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Shanghai, China, 2Department of Endocrinology, Punan Hospital of Pudong New District,
Shanghai, China, 3Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai
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Purpose:Optimal dosing of denosumab in osteogenesis imperfecta (OI) remains

undefined. This prospective cohort study evaluated the 12-month efficacy and

safety of denosumab in OI patients, with a historical control study

with alendronate.

Materials and methods: Eight pediatric patients (1 mg/kg every 3 months; ≤60

mg/dose) and ten adults (60 mg every 6 months) received denosumab.

Outcomes included lumbar spine (LS) and femoral neck (FN) bone mineral

density (BMD), bone turnover markers (BTMs), vertebral compression fractures

(assessed via AI-assisted Genant grading [AI_OVF_SH system]), fracture

incidence, height velocity and adverse events. Historical controls (n=25

alendronate-treated OI patients) were analyzed for comparative efficacy.

Sensitivity analyses excluded female pediatric participants (n=4) and peri-/

post-menopausal adults (n=4) to assess hormonal confounding.

Results: Pediatric denosumab recipients exhibited significant LS-BMD (+30.3%,

P<0.001) and FN-BMD gains (+38.7%, P=0.001) versus baseline, whereas adults

showed non-significant increases (LS: +2.6%, P=0.100; FN: +4.4%, P=0.051).

Sensitivity analyses revealed attenuated BTMs suppression in adults after

excluding peri-/post-menopausal women (only ALP decreased by 27.9%,

P=0.028). Rebound hypercalcemia occurred in 62.5% (5/8) of children, peaking

at 2.93 mmol/L. Compared to alendronate, denosumab demonstrated

comparable BMD improvements and fracture reduction (P>0.050) but superior

pediatric height gain (+5.8% vs. +2.5%, P=0.004). Vertebral area loss decreased

significantly with denosumab (-14.6%, P=0.029), unlike alendronate (-8.8%,

P=0.296). Adverse events were more frequent with denosumab in children

(hypercalcemia: 62.5% vs. 0%, P=0.002).

Conclusion: Denosumab demonstrates non-inferior efficacy to alendronate for

BMD improvement in OI, with heightened vertebral remodeling and pediatric
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height gains. However, its overshoot phenomenon in children (rebound

hypercalcemia) and hormone-dependent efficacy in adults necessitate risk-

stratified use. Age and menopausal status considerations are critical for

optimizing denosumab therapy in OI.

Clinical trial registration: https://www.chictr.org.cn/bin/project/edit?pid=

184231, identifier ChiCTR2300074207.
KEYWORDS

osteogenesis imperfecta, denosumab, alendronate, hypercalcemia, bone
mineral density
1 Introduction

Osteogenesis imperfecta (OI), a monogenic disorder of type I

collagen metabolism, is characterized by recurrent fragility

fractures, low bone mass, and variable extraskeletal manifestations

including dentinogenesis imperfecta, blue sclerae, and joint

hyperlaxity (1, 2). Current therapeutic strategies for OI,

predominantly adapted from osteoporosis treatments, rely heavily

on bisphosphonates (BPs) for their anti-resorptive effects (3). While

BPs consistently improve bone mineral density (BMD), their

efficacy in fracture risk reduction remains equivocal (4).

Denosumab, a monoclonal antibody targeting RANKL, disrupts

osteoclastogenesis through competitive inhibition of the RANKL-

RANK pathway (5, 6). In postmenopausal osteoporosis, denosumab

demonstrates sustained BMD gains without plateau effects,

outperforming BPs in long-term outcomes (7, 8). However, its

transient pharmacodynamics—marked by rapid bone turnover

markers (BTMs) suppression followed by rebound hyperabsorption

upon discontinuation—raise unique safety concerns, particularly in

pediatric populations with inherently elevated bone turnover (9, 10).

