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Causal links between obesity,
lipids, adipokines, and cognition:
a bidirectional Mendelian-
randomization analysis
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Shiyi Qi4, Hong Guo5* and Song Jin5*

1School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine,
Chengdu, China, 2College of Traditional Chinese Medicine, Guangzhou University of Chinese
Medicine, Guangzhou, China, 3School of Health Preservation and Rehabilitation, Chengdu University
of Traditional Chinese Medicine, Chengdu, China, 4School of Acupuncture, Fujian University of
Traditional Chinese Medicine, Fuzhou, China, 5Department of Rehabilitation, Hospital of Chengdu
University of Traditional Chinese Medicine, Chengdu, China
Background: The aim of this study was to explore the genetic level association

between obesity, lipids, adipokines, and cognitive ability using bidirectional

Mendelian randomization (MR) strategies.

Methods: Summary data for three obesity indicators [body mass index (BMI),

body fat percentage (BFP) and waist-hip ratio (WHR)], three lipid indicators [HDL

cholesterol (HDL), LDL cholesterol (LDL) and triglycerides (TG)], three adipokines

[circulating leptin (LEP), Agouti-related protein (AgRP) and Adiponectin (APDN)],

and four cognitive ability indicators [cognitive function (CF), cognitive

performance (CP), simple reaction time (SRT) and fluid intelligence score (FIS)]

were collected. Bidirectional inverse-variance weighted Mendelian

randomization (MR) was employed to evaluate the relationship between

adiposity and cognitive function. We employed genetic instruments for

adiposity indicators as exposures in one direction, and repeated the analysis in

the opposite direction using instruments for cognitive function. Sensitivity

analyses were conducted to explore heterogeneity and potential

horizontal pleiotropy.

Results: Genetically predicted adiposity showed robust associations with

markers of cognitive ability. Higher genetically predicted obesity indicators

(such as BMI, BFP and WHR), and lipid and adipokineslevels (such as HDL and

AgRP) with reduced cognitive ability indicators (such as CF and CP). In the

opposite direction, FIS and SRT may influence BMI and HDL respectively. MR

estimates for the effects of cognition ability on all obesity, lipids and adipokines

measures indicated worse FIS and SRT were associated with higher BMI and

lower HDL.

Conclusions: Our MR reveals that high BMI, BFP, WHR and AgRP have negative

causal direct effects with cognitive ability, while high HDL and ADPN have
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positive causal direct effects with cognitive ability. For the reverse causal

direction, our consistent findings that worse cognitive function such as SRT

and FIS may influence serum HDL level and BMI.
KEYWORDS

adipokines, bidirectional, cognitive ability, genetic correlation, lipids, Mendelian
randomization, obesity
Introduction

The increasing prevalence of obesity has accentuated concerns

regarding its impact on public health. Obesity is widely acknowledged

as a prominent risk factor for numerous ailments, including

cardiovascular disease, metabolic syndrome, hypertension, diabetes,

etc. (1) Moreover, recent studies have demonstrated the detrimental

effects of adiposity on cognitive function (2). Conversely, less known,

is the influence of cognition on obesity (3). Consequently, it is

imperative to prioritize research that investigates the bidirectional

relationship between obesity and cognitive function, thus advancing

our understanding of this complex interplay.

Obesity is consistently linked to lower cognitive functioning

across various age groups, including adults, middle-aged

individuals, older adults, and even young children (4–6). It is

notably with poor cognitive flexibility, psychomotor speed,

intelligence, attention. While both generalized and visceral obesity

have been linked to reduced cognitive performance (7), the impact

of adiposity location (i.e. central vs. peripheral) on the adiposity-

cognition relationship remains uncertain. This uncertainty arises

from the predominant use of body mass index (BMI) as a measure

of overall obesity in research studies (8, 9). Recent reports suggest

that waist-to-hip ratio (WHR) may independently contribute to

adverse cognitive outcomes, regardless of BMI. Additionally, in

terms of total body fatness, the association between body fat

percentage (BFP) and cognitive ability has also yielded

contradictory evidence (10, 11).

High-density lipoprotein (HDL), low-density lipoprotein (LDL)

cholesterol, and triglycerides (TG) are among the highest

commonly measured biomarkers in clinical medicine (12).

Epidemiological studies have reported associations between HDL,

LDL, TG, and cognitive function (13, 14). However, the existing

evidence from these studies is limited in establishing a causal

relationship, and inconsistencies exist among various studies (15).

Adipokines such as leptin (LEP) and adiponectin (ADPN) have

been linked to cognitive function (16). Cognitive flexibility may be

modulated by abnormal levels of the appetite-regulating agouti-

related protein (AgRP) (17). Nevertheless, conflicting results have

been reported in several studies (18, 19). For instance, an early study

from the United States found no significant correlation

between leptin and cognitive abilities (18), and another study did

not find an association between serum leptin levels and cognitive

decline (19).
02
Recent studies have demonstrated that cognitive function is not

only a consequence but also a contributor to obesity (20). There is

evidence supporting a bidirectional relationship between adiposity

and cognitive function exists (21). Furthermore, a vicious cycle has

been proposed, where adiposity may lead to cognitive function

impairment, which in turn exacerbates further cognitive

complications (22). As such, it is crucial to consider this complex

bidirectional association in future research (23).

