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Introduction: The Constitutive Androstane Receptor (CAR) (NR1I3), a pivotal

member of the xenosensor family, plays a key role in the hepatic detoxification

of xenobiotic and endobiotic chemicals through the induction of the expression of

drug-metabolizing enzymes and transporters. CAR’s involvement extends beyond

detoxification, influencing gluconeogenesis, lipogenesis, bile acid regulation, and

cellular processes such as proliferation, tissue regeneration, and carcinogenesis.

This review explores CAR regulation by various factors, highlighting its role in

mediating metabolic changes induced by environmental contaminants.

Methods: A literature search was conducted to identify all articles on the PubMed

website in which the CAR-contaminant and CAR-hepatic steatosis relationship is

analyzed in both in vitro and in vivo models.

Results: Numerous contaminants, such as perfluorooctanoic acid (PFOA),

Zearalenone mycotoxin, PCB, triazole fungicide propiconazole can activate

hepatic nuclear receptors contributing to the development of steatosis

through increased de novo lipogenesis, decreased fatty acid oxidation,

increased hepatic lipid uptake, and decreased gluconeogenesis. Indirect CAR

activation pathways, particularly involving PFOA, are discussed in the context of

PPARa-independent mechanisms leading to hepatotoxicity, including

hepatocellular hypertrophy and necrosis, and their implications in nonalcoholic

steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD). The

prevalence of NAFLD, a significant component of metabolic syndrome,

underscores the importance of understanding CAR’s role in its pathogenesis.

Conclusions: Experimental and epidemiological data suggest that endocrine

disruptors, especially pesticides, play a significant role in NAFLD’s development

and progression via CAR-regulated pathways. This review advocates for the
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inclusion of modern toxicological risk assessment tools, such as New Approach

Methodologies (NAMs), Adverse Outcome Pathways (AOPs), and Integrated

Approaches to Testing and Assessment (IATA), to elucidate CAR-mediated

effects and enhance regulatory frameworks.
KEYWORDS

PFAS, pesticides, brominated flame retardants, liver diseases, metabolism, adverse
outcome pathways
Introduction

The “xenosensors”, or nuclear receptors for xenobiotics,

pregnane X receptor (PXR) and constitutive androstane receptor

(CAR) were characterized in 1998, then defined as master regulators

of xenobiotic responses through transcriptional regulation of

enzymes and transporters that metabolize drugs and other

xenobiotics (1, 2). PXR and CAR translocate from the cytoplasm

to the nucleus following ligand binding and form a heterodimer

with the retinoid X receptor (RXR)a protein. The nuclear retinoid X

receptor (RXR), due to its ability to form heterodimers with various

other nuclear receptors such as CAR, regulates multiple cellular

signaling pathways and is involved in lipid metabolism, hepatic

glucose metabolism, cholesterol metabolism and bile acid

homeostasis. CAR and PXR pathways have been shown to

regulate CYP2/3A (Cytochrome P450 2 – 3A) expression (3, 4).

The Constitutive Androstane Receptor (CAR) (NR1I3) is among

the leading members of the xenosensor family, and it is involved in

the modulation of physiologic and pathophysiological conditions

through the regulation of cell proliferation, energy homeostasis and

tumor development. CAR canmodulate gluconeogenesis, lipogenesis,

and bile acid regulation, and plays a key role in the hepatic

detoxification of xenobiotic and endobiotic chemicals through the

induction of the expression of drug-metabolizing enzymes as well as

transporters, such as bilirubin and bile acids (5–7). For instance, CAR

regulates UGT1A1 (bilirubin uridine diphosphate glucuronosyl

transferase, bilirubin-UGT) a key enzyme for bilirubin

detoxification, which is downregulated as a result of the binding of

the antagonist ligand to CAR (8). Beyond, clinically used drugs, CAR

xenosensor plays a key role as a mediator of metabolic changes

induced by environmental contaminants (9, 10). CAR is highly

expressed in the liver and small intestine (11, 12) and it

upregulates the expression of key lipogenic genes, such as fatty acid

synthase (Fasn), and enzymes that limit lipid catabolism, such as

carnitine palmitoyl transferase 1A (Cpt1a) (9). Activation of this

receptor leads to lipid accumulation in the liver (10, 13). CAR, thus,

acts at the intersection of detoxification and energy metabolism

(14–16).

