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Yunling Yang1 and Liang Lin1*†

1Medical Center of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical
University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China, 2Department of Urology,
Fujian Medical University Union Hospital, Fuzhou, China
Background: Diet, lifestyle, and oxidative stress have been linked to female

infertility, with the Oxidative Balance Score (OBS) serving as a comprehensive

indicator of an individual’s oxidative and antioxidant status. This study aims to

investigate the correlation between OBS and female infertility.

Methods: The National Health and Nutrition Examination Survey (NHANES) from

2013 to 2020 were utilized. Weighted multivariate regression analyses and

restricted cubic splines (RCS) were employed to analysis. Additionally,

subgroup analyses and multiple imputat6ions (MI) were carried out as

sensitivity analyses to ensure the strength and reliability of the findings.

Results: A total of 3,905 individuals were involved in the study, the prevalence of

female infertility was 11.96%. Individuals with infertility exhibited significantly

lower OBS compared to those with normal fertility (19.74 ± 0.37 vs. 21.42 ±

0.20). The OBS dietary and lifestyle components also had lower scores, with

averages of 15.98 ± 0.33 vs. 17.12 ± 0.18 and 3.76 ± 0.11 vs. 4.29 ± 0.05,

respectively. Weighted logistic regression results revealed that a one-point

increase in OBS score was associated with a 3% decrease in infertility risk

(Odds Ratio (OR) 0.97, 95% Confidence Interval (CI): 0.95, 0.99). Similarly, a

one-point increase in OBS lifestyle score was linked to a 15% decrease in

infertility risk (OR: 0.85, 95% CI: 0.75, 0.96), and a one-point increase in OBS

dietary score was associated with a 2% decrease in infertility risk (OR: 0.98, 95%

CI: 0.96, 0.99). Subgroup analyses revealed that individuals with no prior history

of pregnancy benefitedmore fromOBS andOBS lifestyle in terms of infertility risk

reduction compared to those with a history of pregnancy.

Conclusion: OBS is found to have a negative correlation with infertility,

particularly in cases of primary infertility. The results of this study indicate that

adopting an antioxidant-rich diet and lifestyle could potentially lower the risk

of infertility.
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Introduction

Infertility, defined as the inability to conceive after at least 12

months of consistent, unprotected sexual activity (1) affects

approximately 15% of couples worldwide during their reproductive

years. This rate is on a steadily increasing year by year. Previous

studies (2, 3) on the global burden of infertility from 1990 to 2017

showed a 0.37% yearly rise in the age-standardized prevalence of

infertility. Beyond its direct impact on reproductive health, female

infertility has been identified as a potential risk factor for the

development of cancers in the reproductive system and metabolic

disorders (4, 5). This escalating prevalence, coupled with its broad-

ranging implications, underscores the urgent need to address

infertility as a critical global health issue.

The etiology of female infertility encompasses multiple factors,

including ovulatory dysfunction, fallopian tube pathology,

endometriosis, uterine abnormalities, and unexplained causes (6,

7). While medical conditions contribute significantly to infertility,

modifiable lifestyle and environmental factors are increasingly

recognized for their role. Many of these factors exert their effects

through oxidative stress pathways, which may present opportunities

for targeted intervention.

Oxidative stress, characterized by an imbalance between reactive

oxygen species (ROS) production and the body’s antioxidant defense

mechanisms, is recognized as a crucial factor in the development of

various chronic diseases, including cardiovascular disease, type 2

diabetes, chronic kidney disease, and osteoarthritis (8–12). To assess

this complex interplay, the Oxidative Balance Score (OBS) was

developed (13, 14). The OBS is a comprehensive measure that

integrates dietary and lifestyle factors to evaluate an individual’s

oxidative and antioxidant status. Unlike individual biomarkers, the

OBS provides a holistic assessment by incorporating both pro-oxidant

and antioxidant dietary components, alongside lifestyle factors such as

physical activity, body mass index (BMI), alcohol consumption, and

smoking status. The OBS is calculated based on a weighted

combination of these factors, with specific weights assigned to each

component according to its relative contribution to oxidative stress.

Over time, the OBS has been refined to enhance its predictive accuracy

and applicability across diverse populations, emphasizing its growing

importance as an epidemiological tool.

Additionally, the OBS offers valuable insights into the potential

benefits of lifestyle modifications in reducing oxidative stress. Our

study aims to fill this gap by providing a comprehensive evaluation

of the relationship between OBS and female infertility.

