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The body instinctively responds to external stimuli by increasing energy

metabolism and initiating immune responses upon receiving stress signals.

Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along

the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and

humoral regulation. Due to the widespread expression of glucocorticoid

receptors (GR), the effects of CORT are almost ubiquitous in various tissue

cells. Therefore, on the one hand, CORT is a molecular signal that activates the

body’s immune system during stress and on the other hand, due to the chemical

properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to

control the body’s response to stress. Inflammation is a manifestation of immune

activation. CORT plays dual roles in this process by both promoting inflammation

and exerting anti-inflammatory effects in immune regulation. As a stress

hormone, CORT levels fluctuate with the degree and duration of stress,

determining its effects and the immune changes it induces. The immune

system is essential for the body to resist diseases and maintain homeostasis,

with immune imbalance being a key factor in the development of various

diseases. Therefore, understanding the role of CORT and its mechanisms of

action on immunity is crucial. This review addresses this important issue and

summarizes the interactions between CORT and the immune system.
KEYWORDS

stress, corticosterone, immunity, inflammation, mechanism
1 Introduction

During various physiological, psychological, and social stress events—such as those

arising from unhealthy habits, pessimistic cognition, work difficulties, and interpersonal

conflicts—the body undergoes a series of physiological stress reactions (1–3). It’s important

to note that these stressors are responsible for inducing physiological changes. In today’s

society, stress events are commonplace. While moderate stress can enhance the body’s
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ability to cope with social challenges, prolonged stress can

detrimentally affect the functioning of various bodily tissues, with

the degree of damage increasing over time (4, 5). In response to

stress, the body employs intricate coping mechanisms involving

neural transmission, sequential activation of signaling molecules,

and interactions among different bodily systems, ultimately leading

to changes in physiological representation and behavioral patterns.

Although the body can adapt to stressors, this adaptation may come

at the expense of health. Currently, numerous diseases have been

associated with chronic stress, including anxiety, depression,

cognitive impairment, inflammatory gastrointestinal diseases,

metabolic syndrome, autoimmune disorders, and infertility (6–10).

It can be seen that chronic stress will disrupt system function from

multiple perspectives. And in the later stages of the disease, mental

disorders such as anxiety and depression often co occur with

peripheral lesions. Such as cardiovascular disease, gastrointestinal

dysfunction, autoimmune diseases, and infertility. According to

statistics, the lifetime prevalence of anxiety disorder is 5% -13%

(11), and in a very few countries, such as the United States, it can

reach 34% (12). Shorey S’s study shows that the global prevalence of

self-reported depression is 34%, of which the incidence rate of major

depressive disorder (MDD) is 8% and the lifetime prevalence is 19%

(13). And these proportions are still increasing. During the SARS-

CoV-2 pandemic, the global emotional burden increased, with an

increase of 76.2 million cases of anxiety disorder and approximately

18.6% of people experiencing anxiety being accompanied by

moderate to severe depression (14, 15). Krittanawong C’s meta-

analysis showed that depression increases the risk and mortality of

cardiovascular diseases, such as congestive heart failure and

myocardial infarction (16). And Brock J’s systematic review

suggests that depression increases disability and mortality in

rheumatoid arthritis (RA) (17). Clinical data shows that similar

immune mechanisms (excessive secretion of pro-inflammatory

cytokines) often lead to comorbidity between the two and

mutually promote their onset. The incidence rate of depression in

RA is 2-3 times that of the general population, and about 16.8% of

RA patients suffer from depression (18). In addition, Indira R’s

review provides a detailed report on the association between

depression and sexual dysfunction (19), with sexual dysfunction

observed in 63% of MDD patients (20). There are also

epidemiological clues that indicate a decrease of sex hormone

levels in patients with depression (21). Thus, stress-induced injury

is systemic in nature. There are common pathological mechanisms

among various diseases associated with stress, leading to their

interdependence. Owing to the complexity of its mechanisms and

its widespread detrimental effects, making it a prominent focus of

research. Meanwhile, this is also a crucial step in exploring the

etiology and therapeutic targets of diseases.

Corticosterone (CORT), a type of glucocorticoid (GC), is a

product of the hypothalamic-pituitary-adrenal (HPA) axis. It is

rapidly secreted and regulated under neural control and plays a

crucial role in stress adaptation due to its wide range of hormonal

properties (10). In long-term stress conditions, the feedback

mechanism of the HPA axis gradually falters, leading to an

increase in serum basal CORT levels (22, 23). This elevation has
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been associated with various diseases. Chronic mild systemic

inflammation serves as an important pathway mediating disease

occurrence, characterized by increased levels of pro-inflammatory

cytokines in serum, dysfunction of bone marrow and lymph nodes,

and inflammatory damage to brain neurons. CORT has been shown

to exert pro-inflammatory effects (24–26). However, stress response

is a complex physiological and pathological process. During the

initial stages of acute stress, the rapid elevation of CORT

concentration demonstrates anti-inflammatory effects in

managing acute events (27). The level of CORT depends on the

severity and duration of exposure to the stressor, as well as the

traumatic effects of stress (28, 29). As a mediator between stress and

bodily responses, the dual role of CORT has attracted considerable

research attention. The concentration, duration, and mode of action

of serum CORT are key determinants influencing different

effects (30).

The immune system serves as the body’s protective mechanism

and can recognize and eliminate foreign antigens as well as mutated

or aging cells within the body (31). Its primary role is to maintain

organismal internal environment homeostasis, with bodily damage

and repair processes relying on its functionality. Thus, when

confronting and managing stressful situations, the immune

system’s function is indispensable. The interaction between the

effects of CORT and the immune system is essential in determining

the body’s state and trajectory during stress (23). Studies have

demonstrated that depression can compromise the immune system,

increasing the susceptibility to infection (32, 33). Prolonged

elevation of serum basal CORT levels continuously activates the

immune system, disrupting the body’s homeostasis and leading to

various forms of damage (10, 34, 35). Chronic inflammation, widely

recognized as a mechanism of injury, is frequently implicated in this

process (36, 37). Despite its defensive role, chronic inflammation

also contributes to tissue damage. Nevertheless, research has shown

that even a slight increase in CORT levels can alleviate oxidative

damage and enhance innate immunity (38). Therefore,

understanding the relationship between CORT concentration, its

dual effects, and subsequent immune system signaling regulation is

crucial, given its significance as a key stress hormone in

peripheral circulation.

The impact of stress response on the body is profound, with the

HPA axis and the immune system serving as the primary

mechanisms for coping with challenges. These systems are closely

interrelated and represent important pathways through which stress

can induce various biological injuries. CORT, a hormone produced

by the HPA axis, directly interacts with the immune function of the

body’s tissues in the bloodstream, underscoring the significance of

its regulatory mechanism. The level of CORT serves as a tangible

indicator of stress in the body, with its effects being closely linked to

susceptibility to various diseases through modulation of the

immune system and mediation of inflammation development

(39). Therefore, the purpose of this review is to elucidate and

analyze the relationship between CORT levels and immune

regulation and to summarize the biological mechanisms through

which stress impacts the immune system. The research question is

shown in Figure 1. Given the intimate connection between the
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immune system and various tissues throughout the body, this

review aims to facilitate the exploration of the pathogenesis of

systemic diseases triggered by stress in the future and to clarify the

intricate relationship between stress and the body at the cellular and

molecular levels.
2 Changes in corticosterone levels
and their immune effects

2.1 The dual identity of CORT
concentration controlled by stress and
HPA axis

2.1.1 Short term stress (acute stress)
CORT, as the primary hormone driving the adverse effects of

chronic stress on the body, holds significant importance in both the

immune system response and stress response (40). Numerous

studies have indicated that the HPA axis remains active, and

circulating CORT concentrations increase in individuals with

depression (41). Serving as the swiftest neuroendocrine regulatory

mechanism for stress response, the HPA axis’s failure in feedback

mechanisms leads to chronic damage through inflammation (42).

Repeated administration of CORT stimulation in animals has been

observed to lead to HPA axis dysfunction, neuronal damage,

cognitive decline, and memory impairment through the P2X7/

NF-kB/NLRP3 signaling pathway (43). Data from early studies
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showed that, it is generally accepted that the baseline plasma

concentration of CORT in rats ranges from 50-100 ng/ml (44),

while in stressed rats, it can range from 120-425 ng/ml (45, 46).

CORT levels simulating acute stress stimulation usually exceed 15-

20 ng/ml (47), and in vivo, CORT concentrations of 1-5 nM can

bind with GC receptors (GR) to exert effects (48).

The mechanism of CORT production in the central nervous

system has been extensively studied and summarized (49, 50).

Recent research has revealed that the activation of Agouti-related

protein (AgRP) neurons, which are related to autophagy and energy

metabolism, also promotes CORT production (51). Research

indicates that acute stress triggers the activation of AgRP

neurons, leading to the expression of neuropeptide Y (NPY),

which then promotes presynaptic inhibition of GABAergic

neurons expressing NPY1R and activates CRH neurons in the

paraventricular nucleus (PVN) of the hypothalamus, thereby

stimulating the HPA axis and increasing circulating CORT levels.

Subsequently, negative feedback regulation of the HPA axis inhibits

AgRP neuron activation and CORT secretion. The increase in

CORT caused by acute stress is swiftly suppressed to a resting

value due to this negative feedback regulation. However, long-term

chronic stress accompanied by HPA axis feedback failure gradually

elevates basal CORT levels, which cannot be effectively reduced. At

this stage, CORT activates immunity and triggers inflammation as

the main effect (52, 53).

Observations of cell states reveal that CORT exhibits two

immune effects at different concentrations. Emaya et al. (54)
FIGURE 1

The dual mechanism of stress-induced CORT on immunity and inflammation. Stress induces the release of CORT by activating the HPA axis. It is
worth noting that the immune effects of CORT are dual, namely anti-inflammatory and pro-inflammatory. It depends on the duration of stress and
the mode of action of CORT. How CORT interacts with the immune system and correlates inflammation and disease is the focus. In this figure, →:
Action site. +: Positive feedback signal transmission/activation. -: Negative feedback signal transmission/suppression.
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investigated the impact of GP120, a neurotoxic viral glycoprotein,

on human microglia (HMC3). In the absence of GP120 treatment,

CORT at concentrations of 32, 100, and 320 nM activated HMC3

cell activity, with the most pronounced effect observed at 100 nM.

Following GP120 treatment, 100 nM CORT effectively attenuated

GP120-induced neuroinflammatory damage in HMC3 cells within

24 hours, whereas the effects of 32 and 320 nM CORT were not

significant. This highlights the anti-inflammatory role of CORT in

acute infections. Moreover, similar to Emaya et al.’s findings (55),

the simultaneous addition of GP120 and 1 mM CORT mitigated

GP120-induced neurotoxicity in microglia. In the early stage of

GP120 infection, an instantaneous increase in CORT concentration

exerts immunosuppressive effects by promoting macrophage

phagocytosis activation, clearing pro-inflammatory cells and

debris, and inhibiting the production of neurotoxic cytokines

within glial cells. However, following pre-treatment with 1 mM
CORT for 24 hours and subsequent addition of GP120, the

neurotoxic effect of GP120 in microglia was enhanced by 15%.

Long-term exposure to increasing CORT concentrations promotes

inflammation, indicating that the effect of CORT is related not only

to its absolute concentration but also to whether the concentration

is stable or fluctuating. The timing of CORT administration is also

crucial. Pre-treatment with CORT before infection typically has a

dominant cytotoxic effect, whereas post-infection CORT treatment

demonstrates an anti-inflammatory effect. This suggests that

prolonged elevated CORT continuously activates and depletes the

immune system, leading to more severe damage when encountering

additional stressors.

2.1.2 Long term stress (chronic stress)
Prolonged stress can lead to chronic inflammation, with

continuous production of inflammatory cytokines (56). The

internal environment influenced by age also affects the immune

regulatory effect of CORT, and age is a significant predictor of the

severity of stress-induced damage (57), often correlating with the

duration of stress exposure. The aging phenotype is essential, as aging

can impair both the activation of the HPA axis induced by acute

stress and the feedback regulation capability of the HPA axis (58). In

elderly mice, the increase in CORT levels after acute stress is less

pronounced than in young mice, and CORT levels remain elevated

compared to the resting value at 4 hours. In contrast, the HPA axis

feedback regulation in young mice is more sensitive, with CORT

peaking at 2 hours and returning to baseline by 4 hours (51). Changes

in CORT levels during stress are related to the function of the HPA

axis. In young mice, normal HPA axis feedback inhibits the effects of

high-level CORT, while older mice exhibit poorer stress responses

and are more susceptible to damage from prolonged CORT exposure.