CAR has therefore an evident role in the physiology and

pathophysiology of liver. Indeed, this multi-function organ is a
02
main site for xenobiotic toxicokinetics/dynamics, a major actor of

energy metabolism as well as an important component of the

pathological phenotypes making up the metabolic syndrome. It is

recognized that environmental contaminants are important risk

factors for the metabolic syndrome (17), but the possible role of the

interaction CAR-xenobiotics needs more attention.

The use of adverse outcome pathways (AOPs), as an innovative

and established tool, is useful for elucidating associations between

mechanisms and effects and the biological plausibility of

epidemiological data (18–20) AOP links a molecular initiating

event (MIE) to the adverse outcome (AO) via key events (KE), in

a way specified by key event relationships (KER) (21). An AOP for

an individual organism may include disease, developmental or

reproductive alterations, whereas at the population level may

include changes in population structure or local extinction of

a species.

The role of xenosensors in AOP for liver diseases has raised

attention by some authors (22). An AOP on the PXR activation

leading to liver steatosis has recently been presented in the

international AOP repository AOP-Wiki (23).

Therefore, AOP can be used to identify the possible steps to the

development of liver conditions within the “metabolic syndrome”

such as nonalcoholic steatohepatitis (NASH) and nonalcoholic

fatty liver disease (NAFLD), as a result of CAR binding to

environmental contaminants.

In this review, we explore the possible link between CAR-

associated adverse effects in liver and toxicity mechanisms elicited

by specific contaminants.
Literature search

The aim of the literature search was to identify all papers on

PubMed website in which the CAR-contaminant and CAR-hepatic

steatosis relationship is analyzed in both in vitro and in vivomodels.

The literature search was performed using xenosensor, CAR,

steatosis, liver as keywords and, some or all the keywords had to

be present in the title or abstract of the paper. It was consulted AOP

Wiki website to find out what key events had been proposed.
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Constitutive androstane receptor
activation

CAR can be activated by the direct ligand-dependent

mechanism or by the indirect ligand-independent mechanism

that requires dephosphorylation of the receptor by protein

phosphatase 2A (24, 25).

Inactivated CAR resides in the cytoplasm of hepatocytes,

forming a protein complex with cytoplasmic CAR retention

protein (CCRP) and heat shock protein 90 (HSP90). CAR is

dephosphorylated by protein phosphatase 2A (PP2A) and

translocated into the nucleus as a result of activation. Once in the

nucleus, CAR regulates hepatocyte physiology through a complex

network of dynamic pathways, that include;

activating the transcription of genes encoding drug

metabolizing enzymes, such as UGT1A1, CYP2B6 and SULT1A1

as a result of heterodimerization with RXR and binding to the

xenobiotic responsive enhancer module (26); competing with

transcription factors, such as hepatic nuclear factor 4 a(HNF4a)
and forkhead box protein O1 (FOXO1), for binding to the

promoters of their target genes, including glucose-6-phosphatase

(G6Pase) and (phosphoenolpyruvate carboxykinase 1 (PEPCK1),

repressing energy homeostasis (26);

regulating cell proliferation and apoptosis through the

interacting with Yes Associated Protein (YAP) -which is crucial

for CAR-driven hepatocyte proliferation in the mouse (27), the

stress protein growth arrest and DNA damage-inducible gene 45b

(Gad45b), and beta-catenin (26).

Similar to PXR, CAR is highly expressed in liver and acts as

xenobiotic receptor and regulates the transcriptional expression of

many phase I and II enzymes and transporters (15, 28). Upon

activation, CAR dimerizes with RXR, translocates into the nucleus,

and binds to phenobarbital (PB) response element and

transactivates target gene expression. While activation of PXR

induces the expression of cytochrome P450 3A (CYP3As), the

induction of cytochrome P450 2B (CYP2B) enzyme expression

occurs as a result of CAR binding to target genes (29, 30).