Mendelian randomization (MR), a genetics-based approach in

epidemiological research, specifically bidirectional MR, can help

elucidate the reciprocal causal pathway between adiposity and

cognitive function (24). Recently, Tom and colleagues (8)

conducted a bidirectional MR of visual memory (VM) and

reaction time (RT) on BMI, BFP and WHR, and vice versa. They

observed associations between adiposity on cognitive function likely

not causal. Conversely, worse visual memory was causally link to

lower adiposity. However, this study primarily focused on VM and

RT as indicators of cognitive performance, and the relationship

between other cognitive performance indicators and adiposity

remains unclear. Conflicting findings have been reported

elsewhere, with genetically higher visceral adiposity and raised

BMI concentration associated with lower cognition (25). This

study, however, may be subject to sample selection bias as it

primarily included individuals of Asian ancestry in the Genome-

Wide Association Studies (GWASs). Furthermore, there is a dearth

of MR studies investigating the potential influence of obesity, lipids,

and adipokines on cognitive ability.

In this study, therefore, we aimed to utilize univariable,

multivariable and bidirectional MR to examine the causal

relationship between obesity (BMI, BFP, WHR), lipids (HDL,

LDL, TG) and adipokines (LEP, ADPN, AgRP) with cognitive

ability. Our objective was to enhance our understanding of the

genetic-level associations between a range of obesity, lipids,

adipokines and cognitive ability, thereby providing a more

comprehensive and elucidated understanding of causality.
Methods

GWAS data sources

Several indicators of obesity, lipid and adipokines were

identified as the exposures in the study. The obesity indicators
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were BMI, BFP andWHR. The lipid indicators were HDL, LDL and

TG. The adipokines were LEP, AgRP and ADPN. In addition,

Cognitive Function (CF), Cognitive Performance (CP), Simple

Reaction Time (SRT) and Fluid Intelligence Score (FIS) were

defined as the outcome of this study.

We obtained participant data from various sources, including

the UK Biobank (UKB) studies and other large consortia such as the

Medical Research Council - Imperial College London (MRC-IEU)

(26). The UK Biobank (UKB) is a comprehensive resource that

contains genotype data from approximately 500,000 individuals

across the UK (27). The summary data for BMI, BFP and FIS were

collected from the MRC Integrative Epidemiology Unit at the

university of bristol (MRC-IEU). The aggregate data for WHR

was obtained from a series of anthropometric traits GWASs

involving more than 49,960 individuals of European ancestry

(28). The Phenotypes available in UKB included HDL, LDL and

TG. For LEP, we utilized summary data from a GWAS that

evaluated genomic targets for leptin concentrations in 57,232

individuals of mixed ancestry (29). The summary data for AgRP

was obtained from a GWAS that evaluated genomic targets for 90

cardiovascular proteins in 30,931 individuals of European ancestry

(30). Genetic instruments for ADPN were obtained from summary

statistics of ADIPO-Gen. Moreover, the summary data for CF was

collected from a GWAS conducted by the within family consortium.

The aggregate datas for CP and SRT were respectively obtained

from a series GWASs of educational attainment in 257,841

European individuals (31) and influencing information processing

speed (32) using 2,378 individuals of European ancestry.

Ethics statement

Ethical approval and participant consent were obtained from

the respective original studies.
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Genetic instrumental variables

From all GWAS summary data of BMI, BFP, etc., we conducted

a series of quality control steps to select eligible instrumental SNPs.

To meet the correlation assumption, we identified SNPs for

inclusion based on two criteria: a genome-wide correlation

P-value of less than 5 × 10−8 or 5 × 10−6 (for SRT), and the

absence of linkage disequilibrium (defined as r2 > 0.01). To satisfy

the independence assumption, we performed the clumping process

(r2 < 0.001, window size = 10 MB) to estimate linkage

disequilibrium between SNPs. Ambiguous SNPs with non-

concordant alleles (e.g., A/G vs. A/C) and palindromic SNPs with

ambiguous strand (i.e., A/T or G/C) were either corrected or

directly excluded from the above-selected instrument SNPs to

harmonize the effect of SNPs on the exposure outcome, ensuring

that the effects corresponded to the same allele. These rigorously

selected SNPs were employed as the instrumental variables in

subsequent MR analysis. To ensure that MR analysis meets the

three core assumptions. The overall research design is depicted

in Figure 1.
Univariable Mendelian randomization

In this two-sample MR, we employed three main methods for

causal inference, namely random-effect inverse-weighted variance

(IVW), weighted median and MR-Egger (33). The IVW method is

considered reasonably accurate for causal inference when all SNPs

are unaffected by horizontal pleiotropy and heterogeneity (34).