Although previous studies (15–17) have examined isolated

aspects of oxidative stress in relation to fertility, the association

between comprehensive oxidative balance and female infertility

remains largely unexplored. We hypothesize that a higher OBS,

indicative of better oxidative balance, is associated with a lower risk

of infertility, potentially with differential effects based on age and

pregnancy history. This hypothesis is supported by the known age-

related changes in oxidative stress and the varying etiologies of

infertility across different age groups. This population-based study

leverages NHANES data to investigate the relationship between
Frontiers in Endocrinology 02
OBS and female infertility, with a particular focus on examining

variations across different subgroups of women. Our findings may

have significant clinical implications, suggesting that targeted

lifestyle interventions aimed at improving oxidative balance could

be an effective strategy for reducing the risk of infertility.
Methods

Study population

This cross-sectional study leveraged data from the NHANES,

conducted between 2013 and 2020. The NHANES, managed by the

National Center for Health Statistics (NCHS), is carried out every

two years to assess the health and nutritional status of the non-

institutionalized civilian population in the United States. Using a

complex, multistage stratified sampling approach, NHANES

collects data from a diverse group of participants through surveys,

physical exams, and lab tests, offering a thorough and scientifically

sound evaluation of public health. The initial screening

encompassed 15,689 participants. After excluding females outside

the age range of 20 to 45 years (n=10,380), those without

reproductive health data (n=223), and participants lacking

obstetric service information (n=1,181), the final study population

comprised 3,905 women.
Measurement of OBS

The OBS is derived from a comprehensive assessment that

integrates 16 dietary components and 4 lifestyle elements,

encompassing 15 antioxidants and 5 pro-oxidants (13, 14).

Supplementary Table 1 illustrates the detailed scoring system for

OBS. Dietary antioxidants are scored from 0 to 2, with the highest

tertile receiving a score of 0 and the lowest tertile a score of 2 for

pro-oxidants. Lifestyle factors were assessed using a standardized

scoring system: individuals received 0 points for engaging in less

than 400 MET-minutes per week, 1 point for 400 to 1,000 MET-

minutes, and 2 points for exceeding 1,000 MET-minutes weekly in

terms of physical activity. For alcohol consumption, a score of 0 was

assigned for intakes above 30 g/day, 1 point for 0 to 30 g/day, and 2

points for abstainers. Body Mass Index (BMI) was categorized as 0

points for obesity, 1 point for overweight, and 2 points for normal

weight individuals. Serum cotinine levels were scored as 0 points for

concentrations above 0.038 ng/mL, 1 point for levels between 0.038

to 1.13 ng/mL, and 2 points for values below 1.13 ng/mL. This

systematic scoring system facilitated the evaluation of lifestyle-

related health risks in the study population (18, 19).
Measurement of infertility

The primary outcome variable of this study was infertility.

Infertility status was determined based on self-reported data from
frontiersin.or
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women who participated in the NHANES Reproductive Health

Questionnaire (RHQ). Specifically, the response to item RHQ074,

“Have you ever attempted to become pregnant over a period of at

least a year without becoming pregnant?” was used to classify

women. Those who answered “yes” to this question were

categorized as having infertility (20).
Covariables

The collection of variables in this study includes demographic

characteristics such as age, BMI, race, marital status, education level,

poverty-income ratio (PIR), history of ever pregnancies. Comorbid

conditions such as diabetes, hypertension, metabolic syndrome, as well

as laboratory biochemical indicators like estimated glomerular filtration

rate (eGFR), HDL cholesterol, HbA1c, and albumin.

Diabetes mellitus was identified based on a combination of

factors: a hemoglobin A1c (HbA1c) concentration of 6.5% or

greater, a fasting plasma glucose (FPG) level exceeding 126 mg/

dL, documented use of hypoglycemic agents, or a self-reported

medical history of diabetes. Hypertension was diagnosed when

systolic and diastolic blood pressure measurements reached or

surpassed 140/90 mmHg, patients were on antihypertensive

therapy, or there was a self-reported history of hypertension. For

the identification of metabolic syndrome in the adult population,

the criteria established by the National Cholesterol Education

Program’s Adult Treatment Panel III (NCEP-ATP III) (21, 22)

were applied. These criteria provide a standardized approach for the

clinical assessment and diagnosis of these conditions.
Statistical analysis

Data processing in our study adhered to NHANES analysis

guidelines, ensuring that no variable had missing data exceeding

10%. All analyses incorporated appropriate sampling weights.

Continuous variables were presented as weighted means

accompanied by standard errors, while categorical variables were

depicted as weighted percentages with their respective standard

errors. Disparities in continuous baseline attributes were assessed

using Student’s t-test, and for categorical variables, the chi-square

test was applied. A weighted multiple logistic regression model was

utilized to investigate the association between OBS and infertility,

adjusting for various demographic and health-related variables such

as age, race, marital status, educational attainment, PIR, DM,

hypertension, MetS, eGFR, HDL cholesterol, HbA1c, and

albumin. OBS was categorized into quartiles for trend analysis

and subgroup analyses were conducted to explore relationships

within different demographic and health characteristic strata.

Interaction tests were performed to assess consistency across

subgroups. Nonlinear relationships were examined using RCS and

multiple imputation techniques were employed for reliability.

Statistical analyses were carried out using R software (version

4.3.0) and Free Statistics software (version 1.9.2).
Frontiers in Endocrinology 03
Results

Baseline characteristics

Figure 1 shows a flowchart of the data integration procedure.

Table 1 presents the initial demographic and characteristics of the

participants in the study, stratified by the presence of infertility.