Cellular aging mediates the response to stressors, involving

mechanisms such as the HPA axis hormones, the sympathetic and

parasympathetic nervous systems, thymic hormones, and pineal

melatonin (59). Therefore, the HPA axis is a key regulator for the

body’s adaptation to stress. Dysfunction of the HPA axis can

synergistically lead to various stress-dependent diseases through

neural, immune, and endocrine pathways (60, 61). Individual

characteristics are crucial for identifying those with increased
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vulnerability to stress (62). During acute stress, CORT levels

increase but quickly return to baseline, with this range of increase

and decrease diminishing with age (63). This indicates that the ability

to handle stress deteriorates with age, increasing susceptibility to

damage. Additionally, sensitivity to stress depends on factors such as

the internal environment, genetic diversity, and gender (64).
2.2 Immune activation and
immunosuppression caused by CORT

The behavioral changes induced by fluctuations in cyclic CORT

levels exhibit a holistic nature. However, the effects of CORT may

vary locally depending on specific tissues and cells (65). Factors

such as enzyme activity, expression levels of GR (encoded by

Nr3c1), receptor variations, and local cellular signaling

interference (e.g., NF-kB, CREB, STAT signals) may influence

CORT utilization (66–68). The difference between immune

enhancement and inhibition caused by stress appears to be

mediated by the duration, intensity, and observed immune

components of the stressor (69). Additionally, sustained stress

characterized by inflammatory aging leads to immune system

depletion, resulting in overall immune suppression (70, 71). The

duration of stress exposure is an important factor in guiding the

immune response. Sarjan et al. were the first to examine the effects

of stress exposure duration on the immune system (72). Animal

experiments showed that prolonged exposure significantly

decreased the count and activity of immune cells (myeloid cells

and lymphocytes), bone marrow stem cells, blood immunoglobulin,

and IL-12 levels. Conversely, 3b-hydroxysteroid dehydrogenase

(3b-HSD) activity, circulating immune complexes (CIC), and IL-

10 levels increased with prolonged exposure. Cell experiments

confirmed the concentration-dependent immunosuppression of

CORT, with CORT-induced cell death being the primary cause of

immune dysfunction. Short stress exposure leads to a faster

recovery, whereas sustained stress may cause irreversible damage.

Regarding immune activation, even an increase in CORT

concentration within a physiological range (microstimulation) can

activate immune function. Innate immunity is primarily affected by

its mechanism, which is related to the production of pro-

inflammatory mediators. When the stressor is removed, CORT is

quickly suppressed by the HPA axis to its resting value. Vágási CI

conducted a study on maintaining CORT levels within the

physiological baseline range (38). The intervention involved

subcutaneously implanting drug particles containing 2 mg CORT

in sparrows (degraded after about 2 months), raising plasma CORT

concentration to approximately 8.5 ng/ml. One month post-

implantation, this intervention was found to significantly increase

the humoral components of innate immunity in sparrows,

including natural antibodies and complement levels (measured by

hemolysis hemagglutination assay). However, no significant

changes were observed two months post-implantation, possibly

due to drug particle degradation. Previous studies have shown

similar results (73, 74), indicating that short-term stress exposure

visibly enhances the innate immune system. While enhancing
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immunity may seem beneficial, it comes at the cost of increased

material and energy metabolism. Animals treated with CORT in

this study showed weight loss and poor hair quality despite

enhanced innate immunity. Immune activation increases energy

consumption and metabolite production, such as oxides and acidic

substances, which can induce cell damage and further stimulate

inflammation (75). Therefore, the level and duration of CORT affect

the body’s ability to metabolize and decompose toxins. Prolonged

stress and the inability to reduce CORT concentration can cause

functional changes, disrupting the balance between damage and

repair. Sustained stress exacerbates damage and may lead to disease

induction. The relationship between circulating CORT levels and

immunity is illustrated in Figure 2.
2.3 The immune effects of stress and CORT

2.3.1 Innate immunity and acquired immunity
Most immune responses to stress are initiated through innate

immune pathways. Toll-like receptors (TLRs) on the immune cell
Frontiers in Endocrinology 05
membrane are essential for CORT’s influence on the immune

response. In macrophages, dendritic cells (DCs), and natural

killer (NK) cells, TLR activation promotes intracellular NF-kB
phosphorylation and nuclear translocation, enhancing antigen

presentation, phagocytosis and the production of various pro-

inflammatory cytokines, such as IL-1b, IL-6, TNF-a, IFN-g, and
IL-18 (76, 77). This process also activates caspase-1, further

promoting inflammatory signaling (78). In acute stress situations,

such as on the skin’s surface, cytokines and chemokines recruit

macrophages and NK cells to the site to prevent the spread of

pathogens (79). Typically, innate immunity is utilized to counter

external stress. If the response concludes at this stage, innate

immune cells will not engage T cells. Instead, they present

antigens to B cells to establish immunological memory (memory

B cells) and produce antibodies (plasma cells) for future stress

conditions (80). Importantly, long-term elevated CORT due to

chronic stress is believed to cause immune cells to continuously

receive “battle” signals, perpetually activating both innate and

acquired immunity (81). Cytokines produced by innate immune

cells (i.e., NK cells and macrophages) create signaling connections
FIGURE 2

The relationship between CORT cycle level and immunity. The levels and functions of CORT are manifested in three distinct scenarios, namely
steady state (normal level), acute stress (rapid high level and then recovery), and chronic stress (slow increase - sustained high level - slow decrease).
Within the normal threshold, CORT levels are positively correlated with innate immune function. In acute stress, CORT rapidly increases (blue arrow),
with anti-inflammatory effects being the dominant effect. And after the stress ends, restore stability based on the negative feedback function of HPA
axis. Both are blue background boxes, representing physiological status. In chronic stress, CORT slowly increases and remains at a high level (red
solid arrow), with pro-inflammatory effects being the dominant effect. As time goes on, dysfunction of the HPA axis and GR further exacerbates the
inflammation and promotes cell death. Eventually, with aging, CORT slowly decreases (red dashed arrow), and immune suppression at this point is
the result of immune exhaustion.
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with immune cells (T cells and B cells) involved in acquired

immune responses in the peripheral blood circulation, with

antigen presentation further enhancing this connection. Antigen-

presenting cells expressing major histocompatibility complex class I

(MHC I) primarily activate CD8+ T cells, which are pivotal for

cellular immunity by engaging in the phagocytosis of antigens (82).

Conversely, antigen-presenting cells expressing MHC II mainly

activate CD4+ T cells (helper T cells) (82, 83). Subsequently, these

activated CD4+ T cells can initiate the activation of B cells,

prompting their differentiation into plasma cells responsible for

antibody secretion, thereby fostering humoral immunity (84).

Additionally, helper T cells polarize into different phenotypes

(Th1/Th2 and Th17/Treg) and secrete various cytokines to

participate in cellular immunity (85). To cope with stress-

mediated damage, restoring balance within the organism requires

synergistic interactions between the innate and acquired immune

systems. The regulation of inflammation involves both positive and

negative feedback mechanisms that coexist. For example, IFN-a/b
can stimulate Th1 cells, DCs, and M1 macrophages to co-stimulate
Frontiers in Endocrinology 06
MHC I, enhancing cytotoxic T lymphocyte (CTL) activity and the

expression of IL-2, IL-12, and IFN-g, thereby promoting

inflammation (86–88). Conversely, IFN-a/b can stimulate Th2

cells, Treg cells, and M2 macrophages to secrete IL-4, IL-10, and

PD-1, which suppress the expression of pro-inflammatory factors

and adhesion molecules such as TNF-a, IL-1b, and IL-8 and in turn

downregulates MHC I expression to suppress CTL activation,

thereby achieving immune control (89–93). These cytokines, as

non-specific regulatory factors, affect most immune responses (7).

Thus, immune activation and inhibition can coexist. The immune

response triggered by long-term elevated CORT adapts through

dynamic shifts in immune cell populations to achieve a new steady

state, such as M1/M2 macrophages, Th1/Th2 cells, and Th17/Treg

cells. As shown in Figure 3.

2.3.2 Invariant T cells
In addition to the traditional T cells mentioned above, invariant

T cells (iT cells) have become a significant focus of research in

immune regulation. iT cells are congenital T cells, including
FIGURE 3

Immune activation and immune imbalance induced by CORT. CORT activates the immune system via Toll-like receptors. Innate immune cells are
the first responders to CORT. The intracellular signaling pathways triggered by CORT produce two main effects, on the one hand, the secretion of
pro-inflammatory factors to enhance immune activity. On the other hand, the secretion of anti-inflammatory factors to protect the cells themselves
and to restrain excessive immune responses. The sustained high-level CORT further activates adaptive immune cells and expands immune activity.
At this time, a large number of immune cells participate in the circumstance and transmit signals to each other through inflammatory factors. If
CORT persists as an upstream signaling molecule, it will continue to deplete the immune system, leading to the exacerbation and spread
of inflammation.
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invariant natural killer T cells (iNKT cells) and mucosa-associated

invariant T cells (MAIT cells). Functionally, they are considered

bridges between innate and acquired immunity (94, 95). iNKT cells

are characterized by expressing both NK cell surface marker CD244

and chemokine receptor CXCR6, as well as T cell surface marker

TCR a/b (96). They can be activated by MHC I antigen

presentation and by pro-inflammatory factors IL-2 and IFN-g (97,
98). iNKT cells primarily recognize lipid antigens (99). Upon

activation, they can secrete perforin and granzymes or utilize the

Fas/FasL pathway to kill cells, participating in immune responses.

Additionally, they can secrete IFN-g or IL-4 to induce Th1 or Th2

differentiation, thereby playing a regulatory role (100, 101). MAIT

cells also express TCR, which is activated by MHC I antigen

presentation (TCR-dependent pathway) or by IL-12 and IL-18

(non-TCR-dependent pathway) (102). Upon activation, IL-18R and

CCR6 are overexpressed on the cell membrane (102, 103). MAIT cells

can secrete both the pro-inflammatory factor IL-17 and the anti-

inflammatory factor IL-22, with their dual immune regulatory

functions showing tissue specificity (103). MAIT cells also possess

antioxidant functions, which may limit neuroinflammation and

ensure cognitive function (104). However, insufficient or excessive

MAIT cellular activity can induce autoimmune diseases,

inflammatory diseases, and allergic diseases through dysbiosis of

the microbiota (105–107). Previous studies have shown that stress

promotes Th2 phenotype bias and inhibits Th1 activation by NE,

NPY, and CORT (108–110). Recent studies have reported that

chronic stress impairs the function of iT cells, demonstrating a

mixed feature of selectively inducing the production of pro-

inflammatory and anti-inflammatory cytokines (102, 111).

Long-term stress reduces the expression of TCRa/b, CD28, and
inducible T cell costimulator (ITCOS) on the surface of iNKT cells,

thereby decreasing their ability to secrete IL-4 and IFN-g (102). IL-4
and IFN-g are key factors in promoting Th2 and Th1

differentiation, respectively (112). Following stress, cytokine

analysis revealed decreased serum levels of IL-2, IL-5, IL-13,

Eotaxin, GM-CSF, IP-10/CXCL10, MCP-1/CCL2, RANTES/

CCL5, and TNF-a, while the levels of IL-1a, IL-1b, MIP-1a/
CCL3, and MIP-3a/CCL20 increased. In iNKT cells, the

expression of IL-2, IL-5, IL-12, and IL-13 decreased, whereas IL-

10, IL-23, and IL-27 levels increased. Cytokines and chemokines

unaffected by stress include G-CSF, IL-6, IL-7, IL-9, IL-15, IL-17E/

IL-25, IL-17F, IL-21, IL-22, IL-28B/IFNL3, IL-31, IL-33, KC/

CXCL1, LIF, LIX/CXCL5, M-CSF, MIG/CXCL9, MIP-1b/CCL4,
MIP-2/CXCL2, TGF-b1, TGF-b2, TGF-g3, and VEGF. Therefore,

the regulation of iNKT cells on inflammatory factors under stress is

twofold. Upstream of the iNKT cell response, increased levels of the

anti-inflammatory protein glucocorticoid-induced leucine zipper

(GILZ) were detected, confirming that the response was dependent

on GR signaling rather than sympathetic nervous system (SNS)

signaling, as no change in SNS neurotransmitter receptor

expression was observed (102). GILZ is a known transcriptional

target for GR activation (113). Studies have shown reduced

transcription levels of genes related to iNKT cell effector

functions, including Cd40l, Il18rap, Egr2, Irf4, Nfatc3, Tbx21, Ifng,

Il4, Gzma, Tnf, Tnfrsf9 and Tnfsf10, suggesting that stress can
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inhibit iNKT cell function through GR signaling (102). MAIT

cells also rely on the GR pathway to activate defense mechanisms

under stress. Similar to iNKT cells, MAIT cells overexpress CD127

and reduce the secretion of IL-4 and IFN-g to attenuate Th1 and

Th2 responses (102). The above indicates that stress suppresses the

immune response by impairing iT cell function. However, due to

the dual role of iT cells in regulating both pro-inflammatory and

anti-inflammatory cytokines and their ability to differentiate into

different T cell phenotypes, further exploration of their role in

various tissues is necessary. Additionally, the upstream mechanisms

of GR signaling and CORT regulation require further investigation

through cell experiments.