Emerging evidence supports denosumab’s utility in OI (11–17),

but optimal dosing regimens and comparative efficacy against

alendronate remain undefined. This 12-month prospective cohort

study evaluates denosumab’s safety and efficacy in pediatric and

adult OI patients, utilizing a historical alendronate control group to

inform clinical decision-making.
2 Materials and methods

2.1 Study population

Inclusion required confirmed OI diagnosis per Sillence criteria

(18): 1) With fracture family history: ≥1 fragility fracture + lumbar/

hip BMD Z-score ≤-1; 2) Without fracture family history: ≥1

fragility fracture + ≥1 extraskeletal feature (blue sclerae,

dentinogenesis imperfecta, hearing loss, ligamentous laxity).
02
Exclusion criteria encompassed other metabolic or hereditary

bone diseases (hyper/hypothyroidism, Paget ’s disease,

hypophosphatemic rickets/osteomalacia et al.), chronic organ

dysfunction, malignancy, glucocorticoid use, pregnancy,

or lactation.
2.2 Study design

Eligible participants were classified into pediatric (<18 years) or

adult groups. A prospective cohort of OI patients was established at

the Department of Osteoporosis and Bone Diseases of Shanghai

Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University

School of Medicine, with pediatric and adult subgroups. Historical

controls (alendronate-treated patients with ≥12 months of follow-

up) were selected from institutional databases using identical

inclusion/exclusion criteria as the denosumab cohort.

Pediatric denosumab (Prolia®, Amgen Inc., Thousand Oaks,

CA) dosing was 1 mg/kg subcutaneously every 3 months (max 60

mg/dose), while adults received 60 mg every 6 months. Alendronate

(Fosamax, Merck Sharp & Dohme, USA) was administered at 70

mg/week. All participants received calcium (300–600 mg/day) and

vitamin D (≥400 IU/day).

The primary efficacy endpoints were the changes in BMD and

serum levels of BTMs during treatment. Secondary endpoints were

the incidence of new fractures, area loss of vertebra and

height velocity.
2.3 Measurements

Anthropometric measurements (height, weight) were obtained

annually. For non-ambulatory patients, supine length was recorded;

limb length discrepancies were addressed by measuring the longer

extremity. Pediatric heights were converted to SDS using Chinese

reference data (18). The body mass index (BMI) was calculated as

weight/height² (kg/m²).
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Lumbar spine (LS) and femoral neck (FN) BMD were assessed

via dual-energy X-ray absorptiometry (DXA; Lunar/Hologic) at

baseline and 12 months (19). Daily phantom calibrations ensured

quality control (CV: Lunar LS 1.39%, FN 2.22%; Hologic LS 0.9%,

FN 0.08%). Scans with surgical implants or deformities were

excluded. All measurements used consistent operators/devices,

with Z-scores derived from age-sex references (20–22).

Thoracolumbar radiographs (T4-L4) were analyzed using the

AI_OVF_SH system, which demonstrated 96.85% fracture

detection accuracy (23). Vertebral compression fractures were

graded by area loss: Grade 1 (10-20%), Grade 2 (20-40%), Grade

3 (>40%). Scoliosis was defined as Cobb angle >10° (24).

Fasting morning blood samples collected every 3–6 months

were analyzed on Hitachi 7600-020 (calcium(Ca, reference range

2.08-2.60mmol/L), phosphorus (P)) and Roche Cobas 6000 (C-

terminal telopeptide of type 1 collagen (CTX), osteocalcin (OC), 25-

hydroxyvitamin D (25OHD, reference range ≥20 ng/mL), and

intact parathyroid hormone (PTH, reference range 15.00-65.00

pg/mL)) platforms. P, CTX, and OC were matched to age

adapted reference data (25, 26). Rebound hypercalcemia was

defined as serum calcium >2.60 mmol/L without secondary causes.
2.4 Treatment safety assessment

Adverse events (AEs) were monitored at each visit, including

incident fractures. Serious AEs (SAEs) - cellulitis/erysipelas,

osteonecrosis of the jaw, atypical femoral fractures, delayed

fracture healing, and cardiac disorders - required clinical and

radiographic confirmation. Other AEs (hypocalcemia,

hypophosphatemia, hypercalcemia, arthralgia, myalgia) were

assessed via clinical and biochemical evaluation.
2.5 Statistical analysis

Statistical analyses were performed using SPSS 26.0.

Continuous variables were assessed for normality via

Kolmogorov-Smirnov test and homogeneity of variance via

Levene’s test. Normally distributed continuous variables were

expressed as mean ± standard deviation (SD), while non-

normally distributed measures were expressed as median

(Interquartile range, IQR); categorical variables were expressed as

frequencies (%). An independent sample t-test was used for group

comparisons of normally distributed data, nonnormally distributed

data were compared between groups using nonparametric tests, and

rates were compared using chi-square test and Fisher exact test.