While the other two methods are less accurate, they have broader

applicability under certain conditions. Following the harmonization

and selection of instrumental variables, we utilized the IVWmethod
FIGURE 1

Flow chart of this study. BMI, body mass index; BFP, body fat percentage; WHR, waist-to-hip ratio adjusted for BMI; HDL, high-density lipoprotein
cholesterol; LDL, low-density lipoprotein cholesterol; TG, triglycerides; LEP, circulating leptin levels; AgRP, agouti-related protein level; ADPN,
adiponectin; CF, cognitive function; CP, Cognitive performance; SRT, simple reaction time; FIS, fluid intelligence score.
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to estimate the causal effects of obesity, lipids and adipokines

fractions on CF, CP, SRT, FIS.
Multivariable Mendelian randomization

Multivariable MR is an extension of MR that allows for multiple

genetic instruments. In the MVMR method, it is not necessary for

the genetic instruments to be exclusively associated with a single

risk factor. Instead, they can be associated with a set of measured

risk factors, while still satisfying the equivalent instrumental

variable assumptions (35). Therefore, we applied this method by

considering all instrumental variables for BMI, BFP, WHR, HDL

and LDL, TG, as well as LEP, AgRP, and ADPN, respectively, to

evaluate their independent effects on CF, CP, SRT, and FIS.

Additionally, Reverse-MR analysis was performed to investigate

whether CF, CP, SRT, and FIS, as indicators of cognitive ability,

may influence obesity, lipid traits, or adipokine traits.
Reverse Mendelian randomization

Reverse-MR analysis was performed to examine the potential

influence of cognitive ability, as represented by CF, CP, SRT and

FIS, on obesity, lipids and adipokines traits. Additionally,

multivariable MR analysis was also used to assess the causal effect

of cognitive ability on obesity, lipids or adipokines traits.
Sensitivity analyses

Heterogeneity among SNPs was assessed using IVW method

and quantified heterogeneities using the Cochran Q statistic. To

assess the potential pleiotropic effects of the SNPs used as IVs, we

employed the MR-Egger regression. Furthermore, we addressed

restriction assumption, by applying method like the MR-PRESSO,

which identifies outliers and provides causal estimates after their

removal. The MR-PRESSO analysis includes a distortion test that

compares estimates before and after outlier removal. We set the

number of distributions in MR-PRESSO analysis to 2000. To

evaluate the strength of the association between these SNPs and

the exposure factors, we used R2 and F-statistics to estimate the

proportion of phenotypic variance explained and the statistical

power, respectively. The F-statistics is calculated using the

formula: F = R2 × (N − K − 1)/K × (1 − R2). We included SNPs

with strong statistical power (F statistics > 10) as IVs. Horizontal

pleiotropy among SNPs using the MR-Egger intercept test. In all

sensitivity analyses, p-values were reported, and the values less than

0.05 were considered indicative of heterogeneity or horizontal

pleiotropy. Moreover, we conducted a “leave-one-out” sensitivity

analysis to identify potentially influential SNPs. This analysis

involved iteratively excluding each SNP one at a time and re-
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performing the MR analysis to assess the impact of each SNP on the

pooled results.
Statistical analysis

We performed the MR analyses using the two-sample random-

effects IVW method, which was implemented in the Mendelian

Randomization R package. When there were more tahn 3 SNPs

instrumenting the exposures, the estimates for variants were then

pooled using the random-effect IVW method. For exposures

instrumented by only 2 SNPs, the fixed-effects IVW method was

employed. The IVW method was used to access the causal

associations along with adiposity and cognitive ability. To account

for the documented horizontal pleiotropy between adiposity and

cognitive ability, we conducted a multivariable MR (MVMR). Given

the high number of comparisons between obesity, lipids and

adipokines with cognitive ability (and vice versa) (n = 3 tests for

Forward-MR, n = 4 tests for Reverse-MR), we applied a Bonferroni

adjustment to all P-value thresholds (i.e. P-value threshold/number

of tests (3 or 4); P <0.05 corresponds to P <0.0167, and P <0.0125).

The present study adheres to the STROBE-MR guidelines to

ensure transparent and thorough reporting of our MR analysis (36).

All MR analyses were conducted using TwoSampleMR package in R

software (version 4.3.1).
Results

The multivariable and bidirectional MR analysis were

conducted according to the workflow presented in Figure 2.