Participants with infertility had significantly lower scores in the OBS,

OBS dietary, and OBS lifestyle categories compared to their fertile

counterparts. Infertile participants showed distinct characteristics, such

as older age and a higher prevalence of prior pregnancies. Furthermore,

this group had a higher occurrence of comorbidities like diabetes

mellitus, hypertension, and metabolic syndrome. On the other hand,

individuals in the infertile group had lower levels of high-density

lipoprotein (HDL) cholesterol and albumin compared to fertile

individuals. These results indicate an intricate relationship between

fertility status and different health factors.
Association between oxidative balance
score and infertility

Table 2 presents the results of a weighted regression analysis

that examines the relationship between the OBS and the prevalence

of infertility. The analysis revealed that for each one-unit increase in

the OBS, there was a corresponding decrease in the likelihood of

experiencing infertility, with an OR of 0.97 and a 95%CI of 0.95 to

0.98. These findings suggest a small but statistically significant

protective impact of higher OBS against infertility. This

association was consistent across different models, with the OR

remaining stable. In the fully adjusted model, an increment of one

point in OBS corresponded to a 3% decrease in the likelihood of

infertility (OR: 0.97, 95% CI: 0.95, 0.99).

When OBS was modeled as a quadratic variable, the unadjusted

model showed that, compared to the first quartile, the adjusted ORs

for the second, third, and fourth quartiles were 0.7 (95% CI: 0.54-

0.91), 0.7 (95% CI: 0.51-0.96), and 0.42 (95% CI: 0.30-0.59),

respectively. After adjusting for relevant covariates, the analysis

found no statistically significant disparities between the second

(Q2) and third (Q3) quartiles compared to the first quartile (Q1).

However, the fourth quartile (Q4) displayed a significant decrease

(Model 3 adjusted OR: 0.47, 95% CI: 0.31-0.72), suggesting a linear

trend for OBS in relation to infertility diagnosis (trend p < 0.05).

Additionally, we examined the distinct relationships between

OBS dietary and OBS lifestyle components with infertility. The data

in Table 2 indicate that both OBS dietary and OBS lifestyle

components are significantly correlated with infertility in both

unadjusted and adjusted models.
Subgroup analyses

Subgroup and interaction analyses were performed, stratified by

age, diabetes, hypertension, history of previous pregnancies, and
frontiersin.org
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metabolic syndrome, to evaluate the relationship between the OBS

and infertility and to identify potential modifiers of this

relationship. Table 3 indicates no statistically significant

differences in the associations with age, diabetes, hypertension, or

metabolic syndrome. However, a significant interaction was

observed for the history of previous pregnancies (interaction p

< 0.05).

Among individuals without a history of previous pregnancies,

OBS showed a stronger negative correlation with infertility [OR

0.95, 95% CI (0.89, 1.01)] than among those with such a history [OR

0.98, 95% CI (0.96, 1)]. A significant interaction between age and

history of previous pregnancies was noted in the OBS lifestyle

component (interaction p < 0.05) (Table 4). For individuals under

35 years, OBS demonstrated a significantly stronger negative

correlation with infertility [OR 0.75, 95% CI (0.65, 0.85)]

compared to those aged 35 and above [OR 0.98, 95% CI (0.84,

1.16)]. Additionally, in individuals without a history of previous

pregnancies, OBS lifestyle had a notably stronger negative

correlation with infertility [OR 0.63, 95% CI (0.48, 0.83)] than

among those with a history [OR 0.92, 95% CI (0.82, 1.05)]. In the

case of OBS dietary (Table 5), no interaction was observed, yet

individuals without a history of previous pregnancies showed a

slightly stronger negative association with infertility [OR 0.97, 95%

CI (0.91, 1.03)] compared to those with a history [OR 0.98, 95% CI

(0.96, 1)].

Figure 2 illustrates that OBS was significantly higher in

individuals without a history of previous pregnancies compared

to the infertile population, a difference not observed in those with a

history of previous pregnancies. Similar findings were noted for

OBS dietary.
Frontiers in Endocrinology 04
Restricted cubic spline analysis

To investigate the potential non-linear association between the

OBS and infertility, we performed RCS analysis. Employing a

logistic regression model with smooth curve fitting, after

controlling for additional factors, we found that the non-linear

connection between OBS and infertility was not statistically

significant. (Figure 3). Additionally, the non-linear associations

between OBS dietary, OBS lifestyle components, and infertility

were also found to be non-significant.
Sensitivity analysis

Supplementary Table 2 presents the findings from a re-analysis

of the raw data without multiple imputing missing values, which

corroborates the main study findings. Regardless of how OBS was

considered - as either a continuous or categorical variable - a

significant negative correlation with infertility was observed.
Discussion

Our analysis revealed a significant negative correlation between

the OBS and female infertility. Specifically, we found that higher

OBS levels were associated with a decreased incidence of infertility,

with each one-point increase in OBS corresponding to a 3%

reduction in infertility risk. This relationship remained consistent

across multiple adjusted models, suggesting a robust association

independent of demographic and clinical confounders.
FIGURE 1

Flow chart of participants selection. NHANES, National Health and Nutrition Examination Survey.
frontiersin.org
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TABLE 1 Baseline characteristics of participants, weighted(N=3905).