Within-group comparisons used paired t-tests or Wilcoxon signed-

rank tests. Analysis of covariance (ANCOVA) adjusted for age in

between-drug analyses. Analyses included all participants receiving

≥1 denosumab dose with baseline assessment (modified intention-

to-treat principle). Missing data were addressed via the last

observation carried forward. Statistical significance was set at

a=0.05 (two-tailed).
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2.6 Ethical statement

This study was registered in the Chinese Clinical Trial Registry

(registration number: ChiCTR2300074207). All procedures were

conducted in accordance with the ethical standards of the

institutional and national research committees and the 2013 revision

of the Declaration of Helsinki. The Ethics Committee of Shanghai Sixth

People’s Hospital affiliated to Shanghai Jiao Tong University School of

Medicine approved the study. Written informed consent was obtained

from patients or legal guardians of children younger than 18.
3 Results

3.1 Baseline characteristics

The study included 18 denosumab-treated patients (8 pediatrics,

10 adults) and 25 historical alendronate controls (15 pediatrics, 10

adults) (Figure 1). Baseline demographics and clinical features were

comparable between groups (Tables 1, 2), except for prior treatment

history in pediatric patients (P=0.002) and age in adults (P=0.031). A

total of 8 patients had a medication treatment history to increase

BMD in denosumab cohort, including 5 children and 3 adults

(Supplementary Figure 1). Treatment switching rationale included

suboptimal BMD response (n=5), new fractures (n=2), or

alendronate intolerance (n=1). All alendronate patients were

treatment-naïve except one adult (36.9 years) with prior zoledronic

acid exposure. All patients underwent genetic testing for OI-

associated variants (COL1A1, COL1A2, IFITM5, WNT1) and

mutations were identified in 40 patients (Supplementary Table 1).
3.2 Primary outcomes

3.2.1 Denosumab cohort
7/8 pediatric (87.5%) and 9/10 adult (90%) patients completed

12-month follow-up. Two discontinued at 6 months because of

transportation barriers.

After 12 months of denosumab therapy, significant BMD

increases at LS (+30.3%, P<0.001) and FN (+38.7%, P=0.001)

were observed in pediatric group (Figures 2A, B). CTX levels

showed transient suppression (43.5% reduction at 3 months and

32.4% at 6 months) with a rebound to baseline by 9 months

(Figure 3A). OC levels exhibited persistent suppression in the

whole period (Figure 3B). In the adult group, denosumab

treatment led to modest BMD gains (LS: +2.6%, P=0.100; FN:

+4.4%, P=0.051; Figures 2C, D) with sustained CTX suppression

(48.7% reduction at 6 months and 49.9% at 12 months,

P<0.050; Figure 3C).

3.2.2 Alendronate cohort
In the pediatric group, 12-month alendronate treatment

significantly increased BMD (LS: +24.0%, P<0.001; FN: +15.7%,

P<0.001; Figures 2A, B), with CTX levels declining steadily
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(P<0.050; Figure 3A). In adult alendronate recipients, a 5.1% LS

BMD gain (P=0.010) and 1.6% FN BMD improvement (P=0.051;

Figures 2C, D) were accompanied by sustained reductions in serum

CTX and OC levels throughout the 12-month treatment period

(Figures 3C, D).

3.2.3 Comparative analysis between denosumab
and alendronate

No significant differences in BMD changes or BTMs

suppression were observed between denosumab and alendronate

groups (Figures 2, 3).
3.3 Secondary outcomes

Two pediatric denosumab recipients experienced new fractures

(rate: 0.83/year), while no fractures occurred in adults. Alendronate-

treated pediatric patients had a similar fracture rate (0.25/year,

P>0.050). Denosumab significantly reduced vertebral area loss in

pediatric patients (from 13.4% to 11.5%, P=0.029) (Figure 2E), with

two cases showing fracture remodeling (Supplementary Figure 2).