Details information regarding the instrumental variables selected

were listed in Table 1.
Associations of genetically predicted
obesity, lipids and adipokines with
cognitive ability

Univariable MR analyses
The relationships between genetically predicted obesity traits and

cognitive ability are presented in Table 2A and visualized in Figures 2A,

3A, 4A. We found that the estimated effects (b) of obesity traits of BMI

and BFP on CF had the following values within the 95% confidence

intervals (CI) were 0.815([0.761 to 0.873]; P = 4.948 × 10-9), and 0.752

([0.680 to 0.833]; P = 4.591 × 10-8). For SRT, the effect estimates (b)
[95% confidence intervals (CIs)] of BMI and BFP were 1.221([1.015 to

1.469]; P = 3.400 × 10-2) and 1.221([1.015 to 1.469]; P = 3.400 × 10-2).

These estimations show a significant association between obesity

characteristics and CF and SRT. Moreover, the evidence of a

significant causal effect of genetically predicted BMI, BFP, WHR, and

HDL on CPwere 0.889([0.855 to 0.924]; P = 2.379 × 10-9), 0.846([0.798

to 0.896]; P = 1.440 × 10-8), 0.937([0.902 to 0.973]; P = 6.719 × 10-4),

and 1.033([1.005 to 1.062]; P = 2.000 × 10-2). Univariable MR yielded
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TABLE 1 Characteristics of the summary data in the study.

T raits
(out-come/exposures)

Consortium Years Population Sex Sample size F-statistics

Body mass index MRC-IEU 2018 European Males and Females 461,460 63.711

Body fat percentage MRC-IEU 2018 European Males and Females 454,633 58.263

Waist-to-hip ratio adjusted for BMI – 2021 European Males and Females 458,349 79.660

HDL cholesterol UK Biobank 2020 European Males and Females 403,943 151.958

LDL cholesterol UK Biobank 2020 European Males and Females 440,546 172.155

Triglycerides UK Biobank 2020 European Males and Females 441,016 142.067

Circulating leptin levels – 2020 Mixed Males and Females 56,802 46.470

Agouti-related protein levels – 2020 European Males and Females 21,758 43.185

Adiponectin ADIPOGen 2012 Mixed Males and Females 39,883 88.935

Cognitive function Within family GWAS consortium 2022 European Males and Females 22,593 31.680

Cognitive performance – 2018 European Males and Female 30038396 43.742

Simple reaction time – 2011 European Males and Females 2,378 22.356

Fluid intelligence score MRC-IEU 2018 European Males and Females 149,051 40.296
F
rontiers in Endocrinology
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FIGURE 2

Schematic presentation of (A) univariable; (B) multivariable; (C) reverse univariable; and (D) reverse multivariable Mendelian randomization. BMI, body
mass index; BFP, body fat percentage; WHR, waist-to-hip ratio adjusted for BMI; HDL, high-density lipoprotein cholesterol; LDL, low-density
lipoprotein cholesterol; TG, triglycerides; LEP, circulating leptin levels; AgRP, agouti-related protein level; ADPN, adiponectin; CF, cognitive function;
CP, Cognitive performance; SRT, simple reaction time; FIS, fluid intelligence score.
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TABLE 2 Univariable Mendelian randomization results.