2.3.3 DNA damage response
Under chronic stress conditions, the inflammatory response

during immune activation can also affect DNA damage repair and

epigenetic modification (114). In the innate immune response, the

activation of Pattern Recognition Receptors (PRRs) on the cell

membrane leads to long-term activation of double-stranded RNA-

dependent protein kinase (PKR), resulting in the inactivation of the

DNA repair kinase ATM (part of the PI3K protein kinase family)

and the phosphorylation of p65 NF-kB, thereby promoting IFN-g
synthesis (86). PKR activation also stimulates the NLRP3

inflammasome, enhancing the synthesis of IL-1b and IL-18, a

process that can be inhibited by p58IPK (115). Additionally, the

RNA editing enzyme ADAR1, the nucleic acid repair exonuclease

TREX1, and the interferon-induced nuclear protein IFI-16 are

activated to ensure DNA repair and prevent abnormal activation

of interferons (116–118). ADAR1 has been found to prevent the

activation of the receptor MDA5/PKR by A-RNA, thereby

inhibiting IFN production and translation, and exerting

immunosuppressive effects. Additionally, ADAR1 can inhibit

RIPK3/MLKL-dependent programmed cell necrosis by blocking

Z-RNA activation of ZBP1 (119, 120). Changes in transcription

levels in the nucleus are associated with the extracellular JAK/STAT

signaling pathway, PI3K/AKT/GSK3, and PI3K/AKT/mTOR

signaling pathways (121, 122). Alongside the inflammatory

response, the anti-inflammatory response is also regulated. For

instance, the PI3K/AKT signaling pathway controls inflammation

by upregulating the expression of IL-10-induced genes, thus

antagonizing the cytotoxic effects of pro-inflammatory factors

TNF-a, IL-1b, IL-6, and IL-8. Additionally, the expression of

Caspase-3, Caspase-8, and Caspase-9 is downregulated to reduce

apoptosis (123–125). In the process of adapting to stress, cellular

compensatory reactions can lead to an imbalance skewed toward

injury as energy is consumed (126). Chronic stress, for example,

increases the rate of DNA mutations in cells, causing dysfunction

and even cell death (127), contributing to the development of many

inflammatory diseases. Therefore, the immune effects induced by

CORT may impact cell function through epigenetic modification.

However, the specific genetic mechanisms require further

exploration, such as studying the regulation of transcription,

translation, and post-translational modification of different

inflammatory genes by CORT under varying levels and durations

of stress through omics studies. Additionally, exploring the
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influence of CORT on the DDR, such as the TCGA/DDR signaling

pathway, is necessary for a deeper understanding.
3 Interaction pathway between
corticosterone and immunity

3.1 The endocannabinoid system

The Endocannabinoid (eCB) system is widely present in various

cell types and plays an essential role in metabolic signal

transduction (128–130). It comprises (1) endogenous lipid

transmitters such as endocannabinoids, including anandamide

(AEA) and 2-arachidonoylglycerol (2-AG), (2) cannabinoid

receptors (CBR), including type 1 (CB1R) and type 2 (CB2R),

and (3) related enzymes such as N-acyl phosphatidylethanolamine-

hydrolysis phospholipase D (NAPE-PLD), diacylglycerol lipase

(DAGL), and degrading enzymes such as fatty acid amide

hydrolase (FAAH) and monoacylglycerol lipase (MAGL) (131).

The eCB system plays a crucial role in coping with stress. This is

primarily reflected in the response and control of the eCB to CORT

(end product of HPA axis), as well as the response and regulation of

the CBR to CORT. As a marker of stress signals, CORT activates the

eCB system (128).

Firstly, it is reflected in the mutual influence between CORT

and eCB (2-AG and AEA). There are two situations here, namely

short-term stress and long-term stress. The core difference between

the two lies in whether the negative feedback function of the HPA

axis (sensitivity) is normal. Danan D’s study (132) showed that an

increase in CORT under short-term stress (1-2 hours after PSS, PSS

is predator scent stress) stimulates compensatory responses of eCB,

i.e., promotes the expression level of 2-AG (in cerebrospinal fluid).

However, there was no significant difference in AEA levels (in

cerebrospinal fluid). This study suggests that the response of eCB to

acute stress is mainly through 2-AG. Similarly, Balsevich G’s study

(133) found a positive correlation between CORT and 2-AG

(elevation) in the short-term stress model, rather than AEA.

Bedse G’s study (134) also confirmed this in the amygdala.

Roberts CJ’s study (135) simulated short-term stress stimuli

through forced swimming. The results also showed a positive

correlation (elevation) between 2-AG levels and CORT in the

hippocampus, amygdala, and prefrontal cortex (PFC). Morena

M’s study (136) also found that under pressure (temperature

stimulation), both 2-AG and CORT increased simultaneously,

while AEA levels did not show significant changes. This indicates

that the eCB system is mainly responsive to CORT by 2-AG under

short-term stress. 2-AG participates in rapid and robust responses

of stress regulation and promotes negative feedback function of the

HPA axis (137, 138). Furthermore, it is widely believed that AEA is

a regulatory molecule under the chronic action of GC, involved in

downstream secondary signaling mechanisms of glucocorticoid

receptor (GR) activation (139). Under short-term stress, based on

negative feedback regulation of the HPA axis, these reactions will be

self-downregulated afterwards (140), thereby restoring the

homeostasis of the CORT and eCB systems.
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Under long-term stress, the balance of HPA axis negative

feedback is disrupted, and the compensatory response of eCB

subsequently fails. At this point, the pathological effect of CORT

dominates, which will disrupt the role of eCB (AEA and 2-AG). For

AEA, Danan D’s study (132) showed that AEA levels (in

hippocampus) were significantly reduced under long-term stress

(1 week after PSS). Zada W’s study (141) showed that upregulating

AEA expression through drugs (FAAH inhibitors) helps to reduce

CORT levels and depressive behavior in a depression model (high

CORT levels). Hill M.N’s research (139) has the same conclusion.

Satta V’s study (142) simulated a chronic stress model by changing

diet (stress duration of 5 weeks). The results showed that there were

synergistic changes with the increase of CORT is, a decrease in AEA

levels was observed in the amygdala, hippocampus, and caudate

putamen. However, no significant changes in AEA were observed in

the hypothalamus, nucleus accumbens, and PFC. Gray JM’s study

(143) showed that under the action of CORT (capsule), AEA levels

were reduced in both the PFC and amygdala. It can be seen that the

increase of CORT under chronic stress will inhibit the expression of

AEA. And AEA is considered the main type of eCB that responds to

the chronic effects of CORT (144). However, under this condition

(chronic stress), 2-AG is slightly controversial. Satta V’s study (142)

showed that under chronic stress (dietary changes lasting up to 5

weeks), 2-AG significantly increased in the hippocampus, while

there were no significant changes in the amygdala, caudate nucleus,

nucleus accumbens, hypothalamus, and PFC. Gray JM’s study (143)

showed that under the action of CORT (capsule), 2-AG was

observed to increase in the PFC, while there was no significant

change in the amygdala. On the contrary, recent studies by Danan

D (132) have shown that under prolonged stress (1 week after

continuous PSS), the levels of 2-AG in the hippocampus and

hypothalamus are significantly reduced. From this perspective,

there are more complex regulatory mechanisms under chronic

stress. Moreover, the eCB system can accept crosstalk and

feedback from various upstream and downstream signals, which

makes its expression more confusing. For instance, distinct brain

regions exhibit unique regulatory mechanisms. There are different

signal transmission directions (compensatory and decompensated)

in different response stages. And under the influence of diverse

stressors, different dominant signals emerge, even though an

elevation in CORT levels is consistently observed across all

conditions. In more recently studies (145, 146), it is generally

believed that the concentration of 2-AG increases under chronic

stress. The increase of 2-AG under chronic stress is related to the

inhibition of AEA and decreased sensitivity of CB1R (147, 148).

Both 2-AG and AEA are constrained by the release mode of GC

(such as CORT), and when CORT increases, both 2-AG and AEA

change in opposite directions (143). However, a more detailed

mechanism has not yet been fully determined.

Additionally, it should be noted that CORT regulates the eCB

system not only by targeting 2-AG or AEA levels, but also by acting on

CBR. CB activity mediated by CBR is a primary factor in maintaining

the feedback regulation ability of the HPA axis (149, 150). Studies have

shown that, pharmacological blockade or decreased expression and

function of CB1R can disrupt the negative feedback of the HPA axis,
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leading to increased circulating CORT levels (151). Skupio et al. (152),

CORT induces neuronal damage by activating CB1R on the

mitochondrial membrane (mtCB1R), and this mechanism has

different damaging effects in different brain regions. In mice,

impairment of New Object Recognition (NOR) consolidation

memory was induced in norepinephrine (NE) neurons of the locus

coeruleus (LC), while in the hippocampus (HIP), impairment of NOR

extraction memory was induced in GABAergic interneurons. In this

pathway, it was observed that CORT led to an increase in 2-

arachidonoylglycerol (2-AG) levels. These pieces of evidence suggest

that the eCB system is a vital component in the response to stress.

Furthermore, downstream of the eCB system, it is intricately linked to

the immune system, serving as a crucial bridge for the interaction

between CORT and the immune response (153, 154).

The signal transduction of the CB system to the immune system

involves multiple pathways, including direct communication and

indirect communication through arachidonic acid signaling. This

regulates the function of immune cells, such as proliferation,

secretion, and apoptosis (155, 156). The realization of immune

activation and immune suppression mainly depends on the dual

channels of the CB system, involving two G protein-coupled

receptors, CB1R and CB2R, and the activation and sensitivity of

these receptors. CBR mainly functions in central neurons. Among

them, CB1R is primarily expressed in microglia, neuronal endings,

and astrocytes, whereas CB2R is mainly expressed in microglia and

glial cells (157, 158). Currently, it is believed that CB1R is primarily

associated with promoting the production of inflammatory

mediators, while CB2R is mainly involved in inhibiting

inflammation, thereby communicating with immune cells (154).

And, microglia are essential immune cells in the central nervous

system as they possess significant neuroimmune regulatory abilities.

Therefore, in neuroimmunity, the immune regulation of eCB

cannot be separated from the immune function of microglia.

They exhibit two activation states: classical activation (M1

polarization) and alternative activation (M2 polarization) (159).

M1 polarization is associated with pro-inflammatory effects. In

contrast, M2 polarization has anti-inflammatory and neurotrophic

properties (160, 161). As shown in Figure 4.

3.1.1 Direct communication between CORT
and immunity

About direct communication, research has found that in M1-type

microglia, the binding of 2-AG to CB1R increases pro-inflammatory

mediators. However, in M2-type microglia, the binding of 2-AG to

CB2R enhances the expression of the anti-inflammatory cytokine IL-

10 and the solubilizing factor lipoxin-4 (LXA4) (162). LXA4 can

induce apoptosis of inflammatory cells and participate in immune

suppression (163). Additionally, activation of CB2R facilitates the

transition of microglia from M1 type to M2 type (164), leading to a

decrease in the expression of iNOS, a marker of M1 activity, and an

increase in the expression of Arg-1, a marker of M2 activity (160).

Administration of exogenous 2-AG in inflammatory model mice

promotes an increase in the number of M2-type microglia (162).

CB2R signaling inhibits the expression of pro-inflammatory

mediators iNOS and CCR2 in IFN-g-induced inflammatory mouse
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microglia (165). CCR2 is a chemokine receptor associated with

immune cell recruitment, reflecting that the immune regulation by

2-AG depends on the activation status of microglia and the sensitivity

of corresponding CBRs in this state. Other studies have shown that

AEA and 2-AG inhibit T cell proliferation and reduce IL-1, IL-6, IL-9,

IL-17 and TNF-a levels by activating CB2R (166). CB2R can

simultaneously inhibit adenylate cyclase (AC) activity, thereby

inhibiting the cyclic adenosine monophosphate (cAMP) signaling

pathway and lymphocyte activation. This demonstrates that the CB

system regulates immune cell and cytokine secretion by activating

different CBRs and maintains homeostasis of the internal

environment through a dual effect of pro-inflammatory and anti-

inflammatory actions (167). During this process, inflammation

results from the interaction between pro-inflammatory and anti-

inflammatory substances.

3.1.2 Indirect communication between CORT
and immunity

Indirect communication with the immune system is

accomplished through the transmission of arachidonic acid-like

signals (168). The biosynthesis of arachidonic acid (AA) involves

the oxidation of polyunsaturated fatty acids by cyclooxygenase

(COX) and lipoxygenase (LOX). Interestingly, endocannabinoids

(AEA and 2-AG) are derivatives of AA and are influenced by the

same oxidative metabolic pathway. Prostaglandins (PG), such as

PGE2 (via the COX pathway) and leukotrienes (via the LOX

pathway), are the main metabolic products (169). While

endocannabinoids exert their anti-inflammatory effects through

CB2R, they are degraded into AA by FAAH and MAGL, and enter

the AA synthesis pathway to produce inflammatory mediators PGE2

and leukotrienes. These processes rely on the production of nitric

oxide (NO) to provide pro-inflammatory effects and enhance

immune responses (170). In the LPS-induced inflammatory mouse

model, inhibiting MAGL activity reduces the secretion of PGD2,

PGE2, PGF2a, and pro-inflammatory cytokines IL-1a, IL-1b, IL-6,
and TNF-a in the brain (171). This phenomenon is also observed

when inhibiting COX-2 (172). Thus, activating the immune system

includes both pro-inflammatory and anti-inflammatory effects. This

process requires significant energy and substrate consumption, as

well as the continuous operation of organelles. The final result

depends on which signaling pathway is predominantly and

continuously activated. Persistent inflammation and cell damage

are the outcomes of the sustained action of stress hormones.

