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Background: Hyperuricemia, a risk factor for gout and cardiovascular diseases,

has been linked to various metabolic disorders. This study investigates the

association between the cardiometabolic index (CMI) and hyperuricemia.

Methods: Using the National Health and Nutrition Examination Survey 1999-

2018 data from 23,212 participants, we employed survey-weighted logistic

regression to quantify the CMI-hyperuricemia relationship. Generalized

additive models explored potential nonlinear relationships, with two-piecewise

logistic regression identifying inflection points. Stratified analyses across

demographic and health subgroups assessed relationship consistency.

Results: We found a significant association between higher CMI and increased

hyperuricemia and identified a nonlinear relationship, characterized by a faster

risk increase at lower CMI levels and slower at higher levels. This pattern

remained consistent across all demographic and health subgroups.

Conclusions: Higher CMI significantly predicts hyperuricemia across diverse

populations, with a pronounced nonlinear association. This pattern

underscores the importance of early intervention, emphasizing the need for

personalized risk assessments and targeted strategies.
KEYWORDS

cardiometabolic index (CMI), hyperuricemia, NHANES (National Health and Nutrition
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1 Introduction

Hyperuricemia is a prevalent condition worldwide, significantly contributing to the risk

of gout, nephrolithiasis, metabolic syndrome, cardiovascular disease, and non-alcoholic

fatty liver disease (1). The pathogenesis of hyperuricemia is complex, with obesity being a

critical factor. Traditionally, weight loss has been recommended to manage hyperuricemia

(2); however, there is a substantial number of asymptomatic adults with normal body
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weight who still suffer from hyperuricemia (3). This highlights the

need for more precise and effective screening tools for

hyperuricemia, particularly in populations with normal body

mass index (BMI).

The cardiometabolic index (CMI) has emerged as a novel

marker integrating waist circumference (WC), triglyceride (TG)

levels, high-density lipoprotein cholesterol (HDL-C), and height to

evaluate metabolic health more comprehensively than traditional

markers such as BMI, which does not differentiate between muscle

and adipose tissue (4). Recent studies have indicated that CMI is a

superior predictor of metabolic syndrome, diabetes, stroke, and

other diseases compared to conventional obesity measures (5–8).

Furthermore, CMI has been shown to be associated with

cardiovascular disease risk in patients with hypertension and

obstructive sleep apnea, underscoring its relevance in

cardiovascular health (9). Despite these advancements, the

potential of CMI as a predictor of hyperuricemia remains

understudied, particularly regarding the relationship between

CMI and hyperuricemia across different population subgroups

and the possible nonlinear association between CMI and

hyperuricemia in nationally representative populations.

Several critical gaps exist in the current literature regarding CMI

and hyperuricemia. First, while some studies have examined the

linear correlation between CMI and hyperuricemia, these

investigations have been limited in scope and have not been

conducted in large, nationally representative populations. Second,

the potential variation in this relationship across different

demographic and health subgroups remains unexplored, limiting

our understanding of its clinical applicability across diverse

populations. Third, despite emerging evidence suggesting

nonlinear relationships between CMI and other metabolic

conditions, the potential nonlinear nature of the CMI-

hyperuricemia relationship has not been comprehensively

examined using advanced statistical methods (10–16).

The investigation of nonlinear relationships between CMI and

hyperuricemia is particularly warranted for several reasons. First,

biological systems rarely follow strictly linear patterns, and

metabolic parameters often demonstrate threshold effects or

saturation phenomena (17, 18). This has been demonstrated in

studies of other metabolic conditions, where risk relationships show

distinct patterns at different exposure levels (19–21). Second,

previous research on related metabolic markers has revealed that

assuming linearity may oversimplify complex biological

relationships and potentially miss critical intervention points. For

instance , s tudies examining adipos i ty measures and

cardiometabolic outcomes have identified threshold effects that

significantly impact clinical decision-making (22, 23). Third,

understanding the potential nonlinearity of the CMI-

hyperuricemia relationship could have important implications for

risk assessment and intervention strategies, particularly in

identifying high-risk populations and determining optimal

intervention timing.

Previous studies have reported linear associations between CMI

and hyperuricemia in specific populations (11–13, 15). However,

emerging evidence indicates that the relationship between CMI and
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other metabolic diseases may be nonlinear (19–21). The generalized

additive model (GAM) is a statistical tool that can capture these

nonlinear associations, providing a more nuanced understanding of

the risk dynamics involved (24). This study leverages data from the

National Health and Nutrition Examination Survey (NHANES)

1999-2018 to investigate the nonlinear relationship between CMI

and hyperuricemia. Using survey-weighted analysis to ensure

national representativeness, and by employing both logistic

regression and GAMs, the research aims to elucidate how CMI

influences hyperuricemia risk and to confirm the persistence of this

relationship across different demographic and health subgroups in

the US adult population.
2 Methods

2.1 Study design and participants

This study analyzed data from the NHANES 1999-2018, which

included a representative sample of the US population. To account

for NHANES’ complex survey design and ensure national

representativeness, appropriate sampling weights were applied in

all analyses. Participants aged 18 years and older were included in

the study, resulting in a total sample size of 23,212 individuals.

Several exclusion criteria were applied to ensure data validity and

reliability: pregnant women were excluded due to pregnancy-

induced physiological changes that could confound the CMI-

hyperuricemia relationship; participants with missing data on key

variables (WC; height; TG; HDL-C, and uric acid levels) were

excluded as complete data for these parameters are essential for

calculating CMI and determining hyperuricemia status; and those

with extreme outlier values of the CMI (defined as values exceeding

3 standard deviations from the mean) were excluded to minimize

the impact of potentially erroneous measurements or recording

errors on the analysis.
2.2 Demographic characteristics

Demographic characteristics such as age, sex, race/ethnicity,

poverty income ratio (PIR), education level, physical activity

(measured in weekly metabolic equivalents), smoking status, and

alcohol consumption were collected through structured interviews.

Additionally, physical examination data included BMI, height, and

blood pressure. Laboratory data encompassed fasting glucose, uric

acid, fasting TG, fasting total cholesterol, HDL-C, low-density

lipoprotein cholesterol (LDL-C), and estimated glomerular

filtration rate (eGFR). Medical history covered conditions such as

diabetes mellitus, hypertension, and cardiovascular disease

(including heart attack, congestive heart failure, coronary heart

disease, angina, and stroke).

PIR was calculated by dividing household income by the

poverty line, categorizing participants into three income groups:

low (below 1.3), medium (1.3 to 3.5), and high (above 3.5). Physical

activity was quantified in metabolic equivalents (METs/week) for
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weekly tasks and classified into low (<600 METs/week), medium

(600-1,199 METs/week), and high (≥1,200 METs/week) activity

levels. Smoking status was categorized into never-smokers (those

who smoked fewer than 100 cigarettes in their lifetime), former-

smokers (those who smoked more than 100 cigarettes in their

lifetime but had quit at the time of the survey), and current smokers

(those who smoked more than 100 cigarettes in their lifetime and

continued to smoke at least every few days). Current drinking was

classified as heavy (defined as 3 or more drinks per day for women,

4 or more drinks per day for men, or 5 or more binge drinking days

per month), moderate (2 or more drinks per day for women, 3 or

more drinks per day for men, or 2 or more binge drinking days per

month), and mild (any other drinking pattern). eGFR was

calculated from serum creatinine levels using the 2009 Chronic

Kidney Disease Epidemiology Collaboration (CKD-EPI)

formula (25).
2.3 Measurement of CMI

The CMI was calculated using the following formula (26):

CMI =
WC(cm)
height(cm)

� TG(mmol=L)
HDL − C(mmol=L)
2.4 Measurements and definition
of hyperuricemia

Hyperuricemia was defined as serum uric acid levels of 7.0 mg/

dL or greater for males and 6.0 mg/dL or greater for females (1).