Variable Total Fertility Infertility P value

OBS 21.22 ± 0.20 21.42 ± 0.20 19.74 ± 0.37 < 0.0001

OBS.dietary 16.99 ± 0.18 17.12 ± 0.18 15.98 ± 0.33 < 0.001

OBS.lifestyle 4.23 ± 0.05 4.29 ± 0.05 3.76 ± 0.11 < 0.0001

Age(%) < 0.0001

<35 year 59.98(0.02) 61.68(1.22) 47.49(3.31)

>=35 year 40.02(0.02) 38.32(1.22) 52.51(3.31)

Race (%) 0.28

Non-Hispanic White 56.06(0.03) 55.48(2.13) 60.33(3.40)

Non-Hispanic Black 13.74(0.01) 13.85(1.22) 12.97(1.56)

Mexican Ameirican 11.73(0.01) 11.83(1.19) 10.95(1.82)

Other Race 18.47(0.01) 18.84(1.19) 15.75(2.03)

Marital status(%) < 0.0001

Solitude 38.26(0.02) 48.83(1.45) 26.00(2.90)

Cohabitation 44.56(0.02) 51.17(1.45) 74.00(2.90)

Education level(%) 0.17

Less than or high school 29.99(0.01) 29.64(1.51) 32.63(2.35)

Above high school 69.99(0.03) 70.36(1.51) 67.37(2.35)

PIR(%) 0.23

<1.3 25.68(0.01) 28.03(1.20) 24.14(2.45)

13.,3.5 33.67(0.02) 35.61(1.24) 39.86(2.99)

>=3.5 33.85(0.02) 36.36(1.67) 36.00(2.98)

Ever pregnant(%) < 0.0001

No 31.45(0.02) 33.63(1.28) 15.53(1.85)

Yes 68.49(0.02) 66.37(1.28) 84.47(1.85)

DM(%) 0.001

No 85.11(0.03) 90.04(0.61) 84.84(1.70)

Pre DM 4.20(0.00) 4.37(0.47) 4.74(1.15)

DM 5.86(0.00) 5.59(0.41) 10.42(1.49)

Hypertension(%) 0.004

No 86.47(0.03) 87.21(0.77) 81.25(2.19)

Yes 13.49(0.01) 12.79(0.77) 18.75(2.19)

MetS(%) < 0.001

No 75.00(0.03) 80.05(1.11) 69.41(2.97)

Yes 20.17(0.01) 19.95(1.11) 30.59(2.97)

eGFR 111.06 ± 0.62 111.31 ± 0.64 109.26 ± 1.14 0.07

HDL(mmol.L) 1.48 ± 0.01 1.49 ± 0.01 1.39 ± 0.03 0.001

HbA1c 5.33 ± 0.01 5.31 ± 0.01 5.48 ± 0.03 < 0.0001

Albumin(g.L) 41.05 ± 0.10 41.10 ± 0.10 40.64 ± 0.24 0.07
F
rontiers in Endocrinology
 05
Values are mean +/- SD (continuous variables) or n% (categorical variables) are weighted.
OBS, Oxidative balance score; BMI, Body mass index; PIR, Poverty to income ratio; DM, Diabetes mellitus; MetS, Metabolic syndrome; eGFR, estimated Glomerular Filtration Rate.
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TABLE 2 Association between OBS with infertility.

Character Crude model (95%CI) Model 1 (95%CI) Model 2 (95%CI) Model 3 (95%CI)

0.97 (0.95,0.99)* 0.97 (0.95,0.99)*

ref ref

0.74 (0.53,1.02) 0.76 (0.54,1.07)

0.74 (0.50,1.11) 0.80 (0.53,1.21)

0.45 (0.29,0.69)* 0.47 (0.31,0.72)*

<0.001 0.001

0.85 (0.76,0.95)* 0.85 (0.75,0.96)*

ref ref

0.79 (0.53,1.17) 0.82 (0.53,1.25)

0.65 (0.42,1.00)* 0.64 (0.41,1.01)

0.44 (0.23,0.85)* 0.45 (0.23,0.88)*

0.01 0.01

0.97 (0.95,0.99)* 0.98 (0.96,0.99)*

ref ref

0.68 (0.49,0.95)* 0.68 (0.49,0.95)*

0.85 (0.59,1.22) 0.90 (0.62,1.32)

0.51 (0.33,0.78)* 0.52 (0.35,0.80)*

0.01 0.01
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OBS 0.97 (0.95,0.98)* 0.96 (0.94,0.98)*

OBS quantile

Q1 ref ref

Q2 0.70 (0.54,0.91)* 0.77 (0.55,1.06)

Q3 0.70 (0.51,0.96)* 0.71 (0.48,1.05)

Q4 0.42 (0.30,0.59)* 0.40 (0.27,0.60)*

p for trend <0.0001 <0.0001

OBS lifestyle 0.82 (0.76,0.89)* 0.82 (0.74,0.91)*

OBS lifestyle quantile

Q1 ref ref

Q2 0.80 (0.56,1.13) 0.76 (0.50,1.14)