Conversely, immune cells can coordinate CB signaling by

regulating the transcription, synthesis, uptake, and degradation of

CB components. Studies have shown that CB1R expression and

AEA levels in lymphocytes are reduced following intervention with

the anti-inflammatory cytokine IFN-b (173). LPS-induced

activation of mouse macrophages results in an increase in

platelet-activating factor (PAF), which promotes the synthesis of

AEA and 2-AG due to decreased expression of FAAH (174). The

study conducted by Standoli S (175) reveals that inhibiting FAAH

and activating the CB2R can effectively prevent the production of

TNF-a and IL-1b induced by LPS. Additionally, immune cells can

directly participate in the degradation of AEA and 2-AG
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(dependent on concentration feedback) to terminate CB signaling

(176, 177). Other studies have demonstrated that in the LPS-

induced inflammatory mouse model, CB1R expression decreases

at the membrane protein level while CB1R mRNA expression

increases (178), which may represent an adaptive regulation of

the body’s response to inflammation, primarily manifested at the

protein level.
3.2 TREM2 mediated immune regulation

Triggering receptor expressed on myeloid cells-2 (TREM2) is a

transmembrane receptor of the immunoglobulin superfamily

expressed in various immune cells such as DCs, microglia, and

macrophages (179–181). Upon binding to its ligand, TREM2

interacts with DNAX-activating protein of 12 kDa (DAP12) to

induce phagocytosis of tissue fragments and promote anti-

inflammatory properties (182). This interaction is related to

downstream signaling pathways involving PLCg2, PI3K, and AKT
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(183–185). DAP12 is also a transmembrane receptor widely present

on the surface of immune cell membranes. In microglia, TREM2 is

responsible for synaptic inhibition and establishing normal brain

connections, maintaining innate immune homeostasis and cellular

metabolism (186). TREM2 also participates in the M1/M2

polarization of microglia to regulate inflammatory responses.

Upregulation of TREM2 expression promotes the transition of

microglia from M1 to M2 type, enhancing their phagocytic

function, reducing the release of inflammatory mediators, and

inhibiting the inflammatory cascade response. Conversely,

downregulation of TREM2 expression promotes inflammation (187).

Recent studies have shown that CORT affects the immune

function of microglia through TREM2, inducing the production

of inflammatory factors (188, 189). Cell experiments have

demonstrated that when CORT concentration exceeds 1 mM, it

significantly inhibits the proliferation of microglia (BV2), with the

degree of inhibition becoming more pronounced at higher CORT

concentrations, almost completely inhibiting growth at 500 mM
CORT. Intervention using 10 mM CORT was found to significantly
FIGURE 4

The immune effect of CORT through the eCB system. (A) Under acute stress, 2-AG is the main type of eCB that responds to stress (CORT). Mediate
the inflammatory response via CB1R, while inhibiting inflammation through CB2R. This achieves immune balance. And ultimately end the stress
response through negative feedback regulation of the HPA axis. (B) Under chronic stress, CORT levels remain elevated, leading to the continuous
activation of both the eCB system and the immune system. In this context, the low expression of AEA reflects the depletion of the eCB system, while
the high expression of 2-AG represents the body’s attempt to counteract the effects of elevated CORT. As a sustained stress signal, CORT promotes
the dominance of CB1R while CB2R is inhibited. This shift drives the immune response toward a pro-inflammatory state. Eventually, the eCB system
becomes exhausted, rendering it incapable of effectively inhibiting inflammation. The straight arrow represents the direct promoting effect. The
dashed arrow represents the indirect promoting effect. The minus line represents the inhibitory effect. The plus sign "(+)" represents signal
enhancement. The minus sign "(-)" represents a weakened signal. The red down arrow represents a decrease in the expression level of the molecule.
The red up arrow represents an increase in the expression level of the molecule.
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decrease TREM2 expression. The experiment also revealed an

upregulation in the expression of M1-type markers, including

iNOS and CD16, in microglia, while the expression of M2

biomarkers CD206 and Arg-1 declined. Additionally, there was

an increase in the levels of pro-inflammatory factors such as TNF-a,
IL-1b, and IL-6, coupled with a decrease in the anti-inflammatory

factor IL-10, which are in line with previous research (187).

Transfecting TREM2 into the cells was found to reverse this

phenomenon, while knocking out TREM2 in mice increased the

levels of TNF-a, IL-1b and IL-6 and decreased the levels of IL-10.

These results indicate that inhibiting TREM2 is one of the

mechanisms by which CORT mediates the pro-inflammatory

effects of microglia.

The JAK2/STAT3 signaling pathway is involved downstream of

TREM2 in the immune regulation of CORT. This pathway plays an

important role in the development of innate and acquired immune

cells, activation of IFN, and expression of inflammatory cytokines

(190, 191). It is a significant mediator in synaptic transmission,

where enhanced synaptic transmission activates the JAK2/STAT3

signaling pathway to promote the production of inflammatory

factors (192). Studies have shown that chronic unpredictable mild

stimulation (CUMS) induces depression-like behavior and the

release of inflammatory factors in rats by activating the IL-6/

JAK2/STAT3 pathway in the hypothalamus (193). Further

research has indicated that this process is related to CORT

inhibiting TREM2 expression. Overexpression of TREM2 can

reverse this phenomenon to promote the transformation of

microglia from M1 type to M2 type (189), thereby exerting anti-

inflammatory effects.

Regulating downstream signaling pathways of inflammation

through TREM2 involves not only JAK2/STAT3 but also NF-kB
and PI3K/AKT pathways, which are implicated in NLRP3

inflammasome-mediated neuroinflammation (194). During stress,

CORT recognizes peripheral signals to activate the intracellular

pattern recognition receptor (PRR) NLRP3. Subsequently, ASC

binds to pro-caspase-1 to form activated caspase-1, which

promotes the maturation of IL-1b and IL-18, thereby exerting

pro-inflammatory effects (195). Therefore, the expression of

NLRP3 and activated caspase-1 are key markers of inflammation.

TREM2 is widely recognized as a key protein molecule that inhibits

the inflammatory cascade response (196). Recent studies (187) have

shown that overexpression of TREM2 effectively reduces the

expression levels of NLRP3 and pro-caspase-1 proteins in rats, as

well as the secretion of the inflammatory mediators IL-1b and IL-

18, both in vivo and in vitro. This anti-inflammatory effect is

associated with the inhibition of the TLR4/MyD88/NF-kB
signaling pathway and the upregulation of PI3K/AKT

phosphorylation levels (197, 198). These findings are consistent

with previous results. The upregulation of TREM2 promotes M2

polarization of microglia and reduces the secretion of inflammatory

mediators, thereby exerting neuroprotective effects. Inhibiting the

NF-kB signaling pathway and activating the PI3K/AKT signaling

pathway are essential for these effects (199–201).

The effects of CORT on downstream signaling pathways are

concentration-dependent, with both upregulating and
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downregulating impacts on the same pathway, thereby exerting

pro-inflammatory or anti-inflammatory properties. Wu et al. (202)

demonstrated a dual effect of different CORT concentrations on an

LPS-induced mouse macrophage inflammation model. When the

concentration of CORT was below 300 ng/ml, the protein

expression level of NLRP3 in mouse macrophages was

significantly upregulated. However, when the concentration of

CORT exceeds 300 ng/ml, the protein expression level of NLRP3

gradually decreases, reaching its lowest level at 700 ng/ml, along

with a decrease in activated caspase-1 expression. Xanthine oxidase

(XO) primarily mediates the production of mitochondrial reactive

oxygen species (ROS) (203), which may be responsible for

activating NLRP3 (204, 205). Research has found that CORT

regulates the pro-inflammatory factor NLRP3 through the

enzyme activity of XO (202). Higher concentrations of CORT

(700 ng/ml) downregulate the mRNA and protein expression of

NLRP3 by inhibiting the activity of XO, thereby modulating the

body’s inflammatory response. Thus, while the signaling pathways

affected by CORT may be consistent, the specific role of immune

promotion or immune suppression depends on the circulating

concentration, as illustrated in Figure 5.
3.3 SOCS1 and SOCS3 mediated immune
regulation related to CORT

Suppressor of Cytokine Signaling 1 (SOCS1) is a negative

regulatory factor that effectively prevents the overactivation of the

immune system (206), and its transcription is regulated by the JAK/

STAT signaling pathway. Additionally, SOCS1 can bind to the

catalytic site of JAK2 through its specific enzyme activity inhibitory

region, thereby inhibiting JAK2/STAT3 signal transduction (207).

Inhibiting SOCS1 has also been found to promote the proliferation

of CD4+ and CD8+ T cells (208). Studies have observed that CORT

reduces the expression of SOCS1 in microglia, thereby promoting

the expression of pro-inflammatory factors TNF-a, IL-1b, and IL-6

(189). These factors promote the polarization of microglia towards

the M1 type. Subsequently, activated microglia exacerbate synaptic

damage by releasing pro-inflammatory factors, promoting the

accumulation of phosphorylated tau, and inducing neuronal

apoptosis (209), indicating that the activation of microglial

immune function by pro-inflammatory concentrations of CORT

is achieved by inhibiting SOCS1. However, CORT can also activate

the JAK2/STAT3 signaling pathway, suggesting that there is

another mechanism by which CORT inhibits SOCS1 that

warrants further exploration.

SOCS3 is an IL-10 inducible gene, and IL-10 primarily achieves

immunosuppressive effects by inactivating myeloid cells and

inhibiting the production of inflammatory factors (210). IL-10

typically induces STAT3 activation, which inhibits TLR-mediated

pro-inflammatory cytokine expression at the transcriptional level.

Furthermore, IL-10 induces the polarization of microglia towards

the M2 type (211). The expression of IL-10 is not entirely dependent

on the PI3K/AKT pathway, and the IL-10-induced SOCS3 gene is

not regulated by it. However, the expression of IL-10 induced by
frontiersin.org

https://doi.org/10.3389/fendo.2025.1448750
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2025.1448750
other genes, such as ARNT2 and Autotaxin, depends on the PI3K/

AKT pathway (212). Downstream of p-AKT, IL-10-induced gene

expression is further increased by inhibiting GSK3 activity (mainly

GSK3a, followed by GSK3b). Although it has been found that

cAMP response-element protein (CREB) is one of the targets of

GSK3, it has also been shown that CREB is not involved in GSK3

regulation of signal transduction between IL-10 (213). Downstream

of IL-10, the PI3K/AKT pathway is involved in IL-10 inhibition of

TLR-induced synthesis of COX2, IL-1 and IL-8, but not in IL-10

inhibition of TNF-a synthesis (212). This indicates that the PI3K/

AKT pathway selectively regulates the immune response of IL-10.

Upstream of the PI3K/AKT pathway, CORT inhibits the PI3K/AKT

pathway, while TREM2 promotes it. In summary, the specific

regulatory mechanism is shown in Figure 5.
3.4 Programmed cell death

3.4.1 FOXO3a and ROS
CORT can activate immune cells and release inflammatory

mediators to respond to the immune environment through various

signaling pathways. However, alongside adaptation and coping,

damage also occurs. This is especially evident in chronic stress,

where repair and regulation are less effective than injury response.

Under the cytotoxic effect of CORT, signals of abnormal
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intracellular metabolism continuously drive immune regulation

and, over time, initiate autonomous cell death (214). Chang et al.

(215) showed that CORT (100 mM)-induced neuronal apoptosis

results from a combination of multiple pathways, including the

mitogen-activated protein kinase (MAPK) cascade reaction

(MAPK/ERK signaling pathway and p38 MAPK signaling

pathway) and the PI3K/AKT/FOXO3a signaling pathway. These

intracellular kinase signaling cascades are believed to be responsible

for promoting neuronal survival (215, 216). The MAPK/ERK

signaling pathway is mainly responsible for regulating cell

viability and proliferation (217). The p38 MAPK signaling

pathway primarily regulates cell differentiation, antioxidant stress

survival, inflammation, and the cell cycle (218, 219). Research has

shown that high concentrations of CORT increase intracellular ROS

and FOXO3a nuclear accumulation by inhibiting these signaling

pathways based on the observed decreased phosphorylation of p38,

ERK, PI3K, and AKT. This inhibition leads to an increased rate of

cell apoptosis (215). FOXO3a is a transcription factor that triggers

cell apoptosis, characterized by a forkhead domain that binds to

DNA, thus directly participating in gene transcription (220).

However, FOXO3a within the nucleus is limited. Part of FOXO3a

is phosphorylated and translocated from the nucleus to the

cytoplasm, where it regulates important physiological processes

such as energy metabolism, cell apoptosis, and oxidative stress

and is ultimately degraded, preventing cell apoptosis (221, 222).
FIGURE 5

Regulation of immune activity by CORT through TREM2. Under chronic stress, CORT stimulates inflammatory signaling through Toll-like receptors
(TLRs), which involving key pathways such as NF-kB, NLRP3 inflammasome, and JAK/STAT, which collectively drive the progression of inflammation.
TREM2 is a crucial membrane receptor protein with immunomodulatory functions that help inhibit inflammation. However, sustained high levels of
CORT disrupt the ability of immune cells to suppress inflammation by inhibiting the TREM2/PI3K/AKT signaling pathway.
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CORT reduces FOXO3a phosphorylation by inhibiting the PI3K/

Akt signaling pathway, causing its accumulation in the nucleus and

inducing cell apoptosis (215, 223).

The production of ROS plays a crucial role in stimulating the

continuous activation of immune cells under sustained stress (224)

as ROS act to recruit more immune cells, prompting them to

produce pro-inflammatory factors (225). However, the damaging

effects of ROS cannot be overlooked. Intracellular ROS induce the

activation of transcription factors such as NF-kB and MYC, which

in turn synthesize both pro-apoptotic and anti-apoptotic factors,

thereby initiating apoptosis programs (226, 227). Pro-apoptotic

genes, including Apaf1 and members of the Bcl-2 family like Bad,

Bbc3, Bik, and Pmaip1, are upregulated. Furthermore, downstream

molecules such as caspase-3 and caspase-6 are activated in T cells.