Serum uric acid levels were measured using a colorimetric method

as part of the NHANES laboratory tests. This definition is

consistent with previous studies and clinical guidelines.
2.5 Statistical analysis

All analyses incorporated sampling weights, strata, and cluster

variables according to NHANES analytic guidelines to account for

the complex survey design and ensure nationally representative

estimates. The NHANES sampling weights were specifically

designed to account for the complex, multistage probability

sampling design, non-response adjustments, and post-

stratification to match population distributions. For our analysis

spanning multiple survey cycles (1999-2018), we constructed

appropriate weights following NHANES analytical guidelines by

dividing the 2-year sample weights by the number of combined

survey cycles (10 cycles). This approach ensures that the combined

estimates remain nationally representative of the US civilian non-

institutionalized population while accounting for the unequal

probability of selection, non-response bias, and differences in

demographic characteristics between the sample and the total US

population. For variance estimation, we employed the Taylor
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linearization method (also known as the delta method), which is

the default approach implemented in the survey package in R for

complex survey designs. This method was chosen because it

efficiently handles the NHANES multistage stratified cluster

sampling design and provides robust variance estimates for our

survey-weighted analyses without requiring the creation of replicate

weights. The Taylor linearization approach appropriately accounts

for the design effects in NHANES, resulting in accurate standard

errors and confidence intervals that reflect the complex sampling

strategy rather than assuming simple random sampling. Descriptive

statistics were used to summarize the baseline characteristics of the

study participants across CMI tertiles. Continuous variables were

presented as weighted means with 95% confidence intervals (CI),

and categorical variables were presented as weighted percentages

with 95% CI. Differences between groups were assessed using

survey-weighted linear regression for continuous variables and

survey-weighted Chi-square tests (svytable) for categorical

variables. Missing data for covariates were addressed using

multiple imputation by chained equations (MICE) to reduce bias

and improve the robustness of the analyses. The imputation model

was carefully specified to preserve the relationships between

variables by including all relevant predictors and outcome

variables. We used predictive mean matching (PMM) for

continuous variables, logistic regression for binary variables, and

polytomous regression for categorical variables, with 5 iterations to

ensure convergence. The imputation procedure maintained the

complex survey design features by incorporating sampling

weights, strata, and cluster variables. The stability of the

imputation process was confirmed through convergence

diagnostics. To assess the sensitivity of our findings to potential

violations of the Missing At Random (MAR) assumption, we

conducted pattern-mixture sensit iv i ty analyses for a

comprehensive set of key confounding variables, including

socioeconomic factors (PIR, education), lifestyle factors (physical

activity, smoking, drinking), clinical parameters (eGFR), and

metabolic conditions (diabetes status). This approach involved

systematically modifying values by applying different offset values

(from -0.5 to 0.5 standard deviations) to simulate various Missing

Not At Random (MNAR) mechanisms, followed by re-estimation

of the primary models to evaluate the robustness of our findings

regarding the CMI-hyperuricemia relationship.

The association between CMI and hyperuricemia was analyzed

using logistic regression models and GAMs. GAMs were specifically

chosen over other nonlinear approaches (such as spline regression

or nonlinear mixed-effects models) for several reasons: (1) GAMs

offer greater flexibility in modeling complex nonlinear relationships

without assuming a specific functional form, which is particularly

important given the exploratory nature of our investigation into

CMI-hyperuricemia associations; (2) GAMs can automatically

determine the optimal degree of smoothing through cross-

validation, reducing the risk of overfitting; (3) GAMs readily

accommodate our survey-weighted data structure while

maintaining interpretability; and (4) GAMs allow for easy

visualization of nonlinear relationships through smooth function
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plots, facilitating the identification of potential threshold effects

(24). As a sensitivity analysis to verify the robustness of our

findings, we also employed restricted cubic splines (RCS) to

model the nonlinear relationship between CMI and hyperuricemia.

To examine potential temporal trends in the relationship

between CMI and hyperuricemia across the 20-year study period

(1999-2018), we conducted stratified analyses by NHANES survey

cycle. The study period was divided into ten 2-year cycles

corresponding to the NHANES survey design. We estimated the

association between CMI (per one standard deviation increase) and

hyperuricemia within each cycle using the same multivariable

logistic regression model as in our primary analysis, with full

adjustment for potential confounders. Additionally, to formally

assess the heterogeneity of this association over time, we tested

for interaction between survey cycle and CMI by including a

product term in our regression model.

Logistic regression models were used to estimate odds ratios

(OR) and 95% CI for hyperuricemia across different CMI levels.

Before model construction, the assumptions of logistic regression

were carefully verified. The linearity of the logit for continuous

predictors was assessed using multivariable fractional polynomial

(MFP) analysis, with appropriate transformations applied where

necessary. Specifically, eGFR was transformed as (eGFR/100)^-0.5

+ log(eGFR/100), BMI as log(BMI/10), CMI as log(CMI+1.6), and

age as (age/100)^-1 to ensure linear relationships with the logit of

hyperuricemia. Multicollinearity was evaluated using variance

inflation factors (VIF) through stepwise selection, with variables

showing high collinearity being removed. Model specification was

assessed through discrimination (AUC) and internal validation

using bootstrap resampling (27).

The final models were adjusted for potential confounders

including age, sex, race/ethnicity, PIR, educational level, METs/

week, smoking, drinking, BMI, eGFR, diabetes, hypertension, and

CVD status. GAMs were employed to explore nonlinear

associations and were stratified by demographic and health

characteristics to verify the persistence of these relationships. The

log likelihood ratio test was used to compare models, and statistical

significance was set at P < 0.05. Given the multiple analyses

conducted across different models, CMI tertiles, and subgroups,

we placed emphasis on the consistency of findings across analytical

approaches rather than isolated statistical significance tests. The

robustness of associations was evaluated through bootstrap internal

validation and consistency of direction and magnitude of effects

across analyses, which help mitigate concerns about Type I errors

due to multiple testing. All statistical analyses were executed using R

(version 4.2.2, http://www.R-project.org) and EmpowerStats

(version 4.2, www.empowerstats.com).
3 Results

3.1 Sample selection and exclusion criteria

The selection process for the study sample from the NHANES

1999-2018 is detailed in Figure 1. Initially, the dataset included
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101,316 participants. Exclusions were made for individuals under

the age of 18 (n=42,112) and pregnant individuals (n=1,670),

resulting in a reduced sample of 57,534 participants. Further

exclusions were necessary due to missing data for key variables

such as WC, height, TG, or HDL-C, which accounted for 33,869

participants, reducing the sample to 23,665 individuals.

Additional exclusions were made for those with missing uric

acid data (n=77), and extreme outlier values of the CMI (n=376).

After applying these exclusion criteria, the final analytical sample

consisted of 23,212 participants (Figure 1).
3.2 Baseline demographic characteristics

The survey-weighted baseline demographic characteristics of

the study subjects, categorized into tertiles of the CMI, demonstrate
FIGURE 1

Flowchart illustrating the selection process of the study sample from
NHANES 1999–2018. *Extreme outlier values, defined as those over
3 standard deviations from the mean. WC, waist circumference; TG,
fasting triglyceride; HDL-C, high-density lipoprotein cholesterol;
CMI, cardiometabolic index; NHANES, the National Health and
Nutrition Examination Survey.
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TABLE 1 Weighted baseline characteristics of study participants according to CMI tertiles.

Characteristics CMI tertiles P-value

T1 (0.02-0.11) n=7737 T2 (0.11-0.18) n=7737 T3 (0.18-0.57) n=7738

Age (years) 42.36 (41.71, 43.00) 46.64 (46.06, 47.23) 49.96 (49.43, 50.48) <0.001

Sex (%) <0.001

Male 43.63 (42.20, 45.07) 49.16 (47.75, 50.58) 55.91 (54.61, 57.21)

Female 56.37 (54.93, 57.80) 50.84 (49.42, 52.25) 44.09 (42.79, 45.39)

Race/ethnicity (%) <0.001

Non-Hispanic White 66.74 (64.54, 68.86) 68.61 (66.29, 70.85) 70.86 (68.38, 73.23)

Non-Hispanic Black 14.91 (13.43, 16.52) 10.26 (9.16, 11.48) 6.58 (5.77, 7.50)

Mexican American 6.04 (5.21, 6.99) 8.67 (7.54, 9.94) 10.12 (8.79, 11.62)

Others 12.31 (10.96, 13.80) 12.46 (11.21, 13.83) 12.44 (10.99, 14.05)

PIR (%) <0.001

Low 19.66 (18.20, 21.21) 21.54 (19.99, 23.18) 23.13 (21.79, 24.54)

Medium 34.10 (32.51, 35.73) 37.19 (35.65, 38.75) 38.66 (37.03, 40.31)

High 46.23 (44.17, 48.31) 41.27 (39.17, 43.40) 38.21 (36.26, 40.20)

Education level (%) <0.001

Less than high school 13.98 (12.91, 15.12) 18.50 (17.23, 19.85) 21.60 (20.33, 22.93)

High school 22.66 (21.22, 24.16) 24.70 (23.33, 26.13) 26.63 (25.11, 28.20)

More than high school 63.36 (61.33, 65.35) 56.79 (54.92, 58.64) 51.77 (49.90, 53.64)

METs/week (%) <0.001

Low 29.87 (28.26, 31.52) 34.59 (33.04, 36.17) 36.54 (34.84, 38.28)

Moderate 2.78 (2.30, 3.36) 2.89 (2.42, 3.45) 3.18 (2.71, 3.73)