Q3 0.61 (0.43,0.86)* 0.58 (0.38,0.90)*

Q4 0.36 (0.21,0.60)* 0.38 (0.21,0.71)*

p for trend <0.0001 <0.001

OBS dietary 0.97 (0.96,0.99)* 0.97 (0.95,0.99)*

OBS dietary quantile

Q1 ref ref

Q2 0.63 (0.48,0.81)* 0.67 (0.48,0.93)*

Q3 0.84 (0.64,1.11) 0.86 (0.60,1.21)

Q4 0.50 (0.35,0.69)* 0.46 (0.31,0.70)*

p for trend <0.001 0.002

Crude model: no covariates were adjusted.
Model 1, age, marital status, race, education level, PIR and ever pregnant were adjusted.
Model 2, Model 1+DM and hypertension were adjusted.
Model 3, Model 2+MetS, eGFR, alumin, HDL and HbA1c were adjusted.
*mean p <0.05.
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TABLE 3 Subgroup analysis between OBS with infertility.

Character Crude model (95%CI) Model 1 (95%CI) Model 2 (95%CI) Model 3 (95%CI) p for interaction

0.48

0.96 (0.93,0.99) 0.96 (0.93,0.99)

0.97 (0.94,1.00) 0.97 (0.95,1.00)

0.9

0.97 (0.95,0.99) 0.97 (0.95,0.99)

0.91 (0.83, 1.01) 0.91 (0.82, 1.02)

0.98 (0.88, 1.08) 1.00 (0.89, 1.11)

0.99

0.97 (0.95,0.99) 0.97 (0.95,1.00)

0.96 (0.91, 1.01) 0.96 (0.92,1.01)

0.01

0.93 (0.88, 0.98) 0.95 (0.89, 1.01)

0.98 (0.96,1.00) 0.98 (0.96,1.00)

0.47

0.97 (0.95,1.00) 0.97 (0.95,1.00)

0.96 (0.92,1.00) 0.96 (0.92,1.00)
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Age

<35 0.95 (0.93,0.98) 0.96 (0.93,0.99)

>=35 0.98 (0.95,1.00) 0.97 (0.94,1.00)

DM

No 0.97 (0.95,0.99) 0.97 (0.94,0.99)

PreDM 0.92 (0.85,1.00) 0.91 (0.80, 1.03)

DM 1.00 (0.94,1.06) 0.98 (0.89, 1.08)

Hypertension

No 0.97 (0.95,0.98) 0.96 (0.94,0.98)

Yes 0.97 (0.94,1.01) 0.96 (0.92,1.01)

Ever pregnant

No 0.92 (0.88,0.95) 0.93 (0.89, 0.98)

Yes 0.98 (0.97,0.99) 0.97 (0.95,0.99)

MetS_ATP

No 0.97 (0.95,0.99) 0.97 (0.95,1.00)

Yes 0.96 (0.92,0.99) 0.96 (0.92,1.00)

Crude model: no covariates were adjusted.
Model 1, age, marital status, race, education level, PIR and ever pregnant were adjusted.
Model 2, Model 1+DM and hypertension were adjusted.
Model 3, Model 2+MetS, eGFR, alumin, HDL and HbA1c were adjusted.
*mean p <0.05.
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TABLE 4 Subgroup analysis between OBS lifestyle with infertility.

Character Crude model (95%CI) Model 1 (95%CI) Model 2 (95%CI) Model 3 (95%CI) p for interaction

< 0.001

0.74 (0.64,0.84) 0.75 (0.65,0.85)

1.00 (0.86,1.16) 0.98 (0.84,1.16)

0.15

0.84 (0.74,0.94) 0.82 (0.73,0.93)

0.91 (0.50, 1.66) 0.97 (0.44, 2.16)

1.06 (0.70, 1.62) 1.08 (0.71, 1.63)

0.3

0.84 (0.75,0.94) 0.83 (0.74,0.94)

0.95 (0.73, 1.24) 0.97 (0.74,1.27)

< 0.001

0.65 (0.53, 0.80) 0.63 (0.48, 0.83)

0.93 (0.83,1.04) 0.92 (0.82,1.05)

0.08

0.83 (0.74,0.94) 0.79 (0.69,0.90)

0.98 (0.81,1.19) 1.01 (0.84,1.22)
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Age

<35 0.74 (0.67,0.82) 0.73 (0.65,0.83)

>=35 0.94 (0.83,1.06) 0.92 (0.78,1.09)

DM

No 0.83 (0.75,0.91) 0.83 (0.74,0.94)

PreDM 0.96 (0.64,1.44) 0.77 (0.45, 1.31)

DM 1.09 (0.88,1.36) 1.07 (0.72, 1.60)

Hypertension

No 0.81 (0.75,0.89) 0.81 (0.73,0.91)

Yes 0.94 (0.77,1.14) 0.93 (0.73,1.19)

Ever pregnant

No 0.64 (0.54,0.75) 0.63 (0.51, 0.78)

Yes 0.90 (0.82,1.00) 0.88 (0.79,0.99)

MetS_ATP

No 0.85 (0.77,0.93) 0.83 (0.74,0.94)

Yes 0.92 (0.79,1.08) 0.97 (0.80,1.18)

Crude model: no covariates were adjusted.
Model 1, age, marital status, race, education level, PIR and ever pregnant were adjusted.
Model 2, Model 1+DM and hypertension were adjusted.
Model 3, Model 2+MetS, eGFR, alumin, HDL and HbA1c were adjusted.
*mean p <0.05.
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The subgroup analyses yielded particularly insightful findings.