Alendronate also promoted remodeling but without significant area

loss reduction (from 11.8% to 10.8%, P=0.296). Denosumab-treated

pediatric patients showed greater height increase compared to

alendronate recipients (+5.8% vs +2.5%, P=0.004) (Figure 2F).
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3.4 Treatment safety assessment

Treatment-emergent AEs are detailed in Table 3. No SAEs

occurred in either cohort during the 12-month study period. In

denosumab cohort, five children (5/16, 31.3%) developed mild

hypercalcemia (peak serum Ca: 2.93 mmol/L), consistently occurring

3 months post-dosing (Figure 4). These episodes coincided with

rebound increases in CTX to near-baseline levels. Compared to

alendronate, denosumab pediatric recipients demonstrated

significantly higher risks of hypercalcemia (62.5% vs. 13.3%;

P<0.002), secondary hyperparathyroidism (62.5% vs. 13.3%;

P<0.026), and musculoskeletal symptoms (37.5% vs. 0%; P<0.008).

Both therapies exhibited favorable safety profiles in adults.
3.5 Sensitivity analysis

Notably, the study cohort exhibited marked sex disparities: all

pediatric denosumab recipients were male (8), while 90% (9/10) of

adult denosumab users were female, including three peri-/post-

menopausal individuals. To address potential confounding from

hormonal status and sex-specific effects, sensitivity analyses were

performed: 1) Exclusion of female pediatric participants: Removal

of 4 girls from the alendronate cohort (Supplementary Table 2). 2)

Exclusion of peri-/post-menopausal adults: Omission of 3
FIGURE 1

Study flowchart. OI, osteogenesis imperfecta; SC, subcutaneous injection; Q3M, every 3 months; Q6M, every 6 months. Two discontinued at 6
months because of transportation barriers.
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denosumab-treated and 1 alendronate-treated women

(Supplementary Table 3). After excluding peri-/post-menopausal

females, denosumab’s effect on BTMs was attenuated, with only

alkaline phosphatase (ALP) demonstrating a significant 27.9%
Frontiers in Endocrinology 05
reduction post-treatment (P=0.028 vs. baseline). Results remained

stable in the denosumab pediatric subgroup. Comparative efficacy

between denosumab and alendronate remained robust across all

sensitivity analyses (P>0.050).
FIGURE 2

Comparative effects of denosumab and alendronate on bone parameters. (A-D) Longitudinal changes in lumbar spine (LS) and femoral neck (FN)
bone mineral density BMD in pediatric and adult cohorts. (E) Vertebral area loss ratio progression in pediatric patients. (F) Height velocity in pediatric
cohort. Data are presented as mean ± SD. *P<0.05, **P<0.01 vs baseline; ns, no significant intergroup differences (denosumab vs alendronate).
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4 Discussion

This study provides the first head-to-head comparison of

denosumab and alendronate in OI. Pediatric denosumab recipients

exhibited marked BMD gains and vertebral remodeling, consistent

with prior reports (11–17). However, the high incidence of rebound

hypercalcemia (62.5%) underscores metabolic instability in children.

Since Semler et al. (2012) first reported safe BTMs suppression in

four pediatric OI-VI patients with quarterly 1 mg/kg denosumab (27),

subsequent studies (11–15, 28, 29) have confirmed its BMD-enhancing

effects but identified pediatric-specific rebound risks. Our protocol
Frontiers in Endocrinology 06
adopted weight-based pediatric dosing (1 mg/kg/Q3M, ≤60 mg) versus

fixed adult regimens (60 mg/Q6M). At 12 months, pediatric LS/FN

BMD increased significantly versus non-significant adult changes,

potentially attributable to ongoing skeletal growth (30).

Pharmacodynamic analyses reveal accelerated drug metabolism in

children: BTMs rebound to baseline within 6–8 weeks (27, 31),

correlating with 30-50% higher baseline BTMs versus adults (32).

Notably, 31% (13/42) pediatric patients in a 6-month interval trial

developed rebound hypercalcemia (17), while our 3-month regimen

still showed pre-dose CTX recovery. These findings suggest current

intervals may inadequately suppress resorption, warranting exploration

of compressed schedules (e.g., ≤10 weeks) as proposed by Semler (29).
TABLE 1 Baseline characteristics of OI children received denosumab or
alendronate treatment.