Vigorous 67.36 (65.63, 69.03) 62.52 (60.95, 64.06) 60.27 (58.54, 61.98)

Smoking (%) <0.001

Never 59.35 (57.48, 61.19) 53.17 (51.53, 54.80) 47.18 (45.55, 48.81)

Former 20.81 (19.38, 22.32) 24.26 (22.90, 25.68) 29.92 (28.47, 31.40)

Now 19.84 (18.46, 21.29) 22.57 (21.03, 24.18) 22.91 (21.69, 24.16)

Drinking (%) <0.001

Never 11.25 (10.20, 12.40) 11.60 (10.51, 12.78) 12.04 (11.03, 13.13)

Former 10.09 (9.19, 11.07) 14.29 (13.23, 15.42) 18.20 (16.84, 19.64)

Mild 37.20 (35.44, 38.98) 34.82 (33.12, 36.56) 35.46 (33.82, 37.13)

Moderate 20.90 (19.65, 22.20) 16.55 (15.44, 17.73) 13.39 (12.35, 14.50)

Heavy 20.56 (19.35, 21.83) 22.74 (21.35, 24.20) 20.91 (19.49, 22.41)

BMI (kg/m2) 24.94 (24.78, 25.10) 28.51 (28.32, 28.71) 32.18 (31.94, 32.43) <0.001

Height (cm) 168.96 (168.68, 169.25) 168.88 (168.60, 169.15) 169.40 (169.09, 169.71) 0.033

SBP (mmHg) 117.16 (116.66, 117.66) 121.24 (120.71, 121.77) 125.22 (124.75, 125.70) <0.001

DBP (mmHg) 68.68 (68.27, 69.09) 70.54 (70.14, 70.94) 71.98 (71.57, 72.39) <0.001

Fasting glucose (mg/dL) 96.96 (96.44, 97.48) 102.70 (101.97, 103.43) 113.71 (112.59, 114.82) <0.001

Uric acid (mg/dL) 4.94 (4.91, 4.98) 5.45 (5.41, 5.49) 6.01 (5.96, 6.05) <0.001

(Continued)
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significant differences across various demographic and clinical

variables (Table 1). Participants in the highest CMI tertile (T3)

were older, with a weighted mean age of 49.96 years (95% CI: 49.43,

50.48) compared to 42.36 years (95% CI: 41.71, 43.00) in the lowest

tertile (T1) (P < 0.001). The sex distribution showed significant

variation; the weighted proportion of males increased from 43.63%

(95% CI: 42.20, 45.07) in T1 to 55.91% (95% CI: 54.61, 57.21) in T3,

while females decreased from 56.37% (95% CI: 54.93, 57.80) to

44.09% (95% CI: 42.79, 45.39) (P < 0.001). Racial and ethnic

composition revealed notable differences, with Non-Hispanic

Whites increasing from 66.74% (95% CI: 64.54, 68.86) in T1 to

70.86% (95% CI: 68.38, 73.23) in T3, and Non-Hispanic Blacks

decreasing significantly from 14.91% (95% CI: 13.43, 16.52) in T1 to

6.58% (95% CI: 5.77, 7.50) in T3 (P < 0.001). Socioeconomic status,

indicated by the PIR, showed a gradient where participants in the

low PIR category increased from 19.66% (95% CI: 18.20, 21.21) in

T1 to 23.13% (95% CI: 21.79, 24.54) in T3, while those in the high

PIR category decreased from 46.23% (95% CI: 44.17, 48.31) to

38.21% (95% CI: 36.26, 40.20). Education levels followed a similar

trend, with less than high school education more prevalent in higher

CMI tertiles. Physical activity, measured in METs/week, showed

significant differences across CMI tertiles. Participants in the

highest CMI tertile were more likely to have low physical activity

levels (36.54% in T3 vs. 29.87% in T1). Moderate physical activity
Frontiers in Endocrinology 06
was similarly distributed across tertiles (3.18% in T3 vs. 2.78% in

T1). Vigorous physical activity was more common in the lowest

CMI tertile (67.36% in T1 vs. 60.27% in T3). Smoking status varied

significantly, with never smokers decreasing from 59.35% (95% CI:

57.48, 61.19) in T1 to 47.18% (95% CI: 45.55, 48.81) in T3. Drinking

patterns also differed, with former drinkers being more prevalent in

the highest CMI tertile (18.20% vs. 10.09% in T1).

Laboratory characteristics showed significant variations among

the CMI tertiles. Weighted mean BMI increased substantially from

24.94 kg/m² (95% CI: 24.78, 25.10) in T1 to 32.18 kg/m² (95% CI:

31.94, 32.43) in T3 (P < 0.001). Systolic and diastolic blood

pressures rose from 117.16 mmHg (95% CI: 116.66, 117.66) and

68.68 mmHg (95% CI: 68.27, 69.09) in T1 to 125.22 mmHg (95%

CI: 124.75, 125.70) and 71.98 mmHg (95% CI: 71.57, 72.39) in T3,

respectively (P < 0.001). Fasting glucose levels escalated from 96.96

mg/dL (95% CI: 96.44, 97.48) in T1 to 113.71 mg/dL (95% CI:

112.59, 114.82) in T3, and uric acid levels from 4.94 mg/dL (95% CI:

4.91, 4.98) to 6.01 mg/dL (95% CI: 5.96, 6.05) (P < 0.001 for both).

Lipid profiles revealed marked deterioration, with fasting TGs

increasing dramatically from 65.18 mg/dL (95% CI: 64.49, 65.87)

in T1 to 196.13 mg/dL (95% CI: 193.27, 198.98) in T3, while HDL-C

levels dropped from 63.90 mg/dL (95% CI: 63.33, 64.47) to 44.02

mg/dL (95% CI: 43.69, 44.35) (P < 0.001). LDL-C exhibited a

complex pattern across the CMI tertiles, peaking in the middle
TABLE 1 Continued

Characteristics CMI tertiles P-value

T1 (0.02-0.11) n=7737 T2 (0.11-0.18) n=7737 T3 (0.18-0.57) n=7738

Fasting triglyceride (mg/dL) 65.18 (64.49, 65.87) 108.94 (108.01, 109.87) 196.13 (193.27, 198.98) <0.001

Fasting total cholesterol
(mg/dL)

191.26 (190.01, 192.51) 194.81 (193.47, 196.14) 195.51 (194.08, 196.94) <0.001

HDL-C (mg/dL) 63.90 (63.33, 64.47) 53.05 (52.62, 53.49) 44.02 (43.69, 44.35) <0.001

LDL-C (mg/dL) 114.34 (113.20, 115.48) 119.96 (118.80, 121.12) 112.26 (111.20, 113.31) <0.001

eGFR (mL/min/1.73 m2) 99.60 (98.81, 100.38) 95.34 (94.60, 96.07) 91.60 (90.81, 92.39) <0.001

Diabetes (%) <0.001

No 95.32 (94.75, 95.84) 88.79 (87.86, 89.66) 75.13 (73.83, 76.40)

Yes 4.68 (4.16, 5.25) 11.21 (10.34, 12.14) 24.87 (23.60, 26.17)

Hypertension (%) <0.001

No 77.74 (76.31, 79.10) 64.45 (62.85, 66.02) 50.27 (48.66, 51.88)

Yes 22.26 (20.90, 23.69) 35.55 (33.98, 37.15) 49.73 (48.12, 51.34)

CVD (%) <0.001

No 95.97 (95.36, 96.50) 92.15 (91.34, 92.88) 86.60 (85.60, 87.54)

Yes 4.03 (3.50, 4.64) 7.85 (7.12, 8.66) 13.40 (12.46, 14.40)

CMI 0.08 (0.08, 0.08) 0.14 (0.14, 0.14) 0.28 (0.27, 0.28) <0.001
For continuous variables: survey-weighted mean (95% CI), P-value was by survey-weighted linear regression. For categorical variables: survey-weighted percentage (95% CI), P-value was by
survey-weighted Chi-square test (svytable).
CMI, cardiometabolic index; PIR, poverty income ratio; MET, metabolic equivalent of task; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease.
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tertile (P < 0.001). The eGFR declined from 99.60 mL/min/1.73 m²

(95% CI: 98.81, 100.38) in T1 to 91.60 mL/min/1.73 m² (95% CI:

90.81, 92.39) in T3 (P < 0.001). The weighted prevalence of diabetes

(24.87% vs. 4.68%), hypertension (49.73% vs. 22.26%), CVD

(13.40% vs. 4.03%), and hyperuricemia all increased significantly

with higher CMI tertiles (P < 0.001), underscoring the association

between higher CMI and adverse health outcomes.
3.3 Survey-weighted logistic regression
analysis of the relationship between CMI
and hyperuricemia

The association of the CMI with hyperuricemia was assessed using

three models with survey-weighted analysis, each adjusting for different

sets of confounders (Table 2). In Model 1, which was unadjusted, the

weightedOR per one standard deviation increase in CMI was 1.75 (95%

CI: 1.68, 1.82).When adjusted for age and sex inModel 2, theOR slightly

decreased to 1.68 (95% CI: 1.61, 1.75). In the fully adjusted Model 3,

which controlled for a comprehensive set of variables including age, sex,

race/ethnicity, PIR, educational level, physical activity (METs/week),

smoking, drinking, BMI, eGFR, diabetes, hypertension, and CVD, the

OR further reduced to 1.37 (95% CI: 1.30, 1.44).