The protective effect of OBS was significantly more pronounced

among women under 35 years compared to their older

counterparts. While the total OBS showed similar trends across
Frontiers in Endocrinology 09
age groups, the lifestyle component of OBS demonstrated a

significant interaction with age, with younger women

experiencing a substantially stronger protective effect (25% risk

reduction per point) than women aged 35 and older. This age-
TABLE 5 Subgroup analysis between OBS dietary with infertility.

Character Crude model (95%CI) Model 1 (95%CI) Model 2 (95%CI) Model 3 (95%CI) p for interaction

Age 0.94

<35 0.97 (0.94,0.99) 0.97 (0.94,1.00) 0.98 (0.95,1.01) 0.97 (0.94,1.01)

>=35 0.98 (0.95,1.00) 0.97 (0.94,1.00) 0.97 (0.94,1.00) 0.97 (0.94,1.00)

DM 0.9

No 0.97 (0.95,0.99) 0.97 (0.95,1.00) 0.97 (0.95,1.00) 0.98 (0.96,1.00)

PreDM 0.92 (0.84,1.01) 0.92 (0.81, 1.04) 0.92 (0.82, 1.02) 0.92 (0.82, 1.02)

DM 0.99 (0.93,1.06) 0.98 (0.88, 1.08) 0.97 (0.88, 1.08) 0.99 (0.89, 1.11)

Hypertension 0.78

No 0.97 (0.96,0.99) 0.97 (0.95,0.99) 0.97 (0.95,1.00) 0.98 (0.95,1.00)

Yes 0.98 (0.94,1.01) 0.96 (0.92,1.01) 0.96 (0.91, 1.01) 0.96 (0.92, 1.01)

Ever pregnant 0.14

No 0.93 (0.89,0.98) 0.95 (0.91, 1.01) 0.95 (0.90, 1.01) 0.97 (0.91, 1.03)

Yes 0.98 (0.97,1.00) 0.97 (0.96,0.99) 0.98 (0.96,1.00) 0.98 (0.96,1.00)

MetS_ATP 0.26

No 0.98 (0.96,1.00) 0.98 (0.95,1.01) 0.98 (0.95,1.01) 0.98 (0.96,1.01)

Yes 0.96 (0.92,1.00) 0.95 (0.91,1.00) 0.96 (0.92,1.00) 0.96 (0.91,1.00)
Crude model: no covariates were adjusted.
Model 1, age, marital status, race, education level, PIR and ever pregnant were adjusted.
Model 2, Model 1+DM and hypertension were adjusted.
Model 3, Model 2+MetS, eGFR, alumin, HDL and HbA1c were adjusted.
*mean p <0.05.
FIGURE 2

Distribution of OBS, OBS dietary, and OBS lifestyle scores in relation to “ever pregnant” and infertility status. (A) OBS scores stratified by infertility
and pregnancy history. (B) OBS dietary scores stratified by infertility and pregnancy history. (C) OBS lifestyle scores stratified by infertility and
pregnancy history.
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dependent relationship reflects the differing etiologies of infertility

across age groups. In younger women, conditions potentially more

responsive to oxidative balance modulation—such as polycystic

ovary syndrome (PCOS), endometriosis, and unexplained

infertility—predominate. Oxidative stress in PCOS affects ovarian

follicles, disrupting their development and maturation, which can

impair fertility (23–25). Similarly, oxidative stress is implicated in

endometriosis and unexplained infertility, leading to poor

endometrial receptivity and negatively affecting pregnancy

outcomes (26–28). Conversely, in women over 35, age-related

decline in ovarian reserve becomes the primary driver of

infertility, a process less amenable to improvement through

oxidative balance enhancement.

Younger women benefit more from lifestyle interventions that

enhance oxidative balance due to their greater biological plasticity

and antioxidant capacity. Studies demonstrate that while older

women can improve oxidative stress markers through resistance

training, the improvements are more substantial in younger women

due to their naturally higher baseline antioxidant capacity (29–31).

The biological mechanisms underlying this age-dependent response

involve multiple pathways. Younger women possess more robust

antioxidant defense systems, greater mitochondrial efficiency, and

enhanced cellular repair mechanisms (2, 32). Oxidative stress

negatively affects reproductive processes by causing DNA damage

and mitochondrial dysfunction, which are more pronounced in

older women, while younger women are better equipped to manage

oxidative stress due to more efficient cellular repair mechanisms

(33–35). Antioxidants play a critical role in protecting oocytes from
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oxidative damage, and younger women benefit more from these

protective mechanisms, which help maintain oocyte quality and

fertility (36, 37).