A. Estimated causal effects of obesity, lipids, and adipokines on cognitive ability

BMI BFP WHR HDL LDL TG LEP AgRP ADPN

CF

BETA -0.204 -0.284 -0.014 0.031 0.051 -0.008 -0.019 -0.058 0.001

SE 0.035 0.052 0.04 0.03 0.151 0.028 0.013 0.144 0.05

95% CI 0.761-0.873 0.680-0.833 0.911-1.067 0.973-1.093 0.982-1.127 0.939-1.048 0.957-1.006 0.712-1.252 0.907-1.105

P-value 0.000b 0.000b 0.719 0.3 0.151 0.777 0.143 0.69 0.987

CP

BETA -0.118 -0.168 -0.065 0.033 -0.004 -0.019 0.027 0.028 0.003

SE 0.02 0.03 0.019 0.014 0.015 0.013 0.044 0.033 0.03

95% CI 0.855-0.924 0.798-0.896 0.902-0.973 1.005-1.062 0.967-1.026 0.957-1.006 0.942-1.120 0.963-1.098 0.947-1.063

P-value 0.000b 0.000b 0.001b 0.020a 0.797 0.143 0.543 0.4 0.907

SRT

BETA 0.2 0.369 -0.042 -0.127 -0.057 0.048 0.25 -0.017 0.011

SE 0.094 0.137 0.126 0.102 0.119 0.079 0.375 0.666 0.161

95% CI 1.015-1.469 1.105-1.892 0.750-1.226 0.721-1.076 0.748-1.194 0.898-1.225 0.616-2.679 0.267-3.623 0.738-1.387

P-value 0.034a 0.007b 0.738 0.215 0.636 0.546 0.505 0.979 0.943

FIS

BETA -0.288 -0.346 -0.155 0.03 -0.018 -0.04 0.092 0.017 0.012

SE 0.044 0.065 0.043 0.032 0.037 0.03 0.116 0.081 0.07

95% CI 0.688-0.817 0.623-0.803 0.787-0.933 0.969-1.097 0.913-1.056 0.906-1.020 0.874-1.375 0.868-1.191 0.883-1.160

P-value 0.000b 0.000b 0.000b 0.34 0.621 0.189 0.426 0.836 0.864

B. Estimated causal effects of cognitive ability on obesity, lipids, and adipokines

BMI BFP WHR HDL LDL TG LEP AgRP ADPN

CF

BETA -0.051 -0.025 -0.053 0.003 -0.031 -0.041 0.288 -0.039 -0.079

SE 0.027 0.021 0.055 0.03 0.029 0.048 0.09 0.154 0.064

95% CI 0.901-1.003 0.935-1.017 0.851-1.056 0.946-1.063 0.916-1.026 0.874-1.053 1.119-1.592 0.712-1.300 0.815-1.047

P-value 0.062 0.243 0.333 0.924 0.286 0.384 0.001b 0.8 0.214

CP

BETA -0.129 -0.109 0.005 0.122 0 -0.09 -0.302 0.069 0.001

SE 0.034 0.024 0.031 0.03 0.015 0.02 0.093 0.052 0.025

95% CI 0.822-0.939 0.855-0.940 0.946-1.068 1.066-1.198 0.971-1.031 0.879-0.949 0.616-0.887 0.968-1.185 0.953-1.051

P-value 0.000b 0.000b 0.864 0.000b 0.988 0.000b 0.001b 0.184 0.982

SRT

BETA 0.004 0.005 0.009 0.001 -0.002 0.011 0.011 0.068 -0.008

SE 0.005 0.004 0.01 0.007 0.006 0.005 0.033 0.031 0.013

95% CI 0.993-1.015 0.997-1.014 0.990-1.028 0.988-1.014 0.987-1.009 1.000-1.022 0.947-1.079 1.007-1.138 0.967-1.017

P-value 0.464 0.203 0.356 0.907 0.727 0.042a 0.748 0.030a 0.521

(Continued)
F
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little evidence of associations between genetically predicted adipokines

and cognitive-ability markers.

For the reverse MR (Table 2B, Figures 2C, 3A, 4C, 5A), the

effect estimate ([95% CI]) of CP on BMI, BFP, HDL, TG and LEP

was 0.879([0.822 to 0.939]; P = 1.392 × 10-4), 0.896([0.855 to 0.940];

P = 7.100 × 10-6), 1.130([1.066 to 1.198]; P = 4.058 × 10-5), 0.913
Frontiers in Endocrinology 07
([0.879 to 0.949]; P = 4.125 × 10-6), and 0.740([0.616 to 0.887]; p =

1.190 × 10-3) respectively. Furthermore, the reverse MR analysis

revealed compelling evidence of a significant causal effect stemming

from genetically predicted FIS on the same set of adiposity

parameters. The effect estimates for FIS were as follows: 0.934

([0.897 to 0.974]; P = 1.324 × 10-3) for BMI, 0.950([0.923 to 0.977];
(A) (B)

FIGURE 3

Estimated causal effects of cognitive ability on obesity, lipids and adipokines markers using univariable and multivariable MR, presented as the SD-
unit change in obesity, lipids and adipokines marker per genetically predicted 1-SD change in cognitive ability. Schematic presentation of (A)
univariable; (B) multivariable Mendelian randomization.
TABLE 2 Continued

B. Estimated causal effects of cognitive ability on obesity, lipids, and adipokines

BMI BFP WHR HDL LDL TG LEP AgRP ADPN

FIS

BETA -0.068 -0.051 0.013 0.053 0.017 -0.03 -0.135 0.005 -0.004

SE 0.021 0.014 0.018 0.02 0.01 0.011 0.044 0.028 0.016

95% CI 0.897-0.974 0.923-0.977 0.979-1.049 1.014-1.096 0.996-1.038 0.950-0.990 0.802-0.952 0.950-1.062 0.966-1.028

P-value 0.001b 0.000b 0.453 0.008b 0.105 0.004b 0.002b 0.868 0.81
aStatistically significant (P < 0.05).
bStatistically significant (P < 0.01). The bold values indicate significant differences (P < 0.05).
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P = 3.828 × 10-4) for BFP, 1.054([1.014 to 1.096]; P = 8.268 × 10-3)

for HDL, 0.970([0.950 to 0.990]; P = 3.945 × 10-3) for TG, and 0.873

([0.802 to 0.952]; P =2.008 × 10-3) for LEP. In addition, the reverse

MR analysis also showed statistically significant causal effect of

genetically predicted CF on LEP 1.334 ([1.119 to 1.592]; p = 1.344 ×

10-3). There was evidence of a significant causal effect of genetically

predicted SRT on TG and AG were 1.011([1.000 to 1.022]; P = 4.200

× 10-2) and 1.070([1.007 to 1.138]; P = 3.000 × 10-2).