For categorical analysis, CMI values were divided into population-

based tertiles (T1: 0.02-0.11, T2: 0.11-0.18, and T3: 0.18-0.57), with

approximately equal sample sizes in each group (n≈7737 per tertile).

This approach was chosen to provide balanced statistical power across

categories while facilitating clinical interpretation of different risk levels.

Notably, the upper boundary of the second tertile (0.18) coincides with

the inflection point identified in our subsequent nonlinear analysis

(Section 3.5), providing statistical validation for this categorization

approach. Examining the CMI tertiles, a significant trend was observed

across all models. Compared to the reference group (T1), participants

in the second tertile (T2) had a 2.29-fold increased risk of

hyperuricemia in Model 1 (95% CI: 2.02, 2.59), which decreased to

2.16 (95% CI: 1.91, 2.45) in Model 2 and further to 1.63 (95% CI: 1.42,

1.86) inModel 3. For the highest tertile (T3), the weighted risk was 4.87
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times higher (95% CI: 4.32, 5.49) in Model 1, 4.36 times (95% CI: 3.86,

4.93) in Model 2, and 2.47 times (95% CI: 2.14, 2.85) in Model 3 (all

with P for trend <0.001).
3.4 Model diagnostics and validation

The logistic regression model assumptions were verified

through several diagnostic procedures. MFP analysis identified

necessary transformations for continuous predictors to ensure

linear relationships with the logit of hyperuricemia. After these

transformations, all continuous variables showed appropriate linear

relationships with the outcome. VIF analysis confirmed the absence

of significant multicollinearity in the final model (all VIF values <5),

except for the expected correlation between age and eGFR.

To account for the complex survey design, we conducted

comprehensive survey-weighted model diagnostics. Survey-

weighted Pearson residuals were plotted against fitted values and

key predictors (CMI, age, and BMI), which confirmed the absence

of systematic patterns (Supplementary Figure S1). While a few

outliers were observed, the lowest smoothing curves remained close

to the zero line, indicating no substantial model misspecification.

We also performed survey-weighted influence diagnostics using

Cook’s distance measures adapted for complex survey data. A total

of 1,704 potentially influential observations (7.3% of the sample)

were identified with Cook’s distance values exceeding the threshold

of 4/n (Supplementary Figure S2). Sensitivity analysis comparing

models with and without these influential observations revealed

that although the coefficient for CMI increased (from 3.71 to 7.99, a

115.1% increase, Supplementary Table S1), the direction and

significance of the association remained consistent, with a high

correlation between predictions from both models (r = 0.95). This

confirms the robustness of our findings regarding the CMI-

hyperuricemia relationship despite the presence of influential

observations. Additionally, we assessed the survey-weighted

goodness-of-fit using the F-adjusted mean residual test and an

adapted Hosmer-Lemeshow test (Supplementary Table S2). While

both tests yielded significant p-values (P < 0.001 and P = 0.002,

respectively), suggesting potential areas for model improvement,

this is not uncommon in large samples where even small deviations

from perfect fit can result in statistical significance. The model’s

discrimination ability remained strong despite these limitations.

The final model demonstrated good discrimination with an

AUC of 0.7774 and accuracy of 0.808 (95% CI: 0.803-0.813).

Internal validation through bootstrap resampling confirmed stable

model performance with an accuracy of 0.8075 (SD: 0.0032) and

Kappa coefficient of 0.2344 (SD: 0.0106).
3.5 Nonlinear relationship between CMI
and hyperuricemia

Figure 2 illustrates the nonlinear relationship between the CMI

and the probability of hyperuricemia, using a GAM. The analysis

reveals that the risk of hyperuricemia increases more rapidly at
TABLE 2 Weighted analysis of the association between CMI
and hyperuricemia.

Exposure Model 1 Model 2 Model 3

CMI (per one SD) 1.75 (1.68, 1.82) 1.68 (1.61, 1.75) 1.37 (1.30, 1.44)

CMI tertiles

T1 (0.02-0.11) Reference Reference Reference

T2 (0.11-0.18) 2.29 (2.02, 2.59) 2.16 (1.91, 2.45) 1.63 (1.42, 1.86)

T3 (0.18-0.57) 4.87 (4.32, 5.49) 4.36 (3.86, 4.93) 2.47 (2.14, 2.85)

P for trend <0.001 <0.001 <0.001
Model 1: Non-adjusted.
Model 2: Adjusted for age and sex.
Model 3: Adjusted for age, sex, race/ethnicity, PIR, educational level, METs/week, smoking,
drinking, BMI, eGFR, diabetes, hypertension, and CVD.
CMI, cardiometabolic index; SD, standard deviation; PIR, poverty income ratio; MET,
metabolic equivalent of task; BMI, body mass index; eGFR, estimated glomerular filtration
rate; CVD, cardiovascular disease.
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lower CMI levels and more slowly at higher CMI levels. The plot

shows that initial increases in CMI are associated with a steep rise in

hyperuricemia risk, which then tapers off as CMI continues to

increase. Two dotted lines represent the 95% CIs, indicating the

precision of the estimates and reinforcing the robustness of the

observed trend.

The nonlinear relat ionship between the CMI and

hyperuricemia was further explored using a survey-weighted two-

piecewise logistic regression model to identify inflection points in

the GAM (Table 3). The analysis revealed a significant nonlinear

association, with an inflection point at a CMI Z-score of 0.11,

corresponding to an original CMI value of 0.18. Below this

inflection point (CMI Z-score < 0.11), the adjusted OR for

hyperuricemia was 3.57 (95% CI: 2.99, 4.25; P < 0.001), indicating

a more pronounced increase in risk. Above the inflection point (>

0.18), the adjusted OR was 1.30 (95% CI: 1.21, 1.39; P < 0.001),

showing a more modest but still significant increase in risk. The log

likelihood ratio test confirmed the significance of this nonlinear

relationship (P < 0.001).

To verify the robustness of the nonlinear relationship identified

by GAM analysis, we conducted a sensitivity analysis using RCS,

which confirmed our findings (Supplementary Figure S3). The RCS

analysis demonstrated a significant nonlinear relationship between

CMI and hyperuricemia in both unadjusted (P for overall < 0.01, P

for nonlinear < 0.01) and fully adjusted models (P for overall < 0.01,
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P for nonlinear < 0.01). Similar to our primary GAM analysis, the

RCS approach revealed that the risk of hyperuricemia increased

rapidly at lower CMI levels and then continued to rise more

gradually at higher CMI levels, with an inflection point

corresponding to a CMI value of approximately 0.2. This

consistency across different statistical methods reinforces the

validity of the nonlinear pattern observed in our study.
3.6 Stratified analysis of the association
between CMI and hyperuricemia

In Figure 3, the survey-weighted stratified logistic regression

models correspond to the relationship verified in Table 2. The

analysis aims to verify whether there is an interaction between CMI

and hyperuricemia within different subgroups. Although most of

the interactions among the different subgroups were significant, the

predictive significance of CMI for hyperuricemia risk was

demonstrated in all subgroups (OR > 1) in the survey-weighted

analysis. This analysis illustrates how the weighted OR for

hyperuricemia vary with CMI across various demographic and

health characteristics, including age, sex, race/ethnicity, BMI

categories, smoking status, drinking status, diabetes status,

hypertension status, and CVD status. The consistent finding of

OR > 1 across all subgroups in the survey-weighted analysis

highlights the robust association between higher CMI and

increased risk of hyperuricemia, regardless of subgroup differences.