DEN(N=8) ALN(N=15) P

Age (years) 9.4 ± 4.4 11.5 ± 4.0 0.257

Sex (boy/girl) 8/0 11/4 0.257

Height (cm) 133.39 ± 28.89 140.97 ± 21.37 0.481

Height Z-score -0.72 ± 1.53 -1.05 ± 1.20 0.577

Weight (kg) 39.09 ± 25.02 40.33 ± 17.63 0.890

BMI (kg/cm2) 19.60 ± 5.67 19.17 ± 3.92 0.831

Fracture rate (times/year) 1.06 ± 0.81 0.79 ± 0.68 0.399

OI type (I/III/IV) 4/1/3/0 8/3/4 1.000

Mutation genes (COL1A1/
COL1A2/IFITM5/
WNT1/unknown)

3/5/0/0/0 10/4/0/1/0 0.253

Treatment history
(alendronate/ibandronate/
zoledronic acid/none)

4/1/0/3 0/0/0/15 0.002

Ca (mmol/L) 2.45 ± 0.08 2.40 ± 0.11 0.277

P (mmol/L) 1.63 ± 0.07 1.50 ± 0.17 0.058

25OHD (ng/ml) 28.59 ± 14.86 28.12 ± 15.74 0.947

PTH (pg/ml) 43.73 ± 18.87 36.23 ± 25.30 0.485

CTX (ng/L) 1196.05 ± 231.48 1133.87 ± 375.41 0.685

ALP (U/L) 341.63 ± 140.65 284.92 ± 147.62 0.403

P1NP (ng/ml) 540.10 ± 315.90 / /

OC (ng/ml) 112.24 ± 36.48 110.92 ± 76.19 0.965

LS BMD (g/cm2) 0.670 ± 0.350 0.602 ± 0.182 0.542

LS Z-score -1.09 (-1.81, 0.98) -1.73 (-3.20, -0.10) 0.169

FN BMD (g/cm2) 0.609 ± 0.328 0.626 ± 0.219 0.891

FN Z-score -1.74 (-2.28, -1.20) -2.35 (-3.36, -0.24) 0.485

Area loss ratio of vertebra 13.41 ± 4.19% 11.78 ± 7.89% 0.345
OI, osteogenesis imperfecta; DEN, denosumab; ALN, alendronate; BMI, body mass index;
25OHD, 25-hydroxyvitamin D; PTH, parathyroid hormone; CTX, C-terminal telopeptide of
type 1 collagen; ALP, alkaline phosphatase; P1NP, type I N-terminal propeptide of type 1
procollagen; OC, osteocalcin; BMD, bone mineral density; LS, lumbar spine; FN, femoral
neck. Statistical significance was defined as two-tailed P < 0.05, with significant results bolded.
TABLE 2 Baseline characteristics of OI adults received denosumab or
alendronate treatment.

DEN(N=10) ALN(N=10) P

Age (years) 46.6 ± 14.6 34.3 ± 6.8 0.031

Sex (male/female) 1/9 4/6 0.303

Height (cm) 149.28 ± 7.45 154.70 ± 6.52 0.315*

Weight (kg) 50.17 ± 7.04 57.32 ± 8.77 0.261*

BMI (kg/cm2) 22.52 ± 2.73 24.00 ± 3.68 0.400*

Fracture rate 0.26 ± 0.22 0.27 ± 0.22 0.395*

OI types (I/III/IV/V) 8/0/1/1 9/0/1/0 1.000

Mutation genes
(COL1A1/COL1A2/
IFITM5/
WNT1/unknown)

7/1/1/0/1 8/0/0/0/2 1.000

Treatment history
(alendronate/
ibandronate/zoledronic
acid/none)