Interestingly, the use of GR antagonists, which block the effect of

CORT, can reverse apoptosis (102). Previous studies have

demonstrated that stress induces the maturation and apoptosis of

CD4 and CD8 T cells, leading to the depletion of the T cell pool

(228). Prolonged exposure to antigens can drive T cells into a state

of depletion, where immature T cells become the primary force of

immunity. However, due to insufficient energy and abnormal

cellular metabolism, overall immune function shifts towards an

immunosuppressive state. This alteration affects downstream

signaling cascade reactions and epigenetic processes (71, 229). For

instance, lactate dehydrogenase A (LDHA) plays a role in providing

energy for T cell activation and proliferation by participating in

lactate metabolism, exhibiting non-classical enzyme activity, and

regulating oxidative stress responses (230). However, when ROS

synthesis surpasses decomposition, leading to cytoplasmic

accumulation, LDHA function is inhibited (231). In response to

stress, cells adjust the intensity of multiple gene expressions,

triggering intracellular cascade reactions that may lead to

exhaustion and, ultimately, cell death (71).

3.4.2 GSDMD and NLRP3
In the central nervous system, huang et al. (198) reported that

CORT promotes the expression of key apoptotic proteins GSDMD

and GSDMD-N in microglia. Thus, microglia not only produce

inflammatory mediators that enter the bloodstream through pro-

inflammatory signaling by CORT but also activate their apoptotic

pathways, leading to programmed cell death after sustained

immune activity. This process consumes significant energy and

substances, and the inflammatory mediators entering the

circulation act as new signaling molecules, inducing further

inflammation throughout the body. If left untreated, this can

cause inflammatory damage and impair tissue function.

Peripherally, chronic stress-induced elevated CORT causes

macrophage infiltration in the spleen of mice. It has been

observed that as the phagocytic function of macrophages

weakens, pyroptosis increases, and autoantibody production

decreases, resulting in immunosuppressive effects (232, 233). This

pathway relies on the activation of NLRP3 inflammasomes rather

than the P-selectin pathway (232) and corresponds to the previously

mentioned mechanism but with slightly different outcomes.

Research has found that under the influence of CORT, the
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expression of NLRP3 and caspase-1 in macrophages increases

(caspase-1 promotes IL-1b maturation), leading to an increase in

the circulating pro-inflammatory cytokine IL-1b (232). NLRP3

inflammasomes, including NLRP3 and caspase-1, have pro-

apoptotic and inflammatory effects (234). Using NLRP3 inhibitors

(OLT1177) and caspase-1 inhibitors (Z-WEHD-FMK) can block

the apoptotic pathway and subsequent cascade events of

inflammation (232, 235), indicating that the pro-inflammatory

effect continues to erupt within immune cells, eventually ending

immune activity through cell death.

3.4.3 Notch signaling pathway
After chronic stress triggers an increase in circulating CORT

levels, it also activates the Notch signaling pathway, inducing

immune suppression and splenocyte apoptosis (233). Activation

of the Notch signaling pathway is observed with increased

expression of NICD1, DLL1, DLL4, Jagged 2 and Hes1, while the

expression of DLL3, Jagged 1 and Hes5 remains unchanged.

Concurrently, decreased IFN-g levels and increased IL-4, caspase-

8, and caspase-3 levels are noted. Song et al. also demonstrated that

chronic stress-induced splenic apoptosis is mediated through the

death receptor pathway (236). Additionally, TLR4 activation has

been found to be implicated in immune suppression induced by

increased CORT under stress (237). These findings suggest that

both immune activation and immune suppression are closely

related to inflammation. It is important to note that

immunosuppressive characterization may result from immune

overactivation, where anti-inflammatory signaling pathways are

less dominant compared to pro-inflammatory pathways.

3.4.4 miR-155
In addition, the increase in CORT caused by chronic stress

downregulates the expression of miR-155, resulting in decreased

BCL-6 levels and increased FBXO11 levels. This impairs the

germinal center response of B lymphocytes and the production of

IgG1 antibodies, thereby inhibiting immune function (238). The

germinal center is a histological structure formed during the

maturation and differentiation of B cells into plasma cells and

memory B cells. BCL-6 is a transcription factor essential for the

formation of germinal centers (239, 240). The SKP1-CUL1-Fbox

protein (SCF) ubiquitin ligase complex containing FBXO11 induces

ubiquitination and degradation of BCL-6. Excessively high levels of

FBXO11 hinder B cell differentiation and induce B cell apoptosis,

while low levels promote lymphatic proliferation and

carcinogenesis (241, 242). The balance between FBXO11 and

BCL-6 levels is essential for B cells to maintain normal immune

function. Apoptosis, widely regarded as programmed cell death

activated by highly inflammatory and cytotoxic metabolites (243,

244), is associated with stress-induced elevated CORT (245). These

pathways mediate the activation and damage of immune cells by

CORT. The inflammatory factors released during injury re-enter

the bloodstream, reactivate the immune system, and

attack vulnerable areas of the body by identifying abnormal

signals and generating signal transmission to trigger new

inflammatory reactions.
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3.4.5 TFEB
Transcription factor EB (TFEB) belongs to the MiT/TFE family

of basic helix-loop-helix leucine zipper transcription factors and

serves as a pivotal regulator of autophagy and lysosomal biogenesis

(246). Additionally, TFEB has been implicated in governing energy

homeostasis and cellular responses to various stressors, such as

nutrient deprivation, endoplasmic reticulum stress (ERS),

mitochondrial autophagy, and pathogen invasion (247, 248). It is

involved in multiple signaling pathways, including mTORC1, Wnt,

and AKT pathways (249). Phosphorylation of TFEB at the S401 site

facilitates redox reactions and the release of growth factors to adapt

to stress conditions (250). Recently, TFEB has emerged as a key

player in controlling inflammatory responses by inhibiting pro-

inflammatory cytokines and modulat ing immune cel l

differentiation (251, 252). The inhibition of TFEB has been

implicated in promoting immune evasion (253). Recent studies

suggest that this adaptive regulation can be inhibited by p38 MAPK

or blocked by substrate depletion (250). The p38 MAPK/TFEB

signaling axis suppresses the expression of multiple immune-related

genes in monocytes, as well as cytokines (such as IL-1b and LIF),

chemokines (including CXCL1, CXCL3, CXCL8, and CCL5), and

crucial immunomodulators (such as IFNGR2 and EREG).

Consequently, this leads to aberrant macrophage differentiation

and impaired polarization. Enhanced nuclear translocation of TFEB

boosts the expression of lysosomal proteins and superoxide

dismutase (SOD), ultimately diminishing ROS levels and

suppressing ferroptosis, thus exerting a protective effect (254).

These findings indicate the pivotal role of TFEB in immune and

redox regulation, suggesting potential avenues for further

exploration into its regulatory mechanisms.

3.4.6 TAM family of receptor tyrosine kinases
The increase in CORT induced by stress also activates the GR-

MERTK signaling pathway in astrocytes, leading to heightened

phagocytosis of excitatory synapses by astrocytes in cortical regions,

thereby eliciting depressive behavior in mice (255). MERTK belongs

to the TAM family, which encompasses TYRO3, AXL, andMERTK,

and is comprised of RTK. This family acts as a bridge between its

structurally homologous ligands, GAS6 and PROS1, and binds to

phosphatidylserine on the apoptotic cell membrane (PtdSer) to

mediate immune regulation (256).

Recently, TAM receptors have received significant attention as

potential therapeutic targets for their ability to control

inflammation and immunosuppression. Present research reveals

that TAM receptor activation can inhibit immune activity

downstream through various pathways, including MEK/ERK,

PI3K/AKT, and JAK/STAT pathways (257). For instance, in

macrophages, MERTK governs its phagocytic function (258),

while AXL signaling promotes a shift towards the M2 phenotype

in macrophages, resulting in increased expression of IL-10 and

TGF-b, and decreased expression of IL-6, TNF-a, and G-CSF (259).
Furthermore, TAM signaling inhibits the activation of NLRP3

inflammasomes in macrophages, thereby attenuating the

inflammatory pathway and preventing chronic macrophage

activation (260). Similar to NK cells, AXL signal transduction
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reduces their secretion of IFN-g and diminishes their killing

function (261). Similarly, in DCs, TLRs activation upregulates

AXL expression through STAT1 signaling transduction.

Subsequently, AXL inhibits IFNAR-STAT1 signaling and induces

the expression of SOCS1 and SOCS3, thereby negatively regulating

TLR signal transduction, inhibiting the inflammatory response and

terminating DC activation of T cells (262). Activated T cells secrete

protein S (PROS1) as an additional feedback mechanism for DCs to

assist in TAM signaling to suppress immune responses (263).

Conversely, activated T cells increase MERTK expression and

activate MERTK signal transduction, a co-stimulatory pathway

that promotes CD8+ T cell activation (263, 264). Inhibiting

MERTK signal transduction reduces IFN-g secretion and CD8+ T

cell proliferation (263). Furthermore, studies have revealed co-

expression of MERTK and PD-1 in activated T cells (265–267).

The opposing regulatory effects of TAM receptors on innate

immune cells and T cells, as well as the dual effects of MERTK,

have roused the interest of researchers. Currently, more

mechanisms for regulating TAM receptors are being investigated.

From this, it can be evident that CORT induces programmed cell

death through multiple signals, thereby impairing immune function

and promoting inflammation progression. In summary, the specific

mechanism is shown in Figure 6.

3.4.7 Cell competition
It is also worth noting that a state closely related to cell

apoptosis is inter-tissue cell competition, which involves signal

pathways correlated with GR signal transduction induced by

CORT, warranting attention. Intercellular interaction in cell

competition aims to maintain tissue health and cellular

homeostasis (268). Due to its involvement in immune regulation

across various diseases, it has become a research hotspot, including

tumor immune escape and neurodegenerative diseases (269, 270).

Cell competition operates on the principle of “survival of the fittest”

to sustain tissue physiological function and internal environment

homeostasis (269). Disruption in the balance of cell competition

results in “winner” cells and “loser” cells, where loser cells

experience slowed proliferation and incomplete apoptosis, while

winner cells exhibit accelerated proliferation (271, 272). Research

suggests that reasons for the failure of cell competition are

associated with chronic activation of the TLR pathway (273), p53/

DDR pathway (274), c-Jun N-terminal kinase (JNK) pathway, Janus

kinase (JAK)/signal transducer and activator of transcription

(STAT) pathways (275), and oxidative stress response

pathways (231).

TLR pathway activation not only initiates inflammation but

also induces cell apoptosis (276). The activation of the p53 pathway

is related to DDR, with the related genes Mre11, Lig3, Lig4, and

Ku80 being upregulated in DDR and are considered targets of p53

(277, 278). The JNK pathway primarily participates in cell

proliferation and death (279). Upon activation, JNK upregulates

the expression of genes such as TRE-dsRED, Scarface and Reaper,

which are involved in competition failure to induce cell apoptosis

(280). Moreover, it can inhibit cell proliferation rate by impacting

protein synthesis, potentially contributing to competitive failure
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(231, 281). However, the specific mechanism by which it inhibits

cell proliferation rate remains unclear. The JAK/STAT pathway are

primarily involved in cell proliferation, immune response, and

inflammatory response (275). The state of “loser” cells is

associated with JAK/STAT pathway activation, with its target
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genes Socs36E and Chinmo observed to be upregulated. This

mechanism is activated by JNK signaling upstream, with unpaired

ligand 3 (Upd3) increasing horizontally to enhance signal

transduction (231). Due to interaction between competing parties,

“loser” cells can promote the proliferation of “winner” cells in
FIGURE 6

Multiple pathways mediate the inflammatory injury of CORT induced cell death. Under chronic stress, the sustained action of CORT leads to
programmed cell death. This phenomenon indicates an immune imbalance, characterized by the ongoing progression of inflammation. It is
associated with the transmission of numerous intracellular stress signals and the subsequent regulation of gene expression. For instance, key
signaling pathways such as MAPK, JAK/STAT, Notch, and NF-kB, etc. And some key regulatory proteins such as MERTK, TFEB, etc.
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competition (relative to their own proliferation rate) (282).

Subsequently, “loser” cells may undergo apoptosis. Interestingly,

the mechanism by which “winner” cells accelerate proliferation also

involves JAK/STAT signaling (231). This highlights the dual role of

the JAK/STAT pathway controlled by Upd3, which promotes

apoptosis in “loser” cells and accelerates proliferation in “winner”

cells. Therefore, the subsequent effects of the JAK/STAT signaling

pathway may synergize with other mechanisms and are related to

the properties of its upstream ligands.

Oxidative stress response is one of the significant triggers for

cell competition and subsequent failure (283). Upregulation of

genes associated with the expression of glutathione (GSH),

glutathione transferase (GST), and cytochrome P450 oxidases

(CYP450) has been observed in potential “loser” cells, with most

of these genes being targets of Nrf2 (231). Nrf2 is a transcription

factor that responds to stress environments by upregulating genes

related to antioxidant function. Activation of the Nrf2 pathway in

cells (dependent on transcription factors IRBP18 and Xrp1) is

associated with the “loser” state (284). However, knockdown or

overexpression of Nrf2 accelerates cell death and renders cells more

sensitive to becoming “losers” (231). Nrf2 also demonstrates a dual

effect depending on concentration; “loser” cells triggered by

oxidative stress response rely on adaptive regulation of the Nrf2

pathway to maintain cellular homeostasis, but excessive

accumulation of Nrf2 in “loser” cells relies on JNK to induce cell

death (285), highlighting the importance of balance in the process

of cell development and normal function and illustrating that both

excessive and insufficient responses can have detrimental effects.