Another key finding was the differential impact of OBS based on

previous pregnancy history. The protective association between

OBS and infertility was significantly stronger in women with

primary infertility compared to those with secondary infertility.

This suggests that women who have never achieved pregnancy

represent a distinct population in which oxidative stress plays a

more prominent pathophysiological role. Primary infertility may

involve more significant underlying oxidative-mediated pathologies

that could potentially be mitigated through antioxidant-rich diets

and lifestyle modifications. Conversely, women with secondary

infertility may have different etiologies less responsive to oxidative

balance modulation.

Women with primary infertility exhibit significantly higher

levels of oxidative stress compared to fertile women, with elevated

levels of malondialdehyde (MDA), a marker of lipid peroxidation

(28). This finding is consistent across various studies (38, 39),

highlighting the role of oxidative stress in infertility. While data

on secondary infertility are limited, the general impact of oxidative

stress on reproductive health suggests it plays a role in both

conditions, though potentially through different mechanisms or

to varying degrees.

These findings align with our understanding of the mechanistic

role of oxidative stress in female reproduction. Physiological levels

of reactive oxygen species (ROS) are essential for normal follicular

development, ovulation, and fertilization (40–42). However,
FIGURE 3

Displays the association between the OBS and infertility risk using RCS. (A) for the overall OBS, (B) for the dietary component, and (C) for the lifestyle
component. Stratified analyses by ever pregnant status are presented in (D–F), with adjustments for confounding variables.
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excessive ROS production can damage cellular components, impair

mitochondrial function, and trigger apoptotic pathways in

reproductive tissues. Low ROS levels in follicular fluid correlate

with successful pregnancy outcomes in IVF treatments (43),

suggesting a potential prognostic indicator for IVF efficacy. Our

study extends these mechanistic insights by demonstrating that a

comprehensive measure of oxidative balance correlates with fertility

outcomes at the population level, particularly in specific subgroups

of women.

The individual components of OBS provide further insights into

potential intervention strategies. Dietary antioxidants, including

vitamins C and E, protect reproductive cel ls against

oxidative damage.

Amini et al (44) demonstrated that supplementation with

vitamins C and E can reduce serum ROS levels compared to a

control group, resulting in increased antioxidant concentrations in

serum and follicular fluid. This leads to enhanced oocyte and IVF

embryo quality, as well as improved pregnancy outcomes (45).

Research (46) from the NHANES indicated a negative correlation

between dietary fiber intake and female infertility. Li et al (47) found

that Erastin, an inducer of ferroptosis, elevated ROS levels in mice

under iron accumulation conditions, potentially triggering cell

death mechanisms that could alleviate endometriosis and improve

fertility. A Nigerian study (48) comparing serum metal levels in

women with unexplained infertility to those with normal fertility

revealed lower copper, zinc, and selenium levels in the infertile

group. These micronutrients serve as essential cofactors for

antioxidant enzymes, and their deficiency may compromise

oxidative defense mechanisms in reproductive tissues.

Lifestyle factors within the OBS showed particularly strong

associations with fertility outcomes. Smoking, for instance,

induces oxidative stress in reproductive tissues, with women who

smoke exhibiting lower success rates in assisted reproductive

technologies (ART). Smoking increases ROS levels and reduces

antioxidant defenses, affecting both sperm and oocyte quality (28,

49, 50). Meta-analyses show that smoking decreases live birth rates

and clinical pregnancy rates per ART cycle, while increasing

miscarriage rates. These effects are significant and highlight the

detrimental impact of smoking on ART success (51–53).

Alcohol consumption similarly promotes oxidative stress

through its metabolism, with even moderate intake potentially

affecting fertility outcomes (28, 54). Obesity, another pro-oxidant

factor in the OBS, is associated with both systemic inflammation

and oxidative stress, contributing to ovulatory dysfunction and

decreased endometrial receptivity (55–57). A cohort study by Jose

Bellver et al (58) indicates that obesity may impair endometrial

receptivity, contributing to infertility and negative outcomes

in ART.

Our study has several methodological strengths. The use of a

nationally representative NHANES population enhances

generalizability, while the comprehensive adjustment for

confounding variables increases confidence in the observed

associations. Furthermore, our approach, which examines both total

OBS and its components, provides greater insight into the relative

contributions of dietary and lifestyle factors to fertility outcomes.
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Nevertheless, this research has limitations that warrant

consideration. The cross-sectional design precludes establishment

of causality, and the reliance on self-reported infertility data may

introduce recall bias. Additionally, while we adjusted for numerous

potential confounders, residual confounding cannot be entirely

ruled out. The NHANES database lacks comprehensive data on

environmental exposures, such as air pollution, pesticides, and

endocrine-disrupting chemicals, which may influence both

oxidative stress and fertility.

In conclusion, our findings demonstrate that higher OBS is

associated with lower infertility risk, with particularly strong effects

observed in younger women and those with primary infertility.