Coactivator proteins such as peroxisome proliferator-activated

receptor gamma coactivator 1-alpha (PGC1a), growth arrest and

DNA damage protein beta (GADD45b), and SRCs are involved in

the transcriptional regulation of the CYP2B gene by CAR. Several

studies have shown that nuclear translocation following

defosphorylation of serine 202 is required for CAR activation

(31); moreover, the molecular mechanism leading to nuclear

translocation of CAR is mediated by peroxisome proliferator-

activated receptor (PPAR)-binding protein (32). The regulation of

gluconeogenesis gene expression by CAR involves several

coactivators; in fact, CAR competes with FOXO1 or HNF4a for

binding to insulin response elements in the promoter regions of

G6pase or Pepck (33, 34). Activation of CAR inhibits liver

gluconeogenesis by recruiting for ubiquitination the PGC1a, a
key factor in glucose metabolism (35–38). Overall, upon

activation CAR impinges in other pathways of endocrine and

lipid metabolism, such as RXR, PPAR and insulin. Meanwhile,

the involvement of CAR has been recognized in hepatic disorders,
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such as cholestatic disease (39), tumor promotion in mice (40), as

well as pathways related to the metabolic syndrome (41).

Maglich showed that CAR activation results in a 50% increase

in blood triglyceride levels as a result of decreased expression of

PPARa target genes, a transcriptional regulator of genes

associated with peroxisomal and mitochondrial b-oxidation and

fatty acid transport (42). In vivo studies in mice have shown that

CAR and PPARa compete for binding to PGC1a, a coactivator

required for PPARa-mediated gene transcription (43). In vivo

studies in healthy mice maintained on a standard diet showed

that the antilipogenic action of CAR involves its activation

mediated by 1,4-bis[2-(3,5-dichloropyridylory)] benzene

(TCPOBOP) causing increased hepatic levels of triglycerides

and cholesterol esters in WT mice but not in CAR knockout

mice (13).
CAR and fatty acid metabolism of
liver: physiology and disease

One of the reasons that the mechanism for the CAR-dependent

hepatocyte proliferation remains unclear is the lack of an

appropriate in vitro system(s) to reproduce CAR-dependent cell

proliferation. Unfortunately, there is no cell line reported to express

CAR as strongly as in the liver or primary hepatocytes. Several

studies of CAR-mediated liver tumor formation demonstrate that

replicative DNA synthesis and hepatocyte proliferation are key

events) although precise mechanisms on how CAR activation

induces cell cycle progression of resting mature hepatocytes

remain unclear. Replicative DNA synthesis and hepatocyte

proliferation are also considered key events causing species

differences in CAR-mediated liver tumor formation between

rodents and humans. For example, phenobarbital, a well-known

liver tumor promoter in rodents, activates CAR in mice, rats, and

humans, but induces DNA synthesis and hepatocyte proliferation

only in rodents (40).

In liver and adipose tissues, fatty acid synthesis and the

subsequent generation of triglycerides takes place, a process called

lipogenesis. Gene regulation of cholesterol and fatty acid

biosynthesis is regulated by a group of transcription factors

(SREBPs) (44–46). Lipogenesis is regulated upstream by the

insulin-induced gene (Insig)-1, an endoplasmic reticulum

membrane protein that, upon binding to the SREBP cleavage

activator protein, results in the transport and subsequent

activation of SREBP transcription factors (44, 47). CAR does

impact on SREBP though its cross-talk with PPARs (48). The

main PPARs cross-talking with CAR in lipogenesis is PPARa, a
transcriptional regulator of genes associated with peroxisomal and

mitochondrial b -oxidation and fatty acid transport (26).

Experimental models support the role of CAR in liver steatosis.

The activation of CAR upregulates the expression of patatin-like

phospholipase domain containing protein 3, an emerging marker of

liver steatosis, as well as a panel of genes associated with glycolysis

and lipogenesis, including Fasn, elongation of long-chain fatty acids

family member 6 (Elovl6), stearoyl-CoA desaturase-1(Scd1), and
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glycerol-3-phosphate acyltransferase (Gpat) (13). This action is

supported also by the patatin-like phospholipase domain

containing protein 3 upregulation induced by the human CAR

(hCAR) by 6-(4chlorophenyl)imidazol[2,1-b][1,3] thiazole-5-

carbaldehyde O-(3,4dichlorobenzyl)oxime (CITCO) and

phenobarbital (PB) in human hepatocytes in vitro; this action

appears independent from Liver X Receptor (LXR) (13). On the

other hand, Breuker et al. (49), highlighted that CAR activation by

PB and CITCO and the cross-talk with PXR and RXR upregulated

the lipogenic gene thyroid hormone-responsive spot 14 protein

(THRSP) both in vitro and in vivo. Noticeably, THRSP expression

correlates with lipogenesis and insulin sensitivity (49).
Lifestage and sex doe influence the
effects of CAR modulation

Experiments with drugs in newborn mice showed that a

significant modulation of the sensitive biomarker, Cyp2

expression in liver, can persist up to adulthood upon a single

treatment with phenobarbital, a CAR agonist with short half-life.