Multivariable MR analyses
The MVMR analysis revealed significant causal associations

between genetically predicted obesity and adipokines traits; BMI on

CF, WHR on CP and FIS, AgRP on CP and FIS, ADPN on CP

(Table 3A, Figures 2B, 4B, 5B). Specifically, BMI showed a significant

negative causal effect on CF, consistent with the findings from the

forward univariable analysis (b= 0.635([0.472–0.853]; P = 3.000 × 10-

2). Genetically predicted WHR had a significant causal effect on CP

0.910([0.860 to 0.961]; P = 1.000 × 10-2) and FIS 0.793([0.701 to

0.900]; P = 0.000). Additionally, AgRP exhibited a significant negative

causal effect on CF 0.687([0.515–0.916]; P = 1.100 × 10-2). In contrast,

there were no significant associations between lipid traits and

cognitive ability, consistent with previous analyses.

The reverse MR analysis revealed significant causal association

between cognitive ability and obesity, lipids and adipokines traits, as

shown in the Table 3B, Figures 2D, 3B, 4D Specifically, for the

reverse MR, the effect estimate ([95% CI]) on BMI for FIS was 0.784

([0.650 to 0.946]; P = 1.100 × 10-2). The multivariable MR yielded

evidence of a significant causal effect of genetically predicted SRT on

HDL 0.950([0.916 to 0.985]; P = 6.000 × 10-2). However, there was
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no evidence of reverse causal effects from other cognitive ability

traits on genetically predicted obesity, lipids, or adipokine traits in

this population.
Sensitivity analyses

We accounted for the pleiotropic effects between instrumental

variables using MR-Egger. There were two instance of horizontal

pleiotropy: for the effect of CP and FIS on WHR (P = 0.0004 and

0.018). This pleiotropic of CP onWHR effect remained (P = 0.0008)

after removing 9 SNPs (rs112780312, rs12448902, rs148696809,

rs2005078, rs2737339, rs34811474, rs4470366, rs6708515,

rs78382112) which were associated with identified outliers.

Furthermore, MR-PRESSO identified 6 potentially pleiotropic

SNPs (rs13107325, rs34811474, rs4456117 rs4852252, rs6125540,

rs7775835) of FIS on WHR effect. When we performed the analysis

without these specific SNPs, there was no significant evidence of

pleiotropy (P = 0.2780). Heterogeneity was observed in

approximately half of the heterogeneity test results However,

when we conducted the MR-Egger regression intercept analysis to

investigate horizontal pleiotropy between the IVs, we found no

significant evidence of such pleiotropy. All associations showed P >

0.05 for the MR-Egger intercept, indicating no substantial

horizontal pleiotropy. The same pattern was observed in the

reverse MR analysis. To further assess potential confounding

effects due to pleiotropy between SNPs, we employed the leave-

one-out approach. The results indicated no evidence of

confounding caused by pleiotropy among the SNPs.
FIGURE 4

Genetic correlations between obesity, lipids and adipokines factors and cognitive ability. (A) Univariable MR between obesity, lipids and adipokines
factors on cognitive ability. (B) Multivariable MR between obesity, lipids and adipokines factors on cognitive ability. (C) Univariable MR between
cognitive ability on obesity, lipids and adipokines factors. (D) Multivariable MR between cognitive ability on obesity, lipids and adipokines factors.
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TABLE 3 Multivariable Mendelian randomization results.