Current experiments have shown that p53 and JNK need to

collaborate with other mechanisms to induce competition failure,

such as the JAK/STAT pathway and the Nrf2 pathway (282), which

indicates that cells that fail in competition are determined by

multiple factors working together. Under stress, the activation of

various intracellular signaling pathways makes cells “sensitive,” and

at the same time, they become “fragile” due to their easier triggering

of death programs. Under the influence of adjacent cells, such as

through cell-cell communication or competition for resources,

individual cells will undergo processes that determine their fate,

balancing between adaptive survival and apoptosis outcomes.

However, it is currently unclear which pre-existing conditions

make cells potential “losers” and trigger cell competition. Based

on the series of signal transduction induced by CORT mentioned

above, it is speculated that chronic stress-induced elevated CORT

may be one of its inducing factors. However, more experimental

evidence is still needed for validation.
3.5 Endoplasmic reticulum stress

The endoplasmic reticulum (ER) is a vital organelle within the

cytoplasm, crucial for various intracellular processes such as protein

folding, modification, and calcium storage (286). Its functionality is

intertwined with energy metabolism and facilitates communication

between cells by providing proteins for intracellular and

extracellular signal transduction (287). Proper protein synthesis
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and processing rely on the ER’s normal function. ERS serves as an

alert for aberrant ER function, initially aiming to adapt to changing

environments and restore ER function patterns. This response

involves several mechanisms: (1) inhibition of upstream

transcription and translation programs, which reduces the influx

of new proteins into the ER; (2) induction and enhancement of

protein repair gene expression to reduce protein folding errors; and

(3) Promote protein degradation function to remove misfolded

proteins (288, 289). Once the adaptive mechanism is activated, if the

stressor persists, it may gradually cause the ER function to deviate

from normal, resulting in persistent ERS (290). Although the

adapted program is the optimal solution under current

conditions, if the intracellular stress signal persists and the ER

function cannot return to normal, the apoptotic program might be

initiated (291).

Unfolded protein response (UPR) is an important cellular

mechanism in response to ERS (292). This response involves the

transition of glucose regulatory protein 78 (GRP78) from a bound

to a free state, leading to an increase in GRP78 levels. Subsequently,

downstream transcription factors such as X-box binding protein 1

(XBP1) and activating transcription factor-6 (ATF6) are activated

(293), initiating the transcription of genes involved in ERS-related

responses. XBP1 and ATF6, as nuclear transcription factors induced

by ERS, play pivotal roles in intercellular signaling and can

modulate downstream cellular functions (294–296). Research

indicates that XBP1 and ATF6 not only stimulate the

transcription of ER membrane and calcium reticulum protein

genes during ERS (297), but also contribute to the generation of

certain inflammatory mediators (298). Furthermore, XBP1 is

essential for the production and secretion of antibodies by plasma

cells (299). ERS-induced alterations in intracellular calcium

homeostasis and protein quantity and structure represent

adaptive immune responses to stress (300).

ERS within immune cells can significantly influence various

immune functions, including antigen presentation (289), plasma

cell differentiation, antibody production (300, 301), and T cell

response to antigens (302). These alterations can significantly

impact the onset and progression of inflammation, which is a key

contributor to various tissue diseases. Among immune cells,

macrophages are key in producing pro-inflammatory factors and

orchestrating immune responses. Zhou et al. (303) demonstrated

that low concentrations of CORT at 10 and 50 ng/ml induced ERS

in macrophages, leading to notable increases in glucose regulatory

protein 78 [GRP78; an important regulatory protein in the ERS

process (304)] expression at both mRNA and protein levels.

Furthermore, only 50 ng/ml of CORT has been shown to increase

XBP1 expression, while no significant change was observed in

activating transcription factor-6 (ATF6) levels. Evaluation of

macrophage immune activation through adhesion index,

chemotaxis index, and tumor necrosis factor-alpha (TNF-a)
production revealed that CORT induces ERS and enhances

immune function via GR activation on macrophages. The

maximal immunostimulatory effect of CORT was observed at a

concentration of 50 ng/ml, while concentrations of 100 ng/ml, 500

ng/ml, and 1000 ng/ml showed no such effect. Dhabhar et al. (305)
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further suggested that 50 ng/ml of CORT roughly corresponds to

the physiological levels produced by the body during stress and is

sufficient to exert immune-stimulating effects on macrophages.

These results show the role of chronically elevated CORT levels

in continuously triggering immune and inflammatory responses

until normal cellular function is compromised.

ERS represents one of the pathways through which chronic

stress induces apoptosis in immune cells, and its pro-apoptotic

effect has been observed to counteract the anti-apoptotic effect of

STAT3, establishing cross-talk between the two (236). STAT3, a

member of the STAT family, is involved in the regulation of cell

proliferation and survival, promoting cell proliferation and tissue

repair (306). Its activation, primarily achieved through

phosphorylation, enables the transmission of signals from

cytokine receptors on the cell membrane to the nucleus, thereby

modulating gene transcription (307). Excessive STAT3 activation

often signifies increased immune activity (308). The STAT3

signaling pathway primarily contributes to immune suppression

and is typically stimulated by cytokines such as interleukin-6 (IL-6),

IL-10, and certain growth factors, including epidermal growth

factor (EGF), transforming growth factor-b (TGF-b), and insulin-

like growth factor (IGF) (309, 310). These cytokines bind to

receptors on the cell membrane surface, activating JAK, which in

turn promotes the phosphorylation of STAT3 and its translocation

to the nucleus, forming complexes with co-activating factors,

binding to target gene promoter regions and promoting

transcription (311). STAT3 often modulates immune responses

by inhibiting the release of pro-inflammatory factors (such as

STAT3/SOCS pathway) while increasing the expression of anti-

apoptotic proteins (312). In the context of interaction with CORT,

the elevation of resting CORT levels due to chronic stress

upregulates the expression of interleukin-10 (IL-10) and

phosphorylated STAT3 (p-STAT3). Despite the significant

injurious effect of CORT, apoptosis of splenic white pulp cells

and increased expression of caspase-3 (composed of lymphocytes

and macrophages) were observed (236). However, the use of STAT3

inhibitors exacerbated CORT-induced apoptosis of splenic immune

cells, indicating a negative regulatory effect of STAT3 (236). Further

investigation into the mechanism of CORT-induced apoptosis

revealed that p-STAT3 regulates cell survival by inhibiting the

ERS pathway rather than mitochondrial stress and death receptor

activation pathways. Significant differences were observed in pro-

caspase-8 and glucose-regulated protein 78 (GRP78) levels, while

BCL-2, BAX, and BCL-XL levels remained unaffected. Further

examination of molecules involved in the ERS pathway revealed

changes in the expression of ATF6a and p-IRE1a. Although the

expressions of p-JNK, pro-caspase-12 and CHOP were not

upregulated, their potential involvement in regulation could not

be ruled out. The lack of change in these protein levels may also

result from regulation by upstream molecules, potentially

influenced by differences in control variables in the study.

The elevation of CORT during chronic stress is implicated in

immune cell apoptosis via ERS. This process concurrently activates

anti-apoptotic pathways. Specifically, pro-inflammatory factors

TNF-a and IL-1b activate the apoptotic pathway, while the anti-
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inflammatory factor IL-10 activates the anti-apoptotic pathway.

This dual signaling in the ER triggers ERS. Increased expression of

GRP78 and downstream factors, including XBP1, ATF6a and p-

IRE1a leads to the UPR and protein modification errors. Elevated

expression of caspase-3 and caspase-8 promotes apoptosis, while

increased expression of caspase-1 and TNF-a amplifies the immune

response. Additionally, activation of the JAK/STAT3) pathway

leads to increased levels of phosphorylated STAT3 (p-STAT3),

inhibiting the expression of pro-caspase-8, caspase-3, GRP78,

ATF6a, and p-IRE1a, thus mitigating ERS and exerting anti-

apoptotic effects. These findings are shown in Figure 6.
3.6 GR dysfunction

Chronic stress continuously activates the HPA axis, leading to

elevated CORT levels, resulting in both the depletion of GR and a

gradual loss of the HPA axis’ negative feedback capacity (313).

Upon receiving this signal, cells initially undergo adaptation,

prompting the overexpression of GR (65). At this juncture, both

pro-inflammatory and anti-inflammatory signals are concurrently

activated, highlighting the dual role of CORT, with outcomes

contingent upon the gene function activated by the cell type

(314). While the anti-inflammatory attributes of CORT are

closely tied to normal GR function, the cytotoxic effects of CORT

cannot be disregarded, as they can stimulate immune activation and

the release of pro-inflammatory factors. Prolonged exposure to

CORT may induce local inflammatory damage and even cell

apoptosis (315–317). Persistent exposure to CORT and pro-

inflammatory cytokines can diminish GR expression and prompt

GR dysfunction, perpetuating inflammation (318). Consequently,

aberrant GR function exacerbates the cytotoxic effects and

persistent inflammation associated with CORT, concurrently

diminishing cellular sensitivity to CORT, a condition known as

glucocorticoid resistance (GCR) (319). Depending on tissue

specificity, GCR may manifest as either sustained local

inflammation or marked inhibition (314), potentially signifying

prolonged exposure to CORT beyond physiological levels.

3.6.1 MAPK signaling pathway
During molecular signal transmission, the strength and

direction of the effect depend on both ligand concentration and

receptor sensitivity. The activation of the HPA axis increases the

circulating level of CORT, which extensively exerts anti-

inflammatory effects by binding to the GR encoded by Nr3c1

(320). Abnormal GR function is considered an important factor

in the excessive activity of inflammatory cytokines, which promotes

disease development (313). Wang et al. showed that chronic

immune activation during GR blockade could cause significant

and persistently high levels of inflammatory cytokines (TNF-a,
IL-1b, IFN-g) in rats, alongside depressive behavior (321).

Persistently high levels of TNF-a and IFN-g overactivate the

tryptophan precursor metabolizing enzyme indoleamine 2,3-

dioxygenase (IDO). On the one hand, this hinders the synthesis

of 5-HT (322), and on the other hand, it accelerates the
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decomposition of tryptophan (Try). The accumulation of its

metabolites kynurenine (Kyn) and other tryptophan metabolites

will trigger cellular oxidative stress damage (323, 324). ERK, p38

MAPK, and JNK are all members of the MAPK family. Upon

activation through phosphorylation, they play an essential role in

maintaining the fundamental signaling activities necessary for cell

development (325). Numerous studies have demonstrated that the

overactivation of ERK, p38 MAPK, and JNK/SAPK signals induces

depressive behavior and neuroinflammation (326). This mechanism

is primarily associated with decreased expression of synaptic-

related genes, abnormal development of dendritic spines,

increased apoptosis, and reduced expression of PSD95 (327–329).

As mediators of cellular stress, the activation of the MAPK family

also suppresses the expression of downstream ROS clearance genes

and promotes the secretion of pro-inflammatory cytokines (330,

331). Moreover, these pathways interact with GR function. For

instance, p38 regulates the phosphorylation of GR at serine sites 134

and 211 (Ser134 and Ser211), wherein activating GR

phosphorylation at different sites transmits distinct signals (326).

Specifically, phosphorylation of GR at Ser203 impedes nuclear

translocation and reduces GR activity, whereas phosphorylation

at Ser211 enhances nuclear translocation to augment GR signaling

(326, 332). Zhang et al. observed that JNK activation upregulates

GR phosphorylation at Ser246, consequently promoting the

secretion of pro-inflammatory factors IL-1, IL-6, and TNF-a in

the habenula (Hb), amygdala (Amyg), and medial prefrontal cortex

(mPFC) (333). Conversely, GR activation can indirectly stimulate

p38 through ROS and induce cell apoptosis via matrix

metalloproteinase 13 (MMP) in certain pathways (326, 334).

Thus, GR exhibits a competitive relationship with pro-

inflammatory and anti-inflammatory signaling through cross-talk.

Studies have shown that chronic stress can induce GCR,

resulting in inadequate control of the body’s inflammatory

response to infection (245). Prolonged exposure to inflammatory

cytokines such as IL-6 and TNF-a can exacerbate the expression of

disease signs and symptoms, contributing to increased susceptibility

to diseases. Despite the widespread expression of GRs and the

myriad recognized signals, elucidating the specific mechanism of

GCR remains a current challenge. Some studies propose that

macrophage factor IL-1b and Th17 cytokine IL-17A may

negatively impact GR function by upregulating the expression of

GRb subtypes, with GRa being the primary structure exerting

effects (335, 336). This process involves the activation of the JNK

and p38 MAPK signaling pathways (337, 338). In fact, a mutually

inhibitory signaling pathway exists between the GR and the MAPK

families. While the overexpression of GR helps in the anti-

inflammatory effect of CORT, in situations where inflammation

prevails, the MAPK family signals inhibit GR function (339).

During the post-translational modification stage, MAPK

(including JNK, P38 MAPK, and ERK) regulates GR activity by

modulating the site of GR phosphorylation. Phosphorylation at

sites such as Ser134, 203, and 226 inhibits GR target gene

transcription (340). Additionally, GSK3b (PI3K/AKT signal)

similarly impacts GR by phosphorylating Ser171 and Ser404
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(341). Acetylation of GR at K494 and K495 weakens its ability to

inhibit NF-kB, consequently diminishing its anti-inflammatory

effect (342). These factors collectively impede the anti-

inflammatory effects of CORT. Chronic stress-induced GCR can

disrupt the negative feedback regulation of the HPA axis and

interfere with the downstream immune system’s ability to control

inflammation (343, 344). Variations in individual GR function may

contribute to differences in susceptibility to cytokine-induced

diseases. In terms of genetics, GR polymorphisms, such as ER22/

23EK (rs6189 and rs6190), N363S (rs6195), BcII (rs41423247), and

Nr3c1 gene polymorphism (Nr3c1 646 C>G), can diminish GR

affinity for ligands, which then increases the susceptibility to

inflammatory diseases and alters the immune milieu (340, 345, 346).