2/0/1/7 0/0/1/9 0.721

Ca (mmol/L) 2.37 ± 0.06 2.37 ± 0.10 0.696*

P (mmol/L) 1.14 ± 0.15 1.02 ± 0.20 0.369*

25OHD (ng/ml) 27.18 ± 8.85 23.11 ± 15.42 0.360*

PTH (pg/ml) 43.26 ± 10.25 48.42 ± 11.27 0.695*

CTX (ng/L) 328.10 ± 261.06 279.47 ± 164.64 0.378*

ALP (U/L) 81.70 ± 26.20 77.71 ± 27.08 0.717*

P1NP (ng/ml) 32.11 ± 23.39 / /

OC (ng/ml) 25.98 ± 18.21 21.31 ± 8.72 0.578*

LS BMD (g/cm2) 0.781 ± 0.085 0.851 ± 0.113 0.749*

LS Z-score -2.11 ± 0.56 -2.09 ± 0.97 0.802*

FN BMD (g/cm2) 0.655 ± 0.111 0.783 ± 0.096 0.067*

FN Z-score -1.50 ± 0.76 -1.13 ± 0.83 0.162*
frontie
OI, osteogenesis imperfecta; DEN, denosumab; ALN, alendronate; BMI, body mass index;
25OHD, 25-hydroxyvitamin D; PTH, parathyroid hormone; CTX, C-terminal telopeptide of
type 1 collagen; ALP, alkaline phosphatase; P1NP, type I N-terminal propeptide of type 1
procollagen; OC, osteocalcin; BMD, bone mineral density; LS, lumbar spine; FN, femoral
neck; *: age is corrected by the covariance analysis. Statistical significance was defined as two-
tailed P < 0.05, with significant results bolded.
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Fracture patterns in denosumab-treated OI patients demonstrate

age-related disparities. While adult fracture rates decreased versus

baseline, two pediatric cases developed new fractures - consistent with

established epidemiology showing fracture burden predominantly in

pediatric populations (33). This inherent limitation (small sample,

non-randomized design) precludes definitive fracture risk assessment

in our cohort.

Overshoot phenomena remain a critical safety concern. Pediatric

patients exhibited CTX rebound by month 3 post-dose, with 5 cases

developing mild hypercalcemia (2 with hypoparathyroidism, 3 with

musculoskeletal symptoms). A review of denosumab in pediatric

bone diseases summarized that 45 children treated with denosumab

for various conditions developed “severe hypercalcemia” in 5 cases

after discontinuation, and mild or moderate asymptomatic

hypercalcemia was reported in 6 of the 18 children with OI treated

with denosumab (34). Younger age (<5 years) and elevated resorption

markers correlate with risk (17). Mechanistically, rapid CTX rebound

drives osteoclast-mediated calcium release (35), occurring earlier in

children (3 vs. 6–10 months in adults) due to accelerated bone

turnover (36). These findings align with MHRA’s 2022 warning

against pediatric denosumab use (37).

Comparative analyses show denosumab’s BMD superiority over

BPs in osteoporosis (38–40), though fracture reduction equivalence

persists. Our historical controls revealed comparable BMD and BTMs

responses between denosumab and alendronate, but denosumab

demonstrated superior vertebral remodeling and greater height

velocity despite preclinical growth concerns (34). Notably, denosumab

carried higher hypercalcemia risk, attributable to its potent resorption

inhibition (36). While both agents enable vertebral reshaping in OI (17,

41–43), denosumab’s unique pharmacodynamics warrant careful risk-

benefit evaluation in pediatric use.

Our sensitivity analyses revealed that the BTMs-lowering effect of

denosumab in adults was predominantly driven by peri-/post-

menopausal women. This aligns with the known acceleration of

bone turnover during estrogen withdrawal, which may amplify

denosumab’s anti-resorptive potency (44). The attenuation of

BTMs suppression after excluding these individuals underscores the

importance of hormonal milieu in modulating therapeutic responses

(45). Our findings highlight the need for stratified therapeutic

approaches: in postmenopausal OI women, denosumab may offer

enhanced anti-resorptive efficacy, whereas pediatric patients may

require closer monitoring of BTMs to detect early rebound effects.

This pioneering real-world analysis provides the first

comparative assessment of denosumab versus alendronate in OI

patients across pediatric and adult populations. Key limitations

merit consideration: 1) 12-month duration precluded evaluation of

long-term risks (e.g., ONJ, atypical fractures); 2) Underpowered

sample limits fracture risk assessment validity, particularly in

pediatric subgroups; 3) Prior BP exposure in 35% of denosumab

recipients may confound therapeutic comparisons; 4) Absence of

serial renal ultrasounds prevented hypercalcemia-related

calcification monitoring; 5) Historical control design introduces
TABLE 3 Adverse events in denosumab and alendronate.