A. Estimated causal effects of obesity, lipids, and adipokines on cognitive ability

BMI BFP WHR HDL LDL TG LEP AgRP ADPN

CF

BETA -0.455 0.225 -0.059 0.008 0.045 -0.037 0.073 0.029 0.047

SE 0.151 0.196 0.052 0.036 0.038 0.048 0.112 0.308 0.074

95% CI 0.472-0.853 0.854-1.838 0.851-1.044 0.940-1.081 0.970-1.128 0.877-1.060 0.864-1.340 0.563-1.884 0.906-1.213

P-value 0.003b 0.25 0.257 0.82 0.241 0.45 0.511 0.925 0.526

CP

BETA -0.107 -0.093 -0.095 0.013 0.011 -0.017 -0.052 -0.375 0.074

SE 0.061 0.086 0.029 0.016 0.019 0.018 0.056 0.147 0.037

95% CI 0.798-1.012 0.770-1.078 0.859-0.962 0.982-1.046 0.975-1.049 0.948-1.019 0.852-1.059 0.515-0.916 1.001-1.158

P-value 0.078 0.279 0.001b 0.409 0.553 0.342 0.351 0.011a 0.047a

SRT

BETA -0.057 0.501 -0.093 -0.083 0.015 0.017 0.618 1.095 -0.215

SE 0.285 0.402 0.141 0.098 0.144 0.114 0.351 0.926 0.281

95% CI 0.541-1.650 0.750-3.632 0.691-1.202 0.759-1.115 0.765-1.346 0.813-1.273 0.934-3.690 0.487-1.835 0.465-1.400

P-value 0.841 0.213 0.511 0.396 0.919 0.88 0.078 0.237 0.445

FIS

BETA -0.242 -0.215 -0.232 0.02 -0.001 -0.031 -0.111 -0.868 0.17

SE 0.133 0.189 0.063 0.039 0.045 0.044 0.139 0.368 0.093

95% CI 0.604-1.019 0.557-1.168 0.701-0.897 0.945-1.101 0.915-1.091 0.890-1.057 0.681-1.177 0.204-0.864 0.988-1.422

P-value 0.069 0.255 0.000b 0.617 0.98 0.483 0.428 0.018a 0.067

B. Estimated causal effects of cognitive ability on obesity, lipids, and adipokines

BMI BFP WHR HDL LDL TG LEP AgRP ADPN

CF

BETA -0.038 -0.028 -0.044 0.028 0.005 -0.029 0.273 0.148 -0.046

SE 0.076 0.053 0.058 0.062 0.04 0.047 0.303 0.117 0.054

95% CI 0.829-1.118 0.876-1.080 0.855-1.071 0.911-1.161 0.929-1.086 0.886-1.006 0.726-2.377 0.922-1.457 0.859-1.062

P-value 0.615 0.602 0.445 0.647 0.906 0.544 0.367 0.206 0.393

CP

BETA 0.416 0.187 0.044 -0.091 -0.096 0.026 -0.947 -0.169 0.334

SE 0.218 0.153 0.178 0.177 0.114 0.136 0.503 0.331 0.152

95% CI 0.988-2.326 0.894-1.628 0.737-1.481 0.645-1.292 0.727-1.135 0.787-1.339 0.145-1.041 0.441-1.615 1.036-1.883

P-value 0.057 0.221 0.807 0.607 0.398 0.847 0.06 0.609 0.028a

SRT

BETA 0.026 0.025 -0.032 -0.051 -0.018 0.01 0.045 0.014 0.018

SE 0.023 0.016 0.018 0.019 0.012 0.014 0.052 0.034 0.016

95% CI 0.981-1.074 0.994-1.058 0.935-1.004 0.916-0.985 0.960-1.006 0.982-1.038 0.945-1.158 0.948-1.085 0.986-1.051

P-value 0.253 0.12 0.082 0.006b 0.141 0.49 0.385 0.681 0.268

(Continued)
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Discussion

To the best of our knowledge, this is the first investigation that

explores the potential causal relationship between obesity, lipids,

adipokines and cognitive ability markers using univariable and

multivariable MR approaches in both forward and reverse

directions respectively. We presented evidence suggesting possible

causal effects of several obesity and lipids traits, such as BMI, BFP,

WHR and HDL, on cognitive ability through univariable MR
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analyses. However, these effects estimation altered once

accounting for diverse obesity characteristics by various

representative indicators using multivariable MR analyses. In the

primary multivariable MR analysis conducted in the forward

direction, the adipokines of AgRP and ADPN also showed

evidence of a significant causal association with cognitive ability.

Our reverse-MR analysis yielded compelling evidence indicating

that FIS and SRT may influence BMI and HDL respectively.

Collectively, these findings not only enhance our mechanistic
(A) (B)

FIGURE 5

Estimated causal effects of obesity, lipids and adipokines on cognitive ability markers using both univariable and multivariable MR, presented as the
SD-unit change in cognitive ability marker per genetically predicted 1-SD change in obesity, lipids and adipokines. Schematic presentation of (A)
univariable; (B) multivariable Mendelian randomization.
TABLE 3 Continued

B. Estimated causal effects of cognitive ability on obesity, lipids, and adipokines

BMI BFP WHR HDL LDL TG LEP AgRP ADPN

FIS

BETA -0.244 -0.133 -0.011 0.09 0.036 -0.046 0.182 0.052 -0.137

SE 0.096 0.067 0.081 0.078 0.05 0.06 0.182 0.144 0.066

95% CI 0.650-0.946 0.768-0.998 0.843-1.161 0.940-1.274 0.940-1.143 0.850-1.073 0.839-1.715 0.795-1.397 0.766-0.994

P-value 0.011a 0.047a 0.895 0.247 0.47 0.437 0.319 0.717 0.040a
aStatistically significant (P < 0.05).
bStatistically significant (P < 0.01). The bold values indicate significant differences (P < 0.05).
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insights into the complex interplay between obesity and cognition

but also carry substantial clinical implications, underscoring

potential therapeutic targets and preventive strategies for

mitigating cognitive decline amidst the backdrop of obesity

and dyslipidemia.