3.6.2 GILZ
The signal of mutual inhibition between MAPK and GR also

involves the expression of anti-inflammatory genes such as

GILZ. The lack of GILZ amplifies MAPK signaling (340).

GILZ, a gene identified in recent years, plays a crucial role in

regulating the anti-inflammatory effects of GCs, with its protein

expression widely contributing to anti-inflammatory effects

(347). The anti-inflammatory potency of mouse GCs was

observed to diminish following GILZ knockout. GILZ stands

out as the earliest transcriptional target of GR (348),

highlighting its significance in modulating GR activity.

Current research indicates that GILZ inhibits NF-kB nuclear

translocation in immune cells and interacts with activator

protein-1 (AP-1) to hinder transcription (349). For instance,

GILZ downregulates the expression of co-stimulatory molecules

such as CD80, CD86, and MIP-1 by restraining NF-kB (113).

Additionally, GILZ promotes Th2 and Treg cell phenotypes in T

cells by suppressing NF-kB and activating TGF-b (350). The

promotion of antigen presentation involves GILZ facilitating the

process by which antigen-presenting cells display antigens to T cells,

thereby initiating an immune response (351, 352). GILZ has also

been found to inhibit neutrophil activation by suppressing the

MAPK/ERK pathway, leading to reduced phosphorylation of ERK

and p38 (353). Additionally, it controls cell proliferation and

differentiation by inhibiting FOXO3 (350). In summary, given its

upstream position in signaling cascades, GILZ tends to dampen

immune cell activity, contributing to its anti-inflammatory

properties. Changes in CORT levels during stress also influence

the expression of GR. CORT in colon tissue induces an increase in

both GR and GILZ expression, thereby inhibiting NF-kB activity

and reducing pro-inflammatory cytokine levels such as IL-1b and

TNF-a (354). Interestingly, CORT does not induce GILZ expression

in brain tissue; instead, it promotes the expression of FKBP5 and

SGK1 (355). Therefore, the immune-regulatory effects and

expression of GILZ exhibit tissue specificity, with GILZ potentially

serving as the primary mediator of anti-inflammatory effects in

peripheral tissues. Given its involvement in cross-talk between

signaling pathways, GILZ’s immune-regulatory mechanism may

extend beyond its currently known functions, highlighting its

potential as a focal point for future research.
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3.6.3 FKBP51
In the investigation of the CORT-GR binding structure, studies

have identified an imbalance within the GR partner complex FK506

binding protein (FKBP) as a contributor to GCR (356). This

imbalance is characterized by elevated levels of FKBP51 and

reduced levels of FKBP52. Notably, FKBP51, encoded by the

FKBP5 gene, is more susceptible to external influences and has

been linked to the onset of psychiatric disorders, emerging as a key

focus of current research (357). FKBP51 regulates GR activity and

the function of the HPA axis by interacting with the molecular

chaperone heat shock protein 90 (HSP90) (358). Despite ongoing

research, the precise regulatory mechanisms governing FKBP51’s

actions remain incompletely understood, generating widespread

interest among researchers. Recent findings suggest that FKBP51

mediates the inhibition of AKT phosphorylation at the Ser473 site

by recruiting PH domain leucine-rich repeat protein phosphatase

(PHLPP), thereby leading to AKT inactivation (359). Downstream,

the FKBP51/AKT signal pathway inhibits the phosphorylation

activation of FOXO1 and the immunosuppressive effect of mTOR

(360). Additionally, it has been observed to impede CORT-induced

transcriptional regulation of GR by inhibiting GR phosphorylation

(361), representing key signaling pathways for GC action. Knockout

of FKBP5 leads to upregulated phosphorylation of GR at the Ser240

and Ser243 sites (362), resulting in decreased levels of pro-

inflammatory cytokines such as TNF-a, IL-1b, IL-6, nerve growth
factor (NGF), and brain-derived neurotrophic factor (BDNF) (363).

As part of the GR complex, FKBP51 limits GR function by reducing

ligand binding sensitivity. Studies have confirmed that

overexpression of FKBP5 diminishes the sensitivity of GR to

stress, resulting in decreased CORT secretion under stress

conditions (364). Therefore, FKBP51 acts as a negative regulatory

factor of GR, inhibiting GC effects, albeit lacking the ability to fully

complete GR signal transduction.

In recent years, FKBP51 has emerged as having an immune-

promoting effect. Studies have demonstrated that stress can

modulate FKBP5 gene expression at the epigenetic level, leading

to reduced FKBP5methylation, particularly evident in CD4+ T cells

and localized near chromosome 6p21.31 (365). Factors such as age,

stress, and depressive phenotypes can expedite the decrease in

FKBP5 methylation (358). Reduced FKBP5 methylation results in

the upregulation of FKBP51 protein expression, which positively

correlates with the expression of numerous pro-inflammatory

genes, consequently increasing the granulocyte/lymphocyte ratio

and IL-8 levels, thus driving peripheral inflammation (365). Further

investigations have elucidated that FKBP5’s regulation of immunity

hinges on NF-kB signaling. In peripheral blood mononuclear cells

(PBMCs), increased FKBP51 expression promotes NF-kB signaling

via the combination of NF-kB-inducing kinase (NIK) and inhibitor

of kappa B kinase alpha (IKKa), thereby augmenting NF-kB
signaling activity. Conversely, NF-kB signaling can induce a

reduction in FKBP5 gene methylation (resulting in increased

FKBP51 expression) in immune cells. Therefore, a positive

feedback loop ensues, which enhances FKBP51/NF-kB signaling

and inflammation onset (365). Recent studies have shown that

chronic stress-induced elevation of CORT upregulates FKBP51
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expression and coincides with increased levels of pro-

inflammatory factors IL-1b and TNF-a (366). While the use of

FKBP51 inhibitors does not mitigate stress-induced CORT

elevation, it promotes hippocampal neuronal proliferation and

synaptic growth downstream, thereby mitigating social avoidance

and anxiety-like behavior (367). Presently, the mechanism of

FKBP51 in immune regulation remains somewhat constrained

and warrants further exploration.

3.6.4 CREB and FKBP51
In addition to ligand concentration and receptor levels,

transcriptional co-regulatory proteins can also regulate CORT

signaling. One such protein is CREB, a transcription factor that

responds to signals from anti-inflammatory factors such as IL-4, IL-

10, IL-13, TGF-b, and NGF. CREB also controls the transcriptional

activation of various signaling molecules, including c-Fos, c-Jun,

and BDNF, thereby facilitating neuronal cell survival,

differentiation, migration, and synaptic generation (368, 369).

However, CORT has been observed to inhibit CREB activation,

leading to a reduction in CREB phosphorylation levels and

subsequent cellular damage (215). Studies indicate that FKBP51

can regulate CREB upstream, establishing a positive feedback loop.

Research conducted by Hou et al. demonstrates that CORT

regulates FKBP51 and CREB in a time-dependent manner (370).

Short-term treatment with CORT at concentrations of 100 nM and

1 mM promotes the formation of FKBP51/CREB protein complexes

and facilitates the localization of CREB protein in the nucleus,

leading to increased expression levels of both FKBP51 and CREB.

However, prolonged exposure to CORT at 1 mM significantly

reduces this effect. Knocking out the FKBP5 gene directly

suppresses the downstream anti-inflammatory signals of CREB in

cells, resulting in decreased levels of BDNF, TGF-b, Arg-1, and IL-

10. Studies have also demonstrated that activation of the CREB

pathway promotes the polarization of M2 macrophages and the

expression of anti-inflammatory factors, thereby inhibiting

inflammatory responses (371). These findings suggest that CORT

stimulation activates the FKBP51/CREB signaling pathway to adapt

to stress signals. However, chronic stress can impair the cellular

response mechanism. FKBP51 and CREB can directly regulate

transcription by forming complexes, and there are also indirect

regulatory pathways between them, such as the ERK signaling and

PI3K/AKT pathway (372, 373). CREB is regulated by multiple

pathways and does not act independently (215). In conclusion,

both excessive and insufficient expression of the FKBP5 gene

product, FKBP51, can impede the normal cellular response to

CORT. The resulting effect forms a network, with the outcome

dependent on the dominant signaling pathway, as illustrated

in Figure 7.
3.7 11b-hydroxysteroid dehydrogenase

11b-HSD mediates the effects of CORT, which comprises type 1

and type 2 isoenzymes. 11b-HSD1 promotes GC effects by

activating CORT, whereas 11b-HSD2 inactivates CORT, reducing
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exposure to local tissues (374). Thus, the regulatory influence of

11b-HSD on GC in various tissues has received significant attention

in recent years. 11b-HSD is essential in controlling the signal

transmission of CORT and GR binding in peripheral tissues.

Perez et al. demonstrated that 11b-HSD1 inhibitors reduce post-

stress blood CORT levels, whereas 11b-HSD2 inhibitors increase

post-stress blood CORT levels . Additionally , through

intraperitoneal injection and stereotactic device processing, it was

found that 11b-HSD has a more pronounced regulatory effect on

CORT levels in the periphery (375), underscoring the control

exerted by 11b-HSD on the CORT effect. Given the intimate

relationship between CORT and immunity, the regulatory role of

11b-HSD in immune inflammation has garnered attention. Sattler’s

study revealed upregulated pituitary 11b-HSD1 expression in both

acute and chronic arthritis mice, whereas increased hippocampal

11b-HSD1 expression was only observed in chronic inflammation,

with no change in hypothalamic 11b-HSD1 expression (376),

suggesting that the pituitary gland can receive feedback signals

(inflammatory factors) from the periphery. Furthermore, elevated

expression of 11b-HSD1 was observed in inflammatory tissues in

peripheral regions (377). Increased 11b-HSD1 expression enhances
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the CORT effect in local tissues, highlighting the close relationship

between CORT and inflammation involving 11b-HSD1 regulation.

In the short term, it aids in adapting to or controlling inflammation,

while in the long term, it confronts the cytotoxic-induced

inflammation and pro-apoptotic effects of CORT.

Some studies have demonstrated that the use of 11b-HSD1

inhibitors can significantly mitigate the adverse metabolic pathways

associated with diabetes and obesity (374). Conversely,

overexpression of 11b-HSD1 in the central nervous system is

more likely to dampen HPA axis activity, fostering long-term

chronic inflammation and rendering the HPA axis unresponsive

(376). In the periphery, 11b-HSD primarily focuses on regulating

the bioavailability of CORT in various tissues (375). Similarly,

Maciuszek’s study observed an increase in 11b-HSD1 expression

in M1-type macrophages, while 11b-HSD2 expression was elevated

in M2-type macrophages (378). This pattern may be attributed to

the fact that M1 macrophages, being pro-inflammatory, require

more CORT conversion to regulate inflammation by upregulating

11b-HSD1. In addition, M2 macrophages themselves secrete anti-

inflammatory factors, prompting the upregulation of 11b-HSD2 to

curb the excessive anti-inflammatory effect of CORT. Young’s cell
FIGURE 7

The immune regulation of CORT depends on GR signaling and 11b-HSD. CORT continuously transmits stress signals into the cell through GR, and
stimulates immune cells to continuously express pro-inflammatory cytokines through the MAPK signaling pathway and FKBP51/NF-kB signaling
pathway. In this scenario, on the one hand, pro-inflammatory factors change the conformation of GR (GRa to GRb), and on the other hand, they
downregulate the expression of GR. Both of these actions interfere with the normal functioning of GR and impede the transmission of anti-
inflammatory signals. Due to compensatory response, the molecular partner of GR, FKBP51, is upregulated. However, elevated levels of FKBP51
increase inflammation mediated by NF-kB. In addition, it inhibits GRa. Ultimately, these effects collectively promote the progression of inflammation.
Similarly, due to compensatory response, the increased expression of GILZ is to suppress the pro-inflammatory effect of CORT. However, it remains
unclear whether GILZ can predominate in the complex interplay of numerous signaling pathways. In the local tissue, 11b-HSD regulates the effect
concentration of CORT. 11b-HSD1 is beneficial for activating CORT and inhibiting the HPA axis, while 11b-HSD2 inactivates CORT. High expression
levels of 11b-HSD1 were detected in inflammatory tissues and immune cells with a pro-inflammatory phenotype, whereas elevated levels of 11b-
HSD2 were observed in immune cells with an anti-inflammatory phenotype. However, due to the persistent toxic effects of CORT, the balance is
likely to shift towards the pro-inflammatory response mediated by 11b-HSD1.
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experiments indicated that 11b-HSD1 downregulated the secretion

of IL-1b and IL-6 by catalyzing the generation of CORT, thereby

inhibiting the pro-inflammatory response mediated by NF-kB
activation (379). This suggests that, apart from HPA axis

activation to produce CORT, 11b-HSD1, as an indirect regulatory

pathway, promotes the local production of CORT to adapt to the

local environment. Additionally, Du’s research proposes that

exercise training boosts the expression of 11b-HSD1 in the lungs

of obese mice, aiding in the activation of local CORT and inhibition

of pneumonia (380). Therefore, 11b-HSD also plays a crucial role in

mediating the immune regulation of CORT under stress and

constitutes an integral component of its immune regulatory

mechanism, as depicted in Figure 7, warranting further exploration.
4 Conclusion

CORT is closely related to immunity and is influenced by

multiple signals. During acute stress, it surges rapidly, aiding in

rapid stress responses and inducing immunosuppression through

its potent anti-inflammatory properties, which are essential for

maintaining internal homeostasis. Subsequent negative feedback

from the HPA axis reduces CORT levels. However, chronic stress

results in a gradual increase in CORT, continuously activating the

immune system. Prolonged stress leads to elevated CORT levels,

causing abnormal expression of GR and 11b-HSD in various

circulating tissues, disrupting CORT’s anti-inflammatory effects

and impeding HPA axis negative feedback, perpetuating immune

system activation and fostering chronic systemic inflammation. As

circulating CORT levels rise, its cytotoxic effects intensify,

exacerbating internal inflammation and triggering cellular

autonomous death processes, impairing tissue function. Thus,

immune suppression arises from excessive immune system

activation and consumption, highlighting the complex

relationship between CORT, immune function, and stress

duration, necessitating further investigation into its mechanisms.