On the contrary, the persistence of this effect upon treatment with

another agonist, TCPOBOP, resulted from the half-life of the

molecule in the liver tissue (50).

Comparative studies with Cyp -/- (Cyp3a-null and Cyp2b9/10/

13-null) and CAR -/- mouse models indicated a role for CAR in the

regulation of sexually dimorphic liver CYP profiles. Loss of

constitutive regulation of Cyps, as a result of lack of CAR, results

in changes in the expression and activity of these genes including

significant repression of Cyp2a and Cyp2b members with

corresponding declines in 6a- and16b-testosterone hydroxylase

(51). Another study with TCPOBOP in mice showed that more

than 10% of CAR-sensitive genes in liver are female-specific, genes

were mainly involved in xenobiotic metabolism, inflammation, and

extracellular matrix organization (52).

Meanwhile, the data obtained on CAR in rodents should be

taken with caution in regard of extrapolation to humans: in mouse

hepatocytes CAR induces proliferation via its interaction with YAP

and is critical for liver tumorigenesis induced by PB-like

compounds; on the other hand, this mechanism does not occur

in human hepatocytes (53). Therefore, this CAR-mediated

mechanism of action for liver tumor development in rodents is

likely not relevant to humans. Even though activation of hCAR does

not increase hepatocyte proliferation, rather, a reduced expression

of hCAR appears to be related to a worse prognosis for

hepatocellular carcinoma; in addition, the human liver carcinoma

tissue shows increased DNA methylation in the hCAR promoter

and lower hCAR expression, in comparison with adjacent liver

tissues (26)

This gap in knowledge on the seemingly important- rodent-

human differences, has motivated a shift in research toward a more

comprehensive appreciation of the clinical impact of hCARs. The

activation of mouse CAR inhibits hepatic gluconeogenesis and

lipogenesis under nutritional challenge. In the case of human
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CAR, limited data so far indicate that hCAR activation also

represses hepatic gluconeogenesis, while effects on lipogenesis are

unclear, albeit potentially important for human health and

disease (26).

In vitro studies on human cells of hepatocyte-origin support the

important role of CAR in lipid metabolism in liver.

Overall, the available evidence supports a key role for CAR as a

target of exogenous risk factors for liver disorders such as NASH

and NAFLD. However, the pathways driven by CAR up- or

downregulation in laboratory rodents and humans may not

overlap completely.
Environmental contaminants
leading to disruption of
CAR-regulated pathways

Among nuclear receptors, CAR plays a key role as a mediator of

metabolic changes induced by environmental contaminants. In fact,

available evidence indicate that contaminants such as PFOA,

Zearalenone mycotoxin, polychlorinated biphenyl (PCB), triazole

fungicide propiconazole may activate hepatic nuclear receptors

contributing to the development of steatosis in terms of increased

de novo lipogenesis, decreased fatty acid oxidation, increased

hepatic lipid uptake, and decreased gluconeogenesis. The review

by (54) flagged the importance of hepatic metabolism as a target for

chemically-induced disruption of CAR function; meanwhile, the

review pointed out that the range of toxicants affecting CAR

pathways, their modes of action and the related adverse

phenotypes still awaited more thorough investigations.
Bromuconazole and other pesticides

Bromuconazole is a chiral triazole that is commonly used as a

fungicide for food crops and fruits (55) and is rapidly absorbed

dermally and gastrointestinally; it is then widely distributed to

tissues such as liver, kidney, ovaries, and testes, and is eliminated

by hepatic metabolism (56)

This fungicide can affect the PXR-CAR cross-talk in liver.