A. In OI children

DEN (n=8) ALN (n=15) P

Serious adverse events

cellulitis or erysipelas 0(0/8) 0(0/15) 1.000

osteonecrosis of the jaw 0(0/8) 0(0/15) 1.000

atypical femoral fracture 0(0/8) 0(0/15) 1.000

delayed fracture healing 0(0/8) 0(0/15) 1.000

cardia disorders 0(0/8) 0(0/15) 1.000

Other relevant adverse events

hypocalcemia 1(1/8) 0(0/15) 0.348

hypercalcemia 5(5/8) 0(0/15) 0.002

hypophosphatemia 1(1/8) 0(0/15) 0.348

Secondary
hyperparathyroidism

5(5/8) 2(2/15) 0.026

Secondary
hypoparathyroidism

2(2/8) 0(0/15) 0.111

arthralgia 4(4/8) 0(0/15) 0.008

muscle pain 4(4/8) 0(0/15) 0.008

Total 5(5/8) 2(2/15) 0.026

B. In OI adults

DEN (N=10) ALN (N=10) P

Serious adverse events

cellulitis or erysipelas 0(0/10) 0(0/10) 1.000

osteonecrosis of the jaw 0(0/10) 0(0/10) 1.000

atypical femoral fracture 0(0/10) 0(0/10) 1.000

delayed fracture healing 0(0/10) 0(0/10) 1.000

cardia disorders 0(0/10) 0(0/10) 1.000

Other relevant adverse events

hypocalcemia 1(1/10) 0(0/10) 1.000

hypercalcemia 0(0/10) 0(0/10) 1.000

hypophosphatemia 0(0/10) 0(0/10) 1.000

Secondary
hyperparathyroidism

3(3/10) 0(0/10) 0.211

Secondary
hypoparathyroidism

0(0/10) 0(0/10) 1.000

arthralgia 0(0/10) 0(0/10) 1.000

muscle pain 0(0/10) 0(0/10) 1.000

Total 3(3/10) 0(0/10) 0.211
OI, osteogenesis imperfecta; DEN, denosumab; ALN, alendronate. Statistical significance was
defined as two-tailed P < 0.05, with significant results bolded.
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FIGURE 3

Percent changes in bone turnover markers (BTMs) with denosumab and alendronate. (A, B) Serum C-terminal telopeptide of type 1 collagen (CTX)
and osteocalcin (OC) dynamics in pediatric patients. (C, D) Corresponding BTMs changes in adult patients. Data expressed as percentage change
from baseline. *P<0.05, **P<0.01 vs baseline.
FIGURE 4

Hypercalcemia events in pediatric denosumab recipients. Serial serum calcium (reference range: 2.08-2.60 mmol/L, shaded green) and CTX profiles
of five cases: (A) 2-year-old male (15 mg), transient hypercalcemia at M6/9/12; (B) 5.9-year-old male (20 mg), M9 elevation; (C) 12.3-year-old male
(40 mg), M10 event; (D) 13.9-year-old male (60 mg), M10 episode; (E) 11-year-old male (60 mg), M12 occurrence. DEN, denosumab.
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residual confounding (e.g., age/sex disparities)., however, such

limitations are unavoidable in rare disease contexts.
5 Conclusions

Denosumab demonstrates potential for improving BMD and

vertebral structure in OI, particularly in children. However, its

association with rebound hypercalcemia and metabolic instability

necessitates caution. Alendronate remains a safer alternative for

pediatric OI until further evidence establishes denosumab’s risk-

benefit balance. Clinicians should prioritize individualized

treatment plans considering age and menopausal status and

vigilant monitoring for patients on denosumab.
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SUPPLEMENTARY FIGURE 1

Prior treatment history of denosumab-treated OI patients. Pediatric cohort:

P1 (14M) - 4-year alendronate (10-14y); P2 (11M) - single ibandronate dose
(9y); P3 (11M) - 3-month alendronate (10y) with 6-month gap; P5 (12M) -

ongoing alendronate (10y-). Adult cohort: P6 (68F) - 4-year alendronate (64-

68y); P7 (33F) - 4-month alendronate; P8 (40F) - sequential alendronate (2y)
and zoledronic acid (2y) (36-40y).

SUPPLEMENTARY FIGURE 2

Radiographic evidence of vertebral remodeling. (A) Thoracolumbar series
(13M): Pre-treatment vs 12-month DEN. (B) Lumbar progression (13.9M):

Baseline to 4-year ALN to 1-year DEN. (C) 6-month ALN effects (12.7M). (D)
12-month ALN outcomes (10.9M). (E) Lower extremity cortical changes
(15M): 24-month ALN comparison. Orange arrows denote vertebral

remodeling sites/cortical thickening.
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