identify retinal microcirculation states

in prediabetic patients, which is beneficial for community screening

and managing DM-related ocular complications.

Recent advances in OCTA for DR have focused on enhancing

image resolution and improving software algorithms to better

visualize microvascular changes. These improvements allow for

earlier DR detection, detailed retinal vasculature mapping, and

non-invasive DR progression monitoring. Enhanced OCTA
Frontiers in Endocrinology 11
technology also facilitates more accurate treatment efficacy

assessments, improving patient management and outcomes.

OCTA has the potential to serve as an independent predictor of

DR. In clinical applications, OCTA is commonly used as a

supplementary diagnostic tool for DR grading. Current

technological developments aim to collect high-resolution, wide-

field OCTA images faster, leveraging AI’s powerful processing

capabilities. Further exploration is needed to standardize OCTA

outputs and terminology across different instruments to fully realize

its potential in diagnosing, evaluating, and predicting DR.

Although OCTA is not yet a standalone diagnostic criterion for

DM in ocular imaging, the emergence of UWF-OCTA and AI

integration in ophthalmology has identified more diagnostic and

clinically relevant OCTA biomarkers. Despite the lack of

standardized grading and interpretation methods for DR

assessment, ongoing clinical research and advanced AI models are

expected to establish Diagnostic Classification Guidelines for

OCTA in DR soon. OCTA will continue to explore new

biomarkers and practical applications, playing an increasingly

significant role in the prediction, diagnosis, and management of

DR across various scenarios.
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