CORT functions as a GCmolecule in the bloodstream and it can

affect various tissues across the body. Its interaction with the

immune system primarily involves the exchange of inflammatory

cytokines and the signal transduction of cellular function within

immune cells. During chronic stress, elevated CORT poses a

challenge to immune cells. Initially, resting immune cells tend to

polarize towards pro-inflammatory phenotypes, releasing pro-

inflammatory and chemotactic factors to recruit assistance, often

through MAPK, NF-kB, and other signaling pathways. This

immune activation unavoidably consumes energy and

metabolites. To prevent immune failure and cell death, signals

that maintain homeostasis and promote cell survival, such as

proliferation, differentiation, and maturity, are simultaneously

activated. These signals operate through pathways like PI3K/AKT,

cAMP/CREB, STAT3, Nrf2, and others. In the cytoplasm, signal

transduction affects gene expression, transcriptional strength, and

protein translation and modification, such as the expression of

genes like GILZ and SOCS, the transcription of MiR-155 and TFEB,

the expression of TREM2 and TAM, and the synthesis of eCB. In
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the communication between CORT and immune cells, these signals

promote external anti-inflammatory responses and internal

inhibition of intracellular stress signals. However, sustained high

levels of CORT override these protective responses one by one,

favoring pathways leading to injury, such as apoptosis signaling

triggered by NRPL3, inadequate synthesis of ROS decomposition,

nuclear accumulation of FOXO3a, and sustained activation of the

Notch pathway and ERS-IRE1/XBP1 signaling pathway, all

contributing to cell death. Therefore, immune balance is

disrupted, leading to the progression of inflammation into

disease. Pro-inflammatory symptoms signify continuous immune

function until immune depletion occurs. Additionally, during the

CORT process, the number and structural abnormalities of GR

(excessive beta structure and insufficient alpha structure) and

imbalanced expression of 11b-HSD (excessive 11b-HSD1 and

insufficient 11b-HSD2) prevent the anti-inflammatory effects of

CORT, contributing to GC resistance in immunotherapy. As shown

in Figure 8.

It is essential to acknowledge that epigenetic changes and

genetic polymorphisms influenced by environmental factors and

lifestyle habits are potential contributors to the effects of CORT on

immune regulation. Moreover, it is evident that immune regulation

balance is ubiquitous, reflecting the intricate interplay between

various factors and pathways. Recent hot research topics include

macrophage and microglia polarization into M1/M2 phenotypes, T

cell expression balance (Th1/2 and Th17/Treg), cannabinoid

receptors CB1R and CB2R, immune cell membrane receptors

TREM1 and TREM2, chaperone proteins FKBP51 and FKBP52,

and enzymes 11b-HSD1 and 11b-HSD2. The equilibrium of these

immune substances is critical for maintaining normal physiological

functions. Prolonged exposure to external stressors, such as chronic

family and social stress, fundamentally disrupts the immune

balance mediated by CORT.

In conclusion, this review discusses the diverse and

interconnected pathways between CORT and immune regulation.

As shown in Figure 9. A comprehensive understanding of these

regulatory mechanisms is vital for recognizing the close relationship

between stress, emotional disorders, immunity, and inflammation,

providing new avenues for treatment. Several key targets and

immune regulatory proteins that are closely associated with

CORT may serve as potential clinical biomarkers for the early

screening of diseases. The identification and utilization of these

biomarkers could benefit the health management of stress-related

diseases, enabling more timely and effective interventions.

Meanwhile, elucidating the underlying mechanisms and

identifying key targets is highly advantageous for the

development of novel therapeutic strategies. For instance, the

discovery of small molecule drugs targeting specific pathways, the

development of immune modulators, and the application of gene

therapies all hold great promise. These advancements may pave the

way for innovative treatment approaches for stress-related diseases,

ultimately enabling more precise and efficient therapeutic

interventions. Above all things, it is imperative to prioritize

addressing stressors to prevent sustained elevation of CORT,

thereby safeguarding immunity.
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FIGURE 8

Summary of interaction mechanism between CORT effect and immunity.
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5 Limitations

While the role of CORT has been extensively studied, its

intricate connection with the immune system is also gaining

increasing attention. Nevertheless, there are still several questions

that remain unclear at present. Specifically, (1) it is widely accepted

that CORT levels serve as a biomarker reflecting stress conditions.

Current research is generally categorized into two types: acute stress

and chronic stress, both of which are used to observe the

relationship between CORT and immune phenotypes. However,

during the stress process, organisms exhibit physiological responses

of adaptation and compensation. Whether immune activation

during this period is beneficial for functional enhancement of

tissues or immediately causes inflammatory damage remains

unclear and requires more rigorous phenotypic evidence. (2) In

current research, there are various methods for simulating stress.

Although CORT levels typically increase in response to stress,

different stress paradigms may lead to divergent outcomes in

terms of CORT effects. This is also one of the reasons why some

studies report opposing results. A more detailed comparative study

could be conducted to elucidate these differences. (3) With the

cessation of stress, there is potential for the repair of immune

activation and chronic inflammation. And persistent elevation of
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CORT levels remains a primary cause of irreversible inflammatory

damage. However, the exact duration of stress required to trigger

such immune damage is currently unclear. (4) CORT levels within

the physiological range is intricately linked to innate immune

function. It is evident that there are inherent variations in CORT

levels among individuals. These differences may influence how

individuals adapt to and respond to stress, leading to distinct

outcomes. Among them, CORT may exhibit diverse patterns of

effect. This variability is likely one of the reasons why different

individuals exhibit diverse pathological characteristics when

exposed to stress. Further clinical research, combined with in-

depth basic research, is essential to explore and elucidate these

differences. (5) Immune cells are ubiquitous, and the majority of

immune cells and tissue cells express GR. Given that CORT is a

glucocorticoid, the immune damage caused by stress is systemic in

nature. It is not confined to the central nervous system or related to

mental illness alone. Therefore, CORT may exert distinct immune

effects in different types of tissues (sites). For instance, 11b-HSD

exhibits varying expression patterns across different tissues, thereby

mediating divergent immune responses. This area certainly

warrants more in-depth exploration. (6) The interaction

mechanisms between recently discovered key immune regulatory

proteins and stress-related CORT remain to be elucidated.
FIGURE 9

The way between CORT effect and immunity regarding inflammation.
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Clarifying these mechanisms is also one of the promising avenues

for exploring new therapeutic targets. (7) Based on the current

understanding of CORT’s role, its significance extends to certain

unique environments. For instance, in the mechanisms underlying

intercellular competition, there is a potential for CORT to be

involved. As an example, atypical immune cells such as iT cells

may have their differentiation or immune regulatory direction

influenced by CORT. Further research is needed to elucidate

these mechanisms.

Currently, there is a relatively comprehensive understanding of

the pathways through which CORT interacts with the immune

system. Based on current research trends and hot topics, it is

anticipated that more mechanisms of CORT will be uncovered in

the future. As a key marker of stress, CORT holds significant

research value across multiple system diseases. Moreover,

identifying additional targets of CORT would be highly beneficial

for the development of new small-molecule drugs.
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AA Arachidonic acid
Frontiers in Endocrino
AC Adenylate cyclase
ACS Apoptotic speck-like protein containing a caspase

recruitment domain
ADAR1 Double-stranded RNA adenylate deaminase antibody 1
AEA Anandamide
AgRP Agouti-related protein
AKT Protein kinase B
AP-1 Activator protein-1
Arg-1 Arginase-1
ATF6 Activating transcription factor-6
ATM Ataxia-telangiectasia mutated proteins
BAX BCL2-Associated X
BCL-2 B-cell lymphoma-2
BDNF Brain-derived neurotrophic factor
cAMP cyclic adenosine monophosphate
CBR Cannabinoid receptor
CCR C chemokine receptor
CHOP C/Ebp-Homologous Protein
CIC Circulating immune complex
CREB cAMP response-element protein
CORT Corticosterone
COX Cyclooxygenase
CRH Corticotropin releasing hormone
CTL Cytotoxic lymphocyte
CUMS Chronic unpredictable mild stimulation
CYP450 Cytochrome P450
DAGL Diacylglycerol lipase
DAP12 DNAX-activating protein of 12 kDa
DC Dendritic cell
DDR DNA damage repair
DNA Deoxyribonucleic acid
EGF Epidermal growth factor
EREG Epidermal regulatory factor
ERK Extracellular regulated protein kinases
ERS Endoplasmic reticulum stress
eCB Endocannabinoids
FAAH Fatty acid amide hydrolase
Fas TNF receptor superfamily, member 6
Fasl Fas ligand
FGF Fibroblast growth factor
FKBP FK506 binding protein
FOXO Forkhead box O
GABA g- aminobutyric acid
GC Glucocorticoid
GCR Glucocorticoid resistant
G-CSF Granulocyte-colony stimulating factor
logy 33
GILZ Glucocorticoid induced leucine zipper
GM-CSF Granulocyte macrophage-colony stimulating factor
GR Glucocorticoid receptor
GRP78 Glucose regulatory protein 78
GSDMD Gasdermin D
GSH Glutathione
GSK Glycogen synthetase kinase
GST Glutathione transferase
HIP Hippocampus
HPA Hypothalamic-pituitary-adrenal
HSP Heat shock protein
ICOS Inducible T cell costimulator
IDO Indoleamine 2,3-dioxygenase
IFI-16 Interferon induced nuclear protein-16
IFN Interferon
IFNGR2 Interferon Gamma Receptor 2
IGF Insulin-like growth factor
IKK Inhibitor of kappa B kinase
IL Interleukin
iNOS Inducible nitric oxide synthase
IP-10 Inducible protein-10
IRBP Interphotoreceptor retinal binding protein
IRE1 Inositol requires enzyme 1
JAK Janus kinase
JNK c-Jun N-terminal kinase
LC Locus coeruleus
LDHA Lactate dehydrogenase-A
LIF Leukemia inhibitory factor
LIX Lipopolysaccharide-inducible CXC chemokine
LOX Lipoxygenase
LPS Lipopolysaccharide
LXA4 Lipoxygen-A4
MAGL Monoacylglycerol lipase
MAIT Mucosa-associated invariant T
MCP-1 Monocyte chemoattractant protein-1
M-CSF Macrophage-colony stimulating factor
MDA-5 Melanoma differentiation associated gene-5
MDD Major depressive disorder
MIP-1 Macrophage inflammatory protein-1
MHC Major histocompatibility complex
MLKL Mixed lineage kinase domain-like
mTOR mammalian target of rapamycin
MyD88 Myeloiddifferentiationfactor 88
MMP Matrix metalloproteinase
NAPE-PLD N - a c y l p h o s p h a t i d y l e t h a n o l am i n e - h y d o l y z i n g

phospholipase D
NE Norepinephrine
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NF-kB Nuclear factor-kB
Frontiers in Endocrino
NGF Nerve growth factor
NICD1 Notch1 intracellular domain
NIK NF- kB-induced kinase
NK Natural killer
NKT Natural killer T
NLRP3 NOD-like receptor thermal protein domain associated

protein-3
NO Nitric oxide
NPY Neuropeptide Y
NPY1R Neuropeptide Y receptor-1
PAF Platelet activating factor
PBMC Peripheral blood mononuclear cell
PD Programmeddeath
PG Prostaglandin
PHLPP PH Domain Leucine-rich Repeat Protein Phosphatase
PI3K Phosphatidylinositol 3-kinase
PKR Double-stranded RNA-dependent protein kinase
PLCg2 Phospholipase Cg2
PRR Pattern recognition receptor
PVN Paraventricular hypothalamic nucleus
P2X7 Purinergic 2X7
RA Rheumatoid arthritis
RIPK3 Receptor interaction serine threonine protein kinase 3
logy 34
ROS Reactive oxygen species
RTK Receptor tyrosine kinase
SAPK Stress-activated protein kinase
SNS Sympathetic nervous system
SOCS Suppressor of cytokine signaling
SOD Superoxide dismutase
STAT Signal transducers and activators of transcription
TCR T cell receptor
TFEB Transcription factor EB
TGF-b Transforming growth factor-b
TLR Toll-like receptor
TNF Tumor necrosis factor
TREM2 Triggering receptor expressed on myeloid cells-2
TREX1 three prime repair exonuclease 1
UPR Unfolded protein response
VEGF Vascular endothelial growth factor
XBP1 X-box binding protein 1
XO Xanthine oxidase
ZBP1 Z-DNA Binding Protein 1
2-AG 2-arachidonoylglycerol
3b-HSD 3b-hydroxysteroid dehydrogenase
5-HT 5-hydroxytryptamine
11b-HSD 11b-hydroxysteroid dehydrogenase.
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