To further examine potential modification effects, we conducted

formal tests of interaction (detailed results presented in

Supplementary Table S3). Significant interactions were found

between CMI and sex, race/ethnicity, BMI categories, smoking

status, drinking status, diabetes, and hypertension status (all P <

0.05), while no significant interactions were observed for age (P =

0.73) and CVD status (P = 0.18). The CMI-hyperuricemia

association was stronger in females compared to males

(interaction coefficient: 0.192, SE: 0.041, P < 0.001), but weaker in

Mexican Americans compared to Non-Hispanic Whites
FIGURE 2

Nonlinear relationship between CMI (Z-score) and hyperuricemia
using a GAM, with inflection point at CMI Z-score of 0.11 (original
CMI value of 0.18) indicating transition from rapid to gradual risk
increase. Age, sex, race/ethnicity, PIR, educational level, METs/week,
smoking, drinking, BMI, eGFR, diabetes, hypertension, and CVD were
adjusted. The dotted blue lines represent 95% confidence intervals.
Below the inflection point, the adjusted OR was 3.57 (95% CI: 2.99,
4.25), while above it, the adjusted OR was 1.30 (95% CI: 1.21, 1.39).
CMI, cardiometabolic index; GAM, generalized additive model; PIR,
poverty income ratio; MET, metabolic equivalent of task; BMI, body
mass index; eGFR, estimated glomerular filtration rate; CVD,
cardiovascular disease; OR, odds ratio; CI, confidence interval.
TABLE 3 Weighted two-piecewise logistic regression analysis of the
association between CMI and hyperuricemia.

CMI (Z-score) Adjusted OR* (95% CI) P-value

Model I

Fitting by the standard
linear model

1.37 (1.30, 1.44) <0.001

Model II

Inflection point 0.11

< 0.11 3.57 (2.99, 4.25) <0.001

> 0.11 1.30 (1.21, 1.39) <0.001

Log likelihood ratio / <0.001
fro
*Adjusted for age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, drinking,
BMI, eGFR, diabetes, hypertension, and CVD.
CMI, cardiometabolic index; OR, odds ratio; PIR, poverty income ratio; MET, metabolic
equivalent of task; BMI, body mass index; eGFR, estimated glomerular filtration rate; CVD,
cardiovascular disease.
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(interaction coefficient: -0.157, SE: 0.046, P < 0.001). The

association decreased with increasing BMI categories and was

attenuated in individuals with comorbidities including diabetes

(interaction coefficient: -0.197, SE: 0.053, P < 0.001) and

hypertension (interaction coefficient: -0.173, SE: 0.041, P < 0.001).

Figure 4 employs GAMs to verify whether the nonlinear

relationship between CMI and hyperuricemia, presented in
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Figure 2, persists across different subgroups. The hierarchical

GAMs illustrate that the probability of hyperuricemia increases

with higher CMI scores, but the rate of increase and the shape of the

relationship vary among subgroups. Specifically, these models

confirm that the nonlinear relationship, where hyperuricemia risk

increases faster when CMI is small and slower when CMI is large,

holds true within almost each subgroup.
FIGURE 3

Weighted analysis of the relationship between CMI (Z-score) and hyperuricemia stratified by various demographic and health characteristics. *Each
stratification adjusted for all the factors (age, sex, race/ethnicity, PIR, educational level, METs/week, smoking, drinking, BMI, eGFR, diabetes,
hypertension, and CVD) except the stratification factor itself. OR, odds ratio; CI, confidence interval; CMI, cardiometabolic index; PIR, poverty
income ratio; MET, metabolic equivalent of task; BMI, body mass index; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1459946
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2025.1459946
3.7 Sensitivity analysis for the
MAR assumption

To evaluate the robustness of our findings to potential

violations of the MAR assumption, we conducted sensitivity

analyses across seven key confounding variables. Supplementary

Table S4 presents the results of these analyses, which simulated
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various MNAR scenarios by applying different offset values to the

imputed data.

The association between CMI and hyperuricemia remained

remarkably stable across all MNAR scenarios tested. The original

odds ratio for CMI was 5.26 (95% CI: 3.20, 8.65). When simulating

different MNAR conditions, the odds ratios exhibited minimal

variation, with percent changes ranging from -0.33% to +0.92%
FIGURE 4

Stratified analyses [by (A) age; (B) sex; (C) race/ethnicity; (D) BMI; (E) smoking; (F) drinking; (G) diabetes; (H) hypertension; (I) CVD] between CMI (Z-
score) and hyperuricemia using GAM. Each generalized additive model and smooth curve fitting was adjusted for all factors, including age, sex, race/
ethnicity, PIR, educational level, METs/week, smoking, drinking, BMI, eGFR, diabetes, hypertension, and CVD, except for the stratification factor itself.
The nonlinear pattern—characterized by faster risk increase at lower CMI levels and slower increase at higher levels—remains consistent across
varied subpopulations, confirming the robustness of this relationship. BMI, body mass index; CVD, cardiovascular disease; CMI, cardiometabolic
index; GAM, generalized additive model; PIR, poverty income ratio; MET, metabolic equivalent of task; eGFR, estimated glomerular filtration rate.
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across all variables and delta values. eGFR showed the largest

impact, with a maximum change of +0.92% (OR: 5.31, 95% CI:

3.23, 8.75), while other variables such as physical activity (MET)

showed virtually no impact (percent change: -0.01%). These results

confirm that our findings regarding the CMI-hyperuricemia

relationship are highly robust to potential violations of the MAR

assumption in confounding variables.
3.8 Temporal analysis of the CMI-
hyperuricemia relationship

Supplementary Table S5 shows the association between CMI

(per one standard deviation increase) and hyperuricemia by

NHANES survey cycle from 1999 to 2018. The association

remained consistent across most survey cycles, with adjusted odds

ratios ranging from 1.11 (95% CI: 0.97-1.27) in 2007-2008 to 1.59

(95% CI: 1.31-1.93) in 2011-2012. Notably, the association was

statistically significant (P < 0.05) in all survey cycles except 2007-

2008, where it approached but did not reach statistical significance

(P = 0.114). The formal test for interaction between survey cycle

and CMI revealed no significant temporal variation in this

association (P for interaction = 0.067), indicating that the

relationship between CMI and hyperuricemia remained largely

stable throughout the 20-year study period.
4 Discussion

This study analyzed data from NHANES 1999-2018 to

investigate the relationship between CMI and hyperuricemia.

Using survey-weighted analysis, our major findings reveal a

significant nonlinear association, where higher CMI levels

correspond to an increased risk of hyperuricemia. This risk

increases rapidly at lower CMI levels and more gradually at

higher levels. The survey-weighted analysis demonstrated that the

association was consistent across all demographic and health

subgroups, emphasizing CMI’s robustness as a predictor for

hyperuricemia. These results highlight the importance of early

intervention and personalized risk assessments to effectively

manage hyperuricemia.

The CMI, a relatively new metric related to lipids and obesity,

has been linked to various metabolic diseases (5, 6, 26, 28, 29).

However, there is a scarcity of studies exploring the relationship

between CMI and hyperuricemia. Wang et al. were the first to

establish the predictive significance of CMI for hyperuricemia risk

in a rural Chinese population (11). Their findings indicated that a

one standard deviation increase in CMI corresponded to a 33%

increase in the risk of hyperuricemia for both males and females. In

comparison, our survey-weighted analysis in the US population

showed a more pronounced association, with a 75% increase in

hyperuricemia risk per standard deviation increase in CMI in the

unadjusted model, and a 37% increase after full adjustment. This

difference may be attributed to population characteristics, such as

dietary patterns, genetic predispositions, and environmental factors,
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as well as methodological variations, including the use of survey-

weighted analysis in our study. CMI demonstrated similar

predictive value for hyperuricemia risk compared to the body

adiposity index (BAI) and lipid accumulation product (LAP).

Nonetheless, the study’s scope was confined to economically

disadvantaged regions, potentially limiting the generalizability of

its results. Subsequent research by Liu et al. addressed this

limitation by examining a population from the Yangtze River

Delta region of China, who regularly underwent physical

examinations (15). This broader demographic scope reinforced

the earlier findings. Liu et al. determined that among seven

nontraditional adiposity indices—BAI, conicity index, a body

shape index (ABSI), body roundness index (BRI), visceral

adiposity index (VAI), LAP, and CMI—CMI exhibited the

strongest association with hyperuricemia and the highest AUC.

Similarly, a recent study in hypertensive patients with coronary

heart disease identified the metabolic score for visceral fat (METS-

VF) index, which integrates visceral obesity and metabolic

dysfunction, as the most efficacious predictor of hyperuricemia

(30). These findings collectively underscore the robustness of CMI

and other obesity metabolism indices as predictors of

hyperuricemia, particularly in populations with complex

metabolic profiles.