These results suggest that optimizing oxidative balance through

dietary and lifestyle modifications may represent an effective

strategy for reducing infertility risk in specific populations. Future

longitudinal studies and clinical trials are needed to establish

causality and determine whether targeted interventions to

improve oxidative balance can enhance fertility outcomes in

women attempting conception
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OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress in
polycystic ovary syndrome. Reproduction. (2022) 164:F145–f154. doi: 10.1530/REP-
22-0152

26. Shan H, Luo R, Guo X, Li R, Ye Z, Peng T, et al. Abnormal endometrial
receptivity and oxidative stress in polycystic ovary syndrome. Front Pharmacol. (2022)
13:904942. doi: 10.3389/fphar.2022.904942

27. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of
oxidative stress in female reproduction. Reprod Biol Endocrinol. (2018) 16:80.
doi: 10.1186/s12958-018-0391-5

28. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects
of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. (2012)
10:49. doi: 10.1186/1477-7827-10-49

29. Ribeiro AS, Deminice R, Schoenfeld BJ, Tomeleri CM, Padilha CS, Venturini D,
et al. Effect of resistance training systems on oxidative stress in older women. Int J Sport
Nutr Exerc Metab. (2017) 27:439–47. doi: 10.1123/ijsnem.2016-0322
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1444832/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1444832/full#supplementary-material
https://doi.org/10.1016/j.jep.2023.117258
https://doi.org/10.1016/j.jep.2023.117258
https://doi.org/10.1001/jama.2021.4788
https://doi.org/10.1093/humrep/dex234
https://doi.org/10.1093/humupd/2.1.63
https://doi.org/10.1016/j.healthpol.2009.12.007
https://doi.org/10.1016/j.healthpol.2009.12.007
https://doi.org/10.1007/s10815-024-03248-w
https://doi.org/10.3390/antiox13040394
https://doi.org/10.1016/j.jep.2024.118243
https://doi.org/10.3390/antiox13020209
https://doi.org/10.4103/jfmpc.jfmpc_2249_21
https://doi.org/10.1038/s41581-023-00775-0
https://doi.org/10.3390/nu11040774
https://doi.org/10.1017/S0007114514000178
https://doi.org/10.3389/fendo.2024.1386021
https://doi.org/10.3389/fendo.2024.1386021
https://doi.org/10.3389/fnut.2024.1484756
https://doi.org/10.3389/fnut.2025.1493253
https://doi.org/10.1007/s00394-017-1407-1
https://doi.org/10.1155/2022/1345071
https://doi.org/10.1007/s11356-022-23624-2
https://doi.org/10.1001/jama.285.19.2486
https://doi.org/10.1161/01.CIR.0000111245.75752.C6
https://doi.org/10.3390/ijms241814126
https://doi.org/10.3390/ijms241814126
https://doi.org/10.3389/fmed.2023.1193749
https://doi.org/10.1530/REP-22-0152
https://doi.org/10.1530/REP-22-0152
https://doi.org/10.3389/fphar.2022.904942
https://doi.org/10.1186/s12958-018-0391-5
https://doi.org/10.1186/1477-7827-10-49
https://doi.org/10.1123/ijsnem.2016-0322
https://doi.org/10.3389/fendo.2025.1444832
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xia et al. 10.3389/fendo.2025.1444832
30. Alikhani S, Sheikholeslami-Vatani D. Oxidative stress and anti-oxidant
responses to regular resistance training in young and older adult women. Geriatr
Gerontol Int. (2019) 19:419–22. doi: 10.1111/ggi.2019.19.issue-5

31. Tomeleri CM, Ribeiro AS, Cavaglieri CR, Deminice R, Schoenfeld BJ, Schiavoni
D, et al. Correlations between resistance training-induced changes on phase angle and
biochemical markers in older women. Scand J Med Sci Sports. (2018) 28:2173–82.
doi: 10.1111/sms.2018.28.issue-10

32. Poljs ̌ak B, Milisav I. Decreasing intracellular entropy by increasing
mitochondrial efficiency and reducing ROS formation-the effect on the ageing
process and age-related damage. Int J Mol Sci. (2024) 25(12):6321.

33. Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA
methylation: two sides of the same coin in reproduction. Reprod BioMed Online. (2016)
33:668–83. doi: 10.1016/j.rbmo.2016.09.006

34. Aitken RJ. Impact of oxidative stress on male and female germ cells: implications
for fertility. Reproduction. (2020) 159:R189–r201. doi: 10.1530/REP-19-0452

35. Kaltsas A, Zikopoulos A, Moustakli E, Zachariou A, Tsirka G, Tsiampali C, et al.
The silent threat to women’s fertility: uncovering the devastating effects of oxidative
stress. Antioxidants (Basel). (2023) 12(8):1490. doi: 10.3390/antiox12081490

36. Aitken RJ, Bromfield EG, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE
FUNCTION: The impact of oxidative stress on reproduction: a focus on gametogenesis
and fertilization. Reproduction. (2022) 164:F79–f94. doi: 10.1530/REP-22-0126

37. Wang L, Tang J, Wang L, Tan F, Song H, Zhou J, et al. Oxidative stress in oocyte
aging and female reproduction. J Cell Physiol. (2021) 236:7966–83. doi: 10.1002/
jcp.v236.12
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