In the adiposity to cognition direction, we corroborated the direct

effects of obesity and lipids on cognitive ability. The obesity and lipids

traits including BMI, BFP, WHR, AgRP and ADPN have effects on

cognitive ability through two primary pathways: (i) a directed path

from BMI, BFP andWHR to CF, CP, SRT; (ii) a pathway from AgRP

and ADPN to CP through HDL. For the causal relations between

adiposity on cognition, while one study reported no significant

differences in cognitive performance among normal, overweight,

and obese individuals, this might be attributed to the utilization of

Mini Mental State Examination (MMSE), which is not highly

sensitive to mild cognitive deficits (37). Our selection of cognitive

metrics was guided by their sensitivity to detect subtle changes in

cognitive function and their relevance to different aspects of cognitive

processing, such as memory, attention, and executive function (38,

39). Our study aligns with previous research suggesting that the

obesity traits like BMI, BFP and WHR were causal factors for

increasing risks of cognitive function (40, 41). Meanwhile, obesity

was found to have an adverse effect on reaction speed across some

epidemiological and experimental studies (42, 43), which supports

our present findings. More importantly, this study was the first to

reveal the effects of ADPN and AgRP on CP. An observational study

observed that lower adiponectin levels in individuals with obesity

(44). As the ADPN appeared to induce an increase in serum HDL

(45), the protective effects of ADPN on CP might be mediated

through HDL, which displayed positive associations with the

ADPN, HDL, and CP in this study. Similarly, our study also found

a negative association between plasma AGRP and cognitive (46),

corroborating previous research. Despite previous demonstrations

indicating that leptin has cognitive enhancing properties (47), our

analysis did not provide evidence of a significant causal association

between leptin and cognitive traits.

In the direction cognition to adiposity, although we reported

that CF, CP, SRT, and FIS had a significant causal effect on obesity

traits with the main univariable analysis, only SRT and FIS had a

strong effect on HDL and BMI with the multivariable MR analysis.

These results contradict previous studies that reported either no

association or positive correlations between cognitive function and

adiposity risks (8, 48). Our study, based on prospectively

longitudinal data, provides robust evidence that lower cognitive

function, as indicated by worse SRT and FIS, is associated with

lower HDL cholesterol levels and higher BMI (49, 50). Nevertheless,

it is unclear how the cognition specifically affects obesity and further

studies are needed.

Furthermore, it is important to consider the broader context of

obesity-related metabolic disturbances that may contribute to

cognitive decline and neurodegeneration. Obesity is associated

with increased levels of pro-inflammatory cytokines and

chemokines, which can lead to chronic low-grade inflammation.

This inflammatory state can promote neuroinflammation and

gliosis, key pathological features in neurodegenerative disorders
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(51). Additionally, obesity-induced decreases in adipokines such as

leptin, along with elevated lipid and glucose levels, may exacerbate

these processes (52). Our results hint at potential causal

relationships where such factors could induce gliosis and

contribute to cognitive impairment, providing a mechanistic

framework for the observed associations.

The strengths of our study lie in the updated genetic

instruments for lipid and adipokine traits in obesity and cognitive

MR analyses. We incorporated data from large consortia, which

provided robust genetic evidence for the reported associations. By

including TG, LEP, ADPN, and AgRP as additional traits, our study

expanded the scope of genetic factors considered in the analysis. On

the other hand, the utilization of data from populations of European

ancestry in our MR study helped mitigate the risks of confounding

and reverse causality, while minimizing bias caused by population

stratification (53). Meanwhile, our study employed both univariate

and multivariate MR analyses in a bidirectional design, enabling us

to establish the direction of causal effects between adiposity and

cognitive function.

Several limitations of our MR investigation should be

acknowledged. First, we did not stratify the causal association

between obesity and cognition by gender or age, which may

influence fat distribution in different anatomical regions (54).

Second, there are various testing methods related to cognitive

function. Whether or not these tests represent directly represent

cognitive related functions remained unclear. Meanwhile, the

representative indicators of obesity and cognitive function

included in our study are also limited. Third, the small sample

size of GWAS in LEP and AgRP may resulted in imprecision in the

selection of SNPs. Therefore, there is a need for larger GWAS to

identify more genetic variants for adipokines. Furthermore, it is

crucial to validate our findings through longitudinal cohort studies

in future research.
Conclusions

Taken together, we demonstrate that high BMI, BFP, WHR and

AgRP have negative causal direct effects with cognitive ability, while

high HDL and ADPN have positive causal direct effects with

cognitive ability. The total effects of obesity on cognitive ability

may be mediated by lipids and adipokines including HDL, ADPN

and AgRP. For the reverse causal direction, there was a consistent

evidence that worse cognitive function such as SRT and FIS may

influence serum HDL level and BMI. These studies helped us to

objectively validate previous observational studies and deepen our

understanding of the association with obesity, lipids and adipokines

on cognitive ability. Our study thereby contributes a pivotal piece to

the clinical puzzle, elucidating potential biomarkers and pathways

implicated in obesity-related cognitive decline. Nevertheless, further

mechanistic explorations are imperative to decipher the precise

molecular mechanisms underpinning these causal associations,

which may ultimately inform targeted interventions and

preventative strategies aimed at preserving cognitive integrity

amidst the obesity epidemic.
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