However, both studies were limited to Chinese populations,

necessitating further validation for applicability to other ethnic

groups. Additionally, our findings extend the literature by

demonstrating the robustness of CMI as a predictor of

hyperuricemia in a nationally representative US population,

highlighting its potential utility across diverse ethnic and

demographic groups. In addition to these findings, studies

focusing on various subpopulations are noteworthy. Zuo et al.

found that CMI correlated more strongly with hyperuricemia

than other anthropometric measures in asymptomatic individuals

with normal BMI, underscoring the significance of CMI in

hyperuricemia management (13). Li et al. later confirmed that

CMI had the highest AUC in normotensive hyperuricemic

populations (12). Despite these findings, most studies have not

examined subgroups beyond those defined by BMI and blood

pressure. Furthermore, some researchers have suggested that the

association between CMI and other metabolic diseases is nonlinear,

rather than simply linear (19–21). This nonlinear relationship is

consistent with our findings, as we observed a rapid increase in

hyperuricemia risk at lower CMI levels and a more gradual increase

at higher levels. Recent studies have further highlighted the

importance of considering specific subpopulations and comorbid

conditions. For instance, a study in hypertensive patients with

coronary heart disease identified the METS-VF index, which

integrates visceral obesity and metabolic dysfunction, as the most

effective predictor of hyperuricemia, with an AUC of 0.78 (30). This

finding underscores the potential value of obesity metabolism

indices in populations with complex metabolic profiles,

complementing our findings on CMI. Similarly, elevated plasma

aldosterone concentrations (PAC) have been shown to exacerbate

hyperuricemia by impairing renal uric acid excretion and

promoting systemic inflammation, particularly in hypertensive
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patients (31). These insights suggest that hormonal dysregulation

and metabolic dysfunction may play a critical role in the observed

associations, particularly in individuals with comorbid conditions

such as hypertension and coronary heart disease. Therefore, it is

imperative to verify the relationship between CMI and

hyperuricemia across different subgroups within the US

population and to explore the potential nonlinear relationship

between CMI and hyperuricemia.

In our study, based on survey-weighted analysis of a nationally

representative sample, the CMI emerged as a significant predictor of

hyperuricemia within the US adult population. The association

between CMI and hyperuricemia remained statistically significant

across various subgroups, including distinctions in age, sex, race/

ethnicity, BMI categories, smoking status, drinking status, diabetes

status, hypertension status, and CVD status. These findings align

with previous studies. In earlier research conducted in China, the

United States, and Iran, the TG/HDL-C ratio has been closely

linked with the onset and progression of hyperuricemia, serving as a

proxy for insulin resistance (32–35). This relationship may be

attributed to the fact that elevated TG levels can contribute to the

overproduction of uric acid via the free fatty acid metabolic pathway

(36). Additionally, low HDL-C levels are independently associated

with an increased risk of renal impairment, which can lead to

reduced uric acid excretion (37). These mechanisms likely explain

the close association between the TG/HDL-C ratio and

hyperuricemia. Moreover, the waist-to-height ratio (WHtR), a

common measure of obesity, also holds predictive significance for

hyperuricemia risk when considered alone (38–41). This is likely

because WC is a typical indicator of visceral obesity, and WHtR

accounts for height, enhancing its accuracy as a measure of visceral

obesity (42). The predictive power of WHtR for hyperuricemia may

be due to the fact that visceral fat accumulation can lead to insulin

resistance, which affects renal tubules and reduces uric acid

excretion (43). In conclusion, CMI, as a novel obesity metric

combining the TG/HDL-C ratio and WHtR, may hold greater

significance in the management of hyperuricemia.

Our stratified analyses also revealed important variations in the

strength of the CMI-hyperuricemia association across population

subgroups. The stronger association observed in females compared

to males may reflect sex-specific differences in uric acid metabolism,

including estrogen’s uricosuric effect and sex-specific fat

distribution patterns (44, 45). Women typically have lower

baseline uric acid levels, which may make CMI-related metabolic

changes more impactful on their relative hyperuricemia risk. The

weaker association in Mexican Americans compared to Non-

Hispanic Whites which suggests potential ethnic differences in

genetic predisposition to hyperuricemia or in dietary patterns

affecting uric acid metabolism (46–49). The attenuated

association in individuals with higher BMI and those with

diabetes or hypertension indicates that once these conditions are

established, they may independently influence uric acid levels,

partially masking the effect of CMI. In patients with diabetes, for

instance, glycosuria may enhance uric acid excretion, potentially

counteracting the effects of metabolic dysfunction measured by

CMI (50, 51). Similarly, in hypertensive patients, altered renal
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hemodynamics and medication effects may modify uric acid

handling independently of CMI (52–54). These findings highlight

the importance of considering individual patient characteristics

when using CMI for hyperuricemia risk assessment in clinical

practice and suggest that CMI may be particularly valuable as a

s c r e en ing t oo l i n i nd i v i dua l s w i thou t e s t ab l i s h ed

metabolic comorbidities.

However, more importantly, we found a nonlinear relationship

between CMI and hyperuricemia. The survey-weighted analysis

showed that the risk of hyperuricemia increased more rapidly at

lower CMI levels and more slowly at higher CMI levels, with an

inflection point corresponding to a CMI Z-score of 0.11 and an

original CMI value of 0.18. This inflection point coincides with the

upper boundary of our second population-based tertile, providing

statistical validation for this threshold as a clinically meaningful

demarcation. From a clinical perspective, this inflection point

distinguishes between distinct metabolic phenotypes. CMI values

below 0.18 typically represent individuals with relatively favorable

metabolic profiles, including better visceral fat distribution and

healthier lipid parameters. Based on the components of CMI

calculation, this range generally corresponds to WHtR below 0.5-

0.55 (indicating lower visceral adiposity) and triglyceride-to-HDL-

C ratios below 3-4 (suggesting better insulin sensitivity). Below this

threshold, the adjusted odds ratio was 3.57 (95% CI: 2.99, 4.25),

indicating a steep increase in hyperuricemia risk with rising CMI.

Conversely, CMI values exceeding 0.18 generally reflect more

adverse metabolic parameters, including greater visceral adiposity

and more pronounced dyslipidemia, often indicating underlying

insulin resistance. Above this threshold, the hyperuricemia risk

continues to increase but at a more modest rate (adjusted OR: 1.30,

95% CI: 1.21, 1.39), suggesting potential physiological

adaptation mechanisms.

Several biological mechanisms may explain this nonlinear

relationship. First, metabolic syndrome progression may play a

role (55). At lower CMI levels, individuals may not yet have

developed severe metabolic dysfunction, making their

physiological systems more sensitive to initial metabolic

perturbations. As CMI increases beyond the 0.18 threshold, the

body may have already transitioned into a state of metabolic

syndrome, potentially activating compensatory mechanisms that

moderate the rate of further increase in hyperuricemia risk. These

adaptations might include altered renal clearance of uric acid or

modified inflammatory pathways. Second, changes in fat

distribution and insulin resistance likely contribute to this

nonlinear pattern (55–57). Individuals with lower CMI values

typically maintain better insulin sensitivity, making their

metabolic systems more responsive to small changes. As CMI

increases beyond the inflection point, established insulin

resistance may render the body less responsive to further

metabolic deterioration. Third, hormonal regulation may play a

significant role. The initial rise in CMI may trigger sharp increases

in leptin levels (stimulating uric acid production) and decreases in

adiponectin (impairing insulin sensitivity). Similarly, elevated

plasma aldosterone concentrations have been shown to exacerbate

hyperuricemia by impairing renal uric acid excretion, particularly in
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hypertensive patients (31). These hormonal changes may be more

pronounced during the transition from metabolically healthy to

unhealthy states, and subsequently plateau, thus contributing to the

observed nonlinear relationship.

These findings highlight the importance of early intervention

and personalized risk assessments to effectively manage

hyperuricemia. The identification of a CMI inflection point at

0.18 provides a potential clinical threshold for risk stratification.

Patients with CMI values below 0.18 are in a zone of rapidly

increasing hyperuricemia risk (OR: 3.57, 95% CI: 2.99, 4.25),

suggesting they may benefit from more intensive monitoring and

earlier lifestyle interventions to prevent further metabolic

deterioration. For individuals with CMI values exceeding 0.18,

who already demonstrate a significant hyperuricemia risk, more

aggressive management strategies combining lifestyle modifications

with consideration of pharmacological interventions may be

warranted, particularly if other risk factors are present. In clinical

practice, CMI calculation is straightforward, requiring only waist

circumference, height, triglyceride, and HDL-C measurements - all

routinely collected parameters. This makes CMI an easily

implementable tool for hyperuricemia risk assessment in primary

care settings. Regular calculation of CMI during routine health

examinations could help identify individuals who would benefit

from uric acid screening and targeted preventive measures, even

before they develop more advanced cardiometabolic complications.

A distinctive aspect of this study is the combination of survey-

weighted analysis and the use of GAMs to explore the nonlinear

relationship between CMI and hyperuricemia. The survey-weighted

approach ensures our findings are representative of the US

population, while GAMs allow for more flexible modeling of

complex relationships by fitting smooth curves to the data (24).

This approach enabled us to detect the rapid increase in

hyperuricemia risk at lower CMI levels and the more gradual

increase at higher levels, providing a nuanced understanding of

how CMI influences hyperuricemia risk. Additionally, our study

employed a comprehensive set of demographic and health-related

variables to adjust for potential confounders, enhancing the

robustness of our findings. The survey-weighted analysis of these

factors included age, sex, race/ethnicity, BMI, smoking status,

drinking status, physical activity, diabetes, hypertension, and

cardiovascular disease status. By using a large, representative

sample from NHANES, we ensured that our results are

generalizable to the broader US population. The combination of

advanced statistical methods and thorough adjustment for

confounders underscores the reliability of our findings and

highlights the importance of considering nonlinear relationships

in epidemiological research.

While our study provides valuable insights into the nonlinear

association between CMI and hyperuricemia, there are several

limitations to consider. Firstly, the cross-sectional design of

NHANES limits our ability to infer causality and prevents us from

examining the temporal sequence between CMI changes and

hyperuricemia development. This limitation is particularly relevant

when interpreting the nonlinear relationship we observed, as we
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cannot determine whether CMI changes precede or follow changes in

uric acid levels. Longitudinal studies with repeated measurements are

needed to confirm the temporal relationship between CMI and

hyperuricemia. Secondly, our analysis relies on self-reported data

for some variables, which may be subject to recall bias and

misclassification, particularly for lifestyle factors such as smoking,

drinking, and physical activity. The potential misclassification of

these important confounders could lead to residual confounding in

our analyses. While missing data could potentially introduce bias if

the MAR assumption is violated, our comprehensive sensitivity

analyses (as presented in Section 3.7) demonstrated that the

association between CMI and hyperuricemia remained highly

robust under various MNAR scenarios, with minimal changes in

the effect estimates. Thirdly, although we adjusted for numerous

confounders, residual confounding due to unmeasured variables

cannot be ruled out, including but not limited to dietary patterns,

medication use (especially uric acid-lowering drugs and diuretics),

and genetic factors that might influence both CMI and uric acid

levels. Additionally, the single measurement of serum uric acid and

anthropometric indices may not fully capture the dynamic nature of

these parameters over time. Lastly, despite the use of survey-weighted

analysis to improve generalizability, our findings may be limited to

the US population, and similar studies in other populations are

warranted to validate our results, particularly given the known

ethnic differences in body composition and metabolic profiles.
5 Conclusion

Based on survey-weighted analysis of NHANES 1999-2018

data, this study highlights the significant role of the CMI as a

predictor of hyperuricemia, emphasizing its potential utility in

clinical practice for identifying individuals at risk. Our findings

revealed a 75% increase in hyperuricemia risk per standard

deviation increase in CMI in the unadjusted model, with a

nonlinear relationship indicating a more dramatic risk increase at

lower CMI levels (OR: 3.57). After adjusting for demographic,

clinical, and lifestyle factors, the association remained robust,

with a 45% increase in hyperuricemia risk per standard deviation

increase in CMI (adjusted OR: 1.45, 95% CI: 1.30–1.62). These

results underscore the importance of early intervention and tailored

risk management strategies.

Future research should prioritize longitudinal studies to

establish causality and validate these findings in diverse

populations beyond the US. Additionally, exploring genetic,

dietary, and environmental influences will provide a more

comprehensive understanding of hyperuricemia’s etiology. For

clinical practice, incorporating CMI as a routine screening tool

for hyperuricemia risk assessment, particularly in individuals with

metabolic syndrome or obesity, could facilitate early identification

and timely interventions, such as lifestyle modifications and dietary

adjustments. These strategies may help mitigate hyperuricemia

progression and reduce the burden of associated metabolic and

cardiovascular diseases.
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Caravaca JM. Anthropometric measures and risk of cardiovascular disease: is there an
opportunity for non-traditional anthropometric assessment? A review. Rev Cardiovasc
Med. (2022) 23:414. doi: 10.31083/j.rcm2312414

23. Commodore-Mensah Y, Agyemang C, Aboagye JA, Echouffo-Tcheugui JB,
Beune E, Smeeth L, et al. Obesity and cardiovascular disease risk among Africans
residing in Europe and Africa: the RODAM study. Obes Res Clin Practice. (2020)
14:151–7. doi: 10.1016/j.orcp.2020.01.007

24. Hastie T, Tibshirani R. Generalized additive models: some applications. J Am
Stat Assoc. (1987) 82:371–86. doi: 10.1080/01621459.1987.10478440

25. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, et al. A
new equation to estimate glomerular filtration rate. Ann Intern Med. (2009) 150:604.
doi: 10.7326/0003-4819-150-9-200905050-00006

26. Wakabayashi I, Daimon T. The “cardiometabolic index” as a new marker
determined by adiposity and blood lipids for discrimination of diabetes mellitus.
Clinica Chimica Acta. (2015) 438:274–8. doi: 10.1016/j.cca.2014.08.042

27. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al.
Discrimination and calibration of clinical prediction models. JAMA. (2017)
318:1377. doi: 10.1001/jama.2017.12126

28. Yan L, Hu X, Wu S, Cui C, Zhao S. Association between the cardiometabolic
index and NAFLD and fibrosis. Sci Rep. (2024) 14:13194. doi: 10.1038/s41598-024-
64034-3

29. Liu Y, Wang W. Sex-specific contribution of lipid accumulation product and
cardiometabolic index in the identification of nonalcoholic fatty liver disease among
Chinese adults. Lipids Health Dis. (2022) 21:8. doi: 10.1186/s12944-021-01617-3

30. Li Y, Yi S, Jiang W, Gong M. Exploring the relationship between different obesity
metabolism indices and hyperuricemia in patients with hypertension and coronary
heart disease. Diabetes Metab Syndr Obes. (2024) 17:3817–32. doi: 10.2147/
DMSO.S491255

31. Song S, Cai X, Hu J, Zhu Q, Shen D, Ma H, et al. Plasma aldosterone
concentrations elevation in hypertensive patients: the dual impact on hyperuricemia
and gout. Front Endocrinol. (2024) 15:1424207. doi: 10.3389/fendo.2024.1424207

32. Han Y, Zhou Z, Zhang Y, Zhao G, Xu B. The association of surrogates of insulin
resistance with hyperuricemia among middle-aged and older individuals: A
population-based nationwide cohort study. Nutrients. (2023) 15:3139. doi: 10.3390/
nu15143139

33. Seifi N, Nosrati M, Koochackpoor G, Aghasizadeh M, Bahari H, Namdar HB,
et al. The association between hyperuricemia and insulin resistance surrogates, dietary-
and lifestyle insulin resistance indices in an Iranian population: MASHAD cohort
study. Nutr J. (2024) 23:5. doi: 10.1186/s12937-023-00904-2

34. Liu XY, Wu QY, Chen ZH, Yan GY, Lu Y, Dai HJ, et al. Elevated triglyceride to
high-density lipoprotein cholesterol (TG/HDL-C) ratio increased risk of
hyperuricemia: a 4-year cohort study in China. Endocrine. (2020) 68:71–80.
doi: 10.1007/s12020-019-02176-5

35. Peng TC, Wang CC, Kao TW, Chan JYH, Yang YH, Chang YW, et al.
Relationship between hyperuricemia and lipid profiles in US adults. BioMed Res Int.
(2015) 2015:1–7. doi: 10.1155/2015/127596

36. Tanaka K, Ogata S, Tanaka H, Omura K, Honda C, Osaka Twin Research Group,
et al. The relationship between body mass index and uric acid: a study on Japanese
adult twins. Environ Health Prev Med. (2015) 20:347–53. doi: 10.1007/s12199-015-
0473-3

37. Kawachi K, Kataoka H, Manabe S, Mochizuki T, Nitta K. Low HDL cholesterol
as a predictor of chronic kidney disease progression: a cross-classification approach and
matched cohort analysis. Heart Vessels. (2019) 34:1440–55. doi: 10.1007/s00380-019-
01375-4
Frontiers in Endocrinology 15
38. Su SY, Lin TH, Liu YH, Wu PY, Huang JC, Su HM, et al. Sex difference in the
associations among obesity-related indices with hyperuricemia in a large Taiwanese
population study. Nutrients. (2023) 15:3419. doi: 10.3390/nu15153419

39. Chen D, Lu C, Chen K, Liu T, Li Y, Shan Z, et al. Association between
anthropometric indices and hyperuricemia: a nationwide study in China. Clin
Rheumatol. (2024) 43:907–20. doi: 10.1007/s10067-024-06884-w

40. Huang ZP, Huang BX, Zhang H, Zhu F, Zhu HL. Waist-to-height ratio is a better
predictor of hyperuricemia than body mass index and waist circumference in chinese.
Ann Nutr Metab. (2019) 75:187–94. doi: 10.1159/000504282

41. Liu Z, Zhou Q, Tang Y, Li J, Chen Q, Yang H, et al. Sex-specific differences in the
associations between adiposity indices and incident hyperuricemia among middle-aged
and older adults: a nationwide longitudinal study. Front Endocrinol. (2024) 15:1336471.
doi: 10.3389/fendo.2024.1336471

42. Louie JCY, Wall-Medrano A. Editorial: Waist-to-height ratio is a simple tool for
assessing central obesity and consequent health risk. Front Nutr. (2023) 10:1277610.
doi: 10.3389/fnut.2023.1277610

43. Dong H, Xu Y, Zhang X, Tian S. Visceral adiposity index is strongly associated
with hyperuricemia independently of metabolic health and obesity phenotypes. Sci Rep.
(2017) 7:8822. doi: 10.1038/s41598-017-09455-z

44. Choi HY, hyung KS, Choi AR, Kim SG, Kim H, Lee JE, et al. Hyperuricemia and
risk of increased arterial stiffness in healthy women based on health screening in
Korean population. PloS One. (2017) 12:e0180406. doi: 10.1371/journal.pone.0180406

45. Huang X, Jiang X, Wang L, Chen L, Wu Y, Gao P, et al. Visceral adipose
accumulation increased the risk of hyperuricemia among middle-aged and elderly
adults: a population-based study. J Transl Med. (2019) 17:341. doi: 10.1186/s12967-
019-2074-1

46. Rule AD, de Andrade M, Matsumoto M, Mosley TH, Kardia S, Turner ST.
Association between SLC2A9 transporter gene variants and uric acid phenotypes in
African American and white families. Rheumatology. (. 2011) 50:871–8. doi: 10.1093/
rheumatology/keq425

47. Im SW, Chae J, Son HY, Cho B, Kim JI, Park JH. A population-specific low-
frequency variant of SLC22A12 (p.W258*) explains nearby genome-wide association
signals for serum uric acid concentrations among Koreans. PloS One. (2020) 15:
e0231336. doi: 10.1371/journal.pone.0231336

48. Bentley AR, Rotimi CN. Interethnic differences in serum lipids and implications
for cardiometabolic disease risk in african ancestry populations. gh. (2017) 12:141.
doi: 10.1016/j.gheart.2017.01.011

49. Beydoun MA, Canas JA, Fanelli-Kuczmarski MT, Tajuddin SM, Evans MK,
Zonderman AB. Genetic risk scores, sex and dietary factors interact to alter serum uric
acid trajectory among African-American urban adults. Br J Nutr. (2017) 117:686–97.
doi: 10.1017/S0007114517000411

50. Yuan T, Liu S, Dong Y, Fu Y, Tang Y, Zhao W. Effects of dapagliflozin on serum
and urinary uric acid levels in patients with type 2 diabetes: a prospective pilot trial.
Diabetol Metab Syndr. (2020) 12:92. doi: 10.1186/s13098-020-00600-9

51. Ohashi N, Aoki T, Matsuyama T, Ishigaki S, Isobe S, Fujikura T, et al. Sodium-
glucose cotransporter-2 inhibitor immediately decreases serum uric acid levels in type 2
diabetic patients. Med Sci Monit. (2020) 26:e926086. doi: 10.12659/MSM.926086

52. Elsurer R, Afsar B. Serum uric acid and arterial stiffness in hypertensive chronic
kidney disease patients. Blood Press Monit. (2014) 19:271–9. doi: 10.1097/
MBP.0000000000000056

53. Hisatome I, Li P, Miake J, Taufiq F, Mahati E, Maharani N, et al. Uric acid as a
risk factor for chronic kidney disease and cardiovascular diseases Japanese guideline on
the management of asymptomatic hyperuricemia ―. Circ J. (2021) 85:130–8.
doi: 10.1253/circj.CJ-20-0406

54. Uchida S, Takahashi M, Sugawara M, Saito T, Nakai K, Fujita M, et al. Effects of
the N/L-type calcium channel blocker cilnidipine on nephropathy and uric acid
metabolism in hypertensive patients with chronic kidney disease (J-CIRCLE study). J
Clin Hypertension. (2014) 16:746–53. doi: 10.1111/jch.12412

55. Moriyama K. Associations between the triglyceride to high-density lipoprotein
cholesterol ratio and metabolic syndrome, insulin resistance, and lifestyle habits in
healthy Japanese. Metab Syndrome Related Disord. (2020) 18:260–6. doi: 10.1089/
met.2019.0123

56. Xu Y, Dong H, Zhang B, Zhang J, Ma Q, Sun H. Association between
dyslipidaemia and the risk of hyperuricaemia: a six-year longitudinal cohort study of
elderly individuals in China. Ann Med. (2022) 54:2401–9. doi: 10.1080/
07853890.2022.2118368

57. McCormick N, O’Connor MJ, Yokose C, Merriman TR, Mount DB, Leong A,
et al. Assessing the causal relationships between insulin resistance and hyperuricemia
and gout using bidirectional mendelian randomization. Arthritis Rheumatol. (2021)
73:2096–104. doi: 10.1002/art.41779
frontiersin.org

https://doi.org/10.1016/j.scitotenv.2018.08.264
https://doi.org/10.2147/DMSO.S449374
https://doi.org/10.2147/DMSO.S449374
https://doi.org/10.3389/fendo.2024.1341828
https://doi.org/10.3389/fendo.2023.1120277
https://doi.org/10.31083/j.rcm2312414
https://doi.org/10.1016/j.orcp.2020.01.007
https://doi.org/10.1080/01621459.1987.10478440
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.1016/j.cca.2014.08.042
https://doi.org/10.1001/jama.2017.12126
https://doi.org/10.1038/s41598-024-64034-3
https://doi.org/10.1038/s41598-024-64034-3
https://doi.org/10.1186/s12944-021-01617-3
https://doi.org/10.2147/DMSO.S491255
https://doi.org/10.2147/DMSO.S491255
https://doi.org/10.3389/fendo.2024.1424207
https://doi.org/10.3390/nu15143139
https://doi.org/10.3390/nu15143139
https://doi.org/10.1186/s12937-023-00904-2
https://doi.org/10.1007/s12020-019-02176-5
https://doi.org/10.1155/2015/127596
https://doi.org/10.1007/s12199-015-0473-3
https://doi.org/10.1007/s12199-015-0473-3
https://doi.org/10.1007/s00380-019-01375-4
https://doi.org/10.1007/s00380-019-01375-4
https://doi.org/10.3390/nu15153419
https://doi.org/10.1007/s10067-024-06884-w
https://doi.org/10.1159/000504282
https://doi.org/10.3389/fendo.2024.1336471
https://doi.org/10.3389/fnut.2023.1277610
https://doi.org/10.1038/s41598-017-09455-z
https://doi.org/10.1371/journal.pone.0180406
https://doi.org/10.1186/s12967-019-2074-1
https://doi.org/10.1186/s12967-019-2074-1
https://doi.org/10.1093/rheumatology/keq425
https://doi.org/10.1093/rheumatology/keq425
https://doi.org/10.1371/journal.pone.0231336
https://doi.org/10.1016/j.gheart.2017.01.011
https://doi.org/10.1017/S0007114517000411
https://doi.org/10.1186/s13098-020-00600-9
https://doi.org/10.12659/MSM.926086
https://doi.org/10.1097/MBP.0000000000000056
https://doi.org/10.1097/MBP.0000000000000056
https://doi.org/10.1253/circj.CJ-20-0406
https://doi.org/10.1111/jch.12412
https://doi.org/10.1089/met.2019.0123
https://doi.org/10.1089/met.2019.0123
https://doi.org/10.1080/07853890.2022.2118368
https://doi.org/10.1080/07853890.2022.2118368
https://doi.org/10.1002/art.41779
https://doi.org/10.3389/fendo.2025.1459946
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Nonlinear association of cardiometabolic index with hyperuricemia: insights from the NHANES 1999-2018 study
	1 Introduction
	2 Methods
	2.1 Study design and participants
	2.2 Demographic characteristics
	2.3 Measurement of CMI
	2.4 Measurements and definition of hyperuricemia
	2.5 Statistical analysis

	3 Results
	3.1 Sample selection and exclusion criteria
	3.2 Baseline demographic characteristics
	3.3 Survey-weighted logistic regression analysis of the relationship between CMI and hyperuricemia
	3.4 Model diagnostics and validation
	3.5 Nonlinear relationship between CMI and hyperuricemia
	3.6 Stratified analysis of the association between CMI and hyperuricemia
	3.7 Sensitivity analysis for the MAR assumption
	3.8 Temporal analysis of the CMI-hyperuricemia relationship

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