Abdelhadya and colleagues (4, 26, 38, 57–59) demonstrated

hepatotoxicity of the fungicide in vivo in rats following oral

ingestion, accompanied by upregulation of PXR/CYP3A1 and

downregulation of CAR/CYP2B1 gene expression. The exposure

to bromuconazole resulted in hepatic oxidative damage, as

evidenced by the significant decrease in superoxide dismutase

(SOD) activities and significant increase in malondialdehyde

(MDA) levels in the liver. The fungicide increased liver enzyme

activities (ALT, AST, ALP and ACP) bilirubin levels, and liver

weight, with hepatocellular vacuolization and hypertrophy. Further

metabolomics and transcriptomics analysis highlighted lipid and

bile acids metabolism as key targets, with an evident

downregulation of PPARg (60). Interestingly, in vitro experiments

on human hepatocyte-derived cell lines, indicate that CAR
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competes with PPARa for the coactivation of PPARg, resulting in a

downregulation of PPAR-regulated pathways (43).

An interesting study investigated a mixture of six pesticides

selected because frequently used for the treatment of apple orchards

in the south of France: the six chemicals differed by chemical

structure and mechanisms of toxicity (boscalid, captan,

chlorpyrifos, thiofanate, thiacloprid, and ziram) and were present

in the mixture at their respective acceptable daily intake levels. The

mixture was administered via feed to WT and CAR-/- male and

female mice for 52 weeks. There was a sex-specific modulation of

effects. CAR-/- males did not show the increase of adiposity and the

perturbation of glucose metabolism markers observed in WTmales:

urinary levels of pesticide metabolites and serum metabolomics

were also unaffected. On the contrary, mortality was higher in

CAR-/- females compared to either exposed WT mice and

unexposed CAR-/- females; the levels of pesticide urinary

metabolites were significantly changed, some increased and others

reduced, compared to similarly exposed WT. While in WT female

several PPARa-associated genes were up-regulated by pesticide

exposure, a significant downregulation was observed in exposed

CAR−/− females. Overall, CAR activation appeared an important

mediator of adverse metabolic effects induced by the pesticide

mixture, with a worsening role in males and a protective role in

females. Unfortunately, the study did not provide indications on

what substance(s) was mainly responsible in the CAR-mediated

effects (61). Interestingly, the sex-specificity of effects was consistent

with the observations by (52) on TCPOBOP-trated mice: however,

in this study CAR activation enhanced liver toxicity in females.

CAR activation is also the initiating event of liver

tumorigenicity in mice exposed to chlorinated pesticides

toxaphene (62) and dieldrin (63): main secondary events

associated with CAR activation were AhR activation (toxaphene),

rising oxidative stress(dieldrin) and PXR activation (both). As

already noted above, data on CAR-mediated liver tumorigenicity

in the mouse should be taken with great caution, as this tumorigenic

pathway is likely not relevant to humans. In the meanwhile, this

evidence should not be dismissed altogether: CAR-activating

chemicals might induce other, non-cancer, adverse phenotypes in

human livers.
Perfluorooctanoic acid and other
perfluoroalkyl substances

Per- and polyfluoroalkyl substances (PFAS) are a class of

synthetic chemicals characterized by their strong carbon-fluorine

bonds, rendering them highly stable and resistant to degradation.

PFAS have been used since the 1940s in various industrial and

consumer applications; hence, PFAS are ubiquitous in

environmental media and food chain, due to their widespread

use, persistence and bioaccumulative nature. PFAS raise

significant health concerns: human exposure through water, food,

and air has led to measurable levels in the blood of nearly the entire

population in developed countries. For instance, Perfluorooctanoic

acid (PFOA) is one of the most abundant PFAS in the environment.
Frontiers in Endocrinology 05
Human exposure to PFOA occurs through drinking water, indoor

dust, and food (64, 65). In addition, PFOA accumulates mainly in

serum and liver (66) and has been detected in umbilical cord blood

and breast milk (67–69).

Most important, PFAS are associated with a variety of adverse

health effects, including altered immune and thyroid function, liver

disease, lipid and insulin dysregulation, kidney disease, adverse

reproductive and developmental outcomes, and cancer (70–72).

The ongoing exposure levels in large groups of the European

population are above the tolerable intake set by the European

Food Safety Authority (73).

Interaction with PPARa is currently recognized as the main

mechanism underlying PFAS toxicity (74, 75). However, several

PFAS, including perfluorooctanoic acid (PFOA) and

perfluorooctane sulfonate (PFOS), can also interact with CAR,

leading to activation and/or modulation CAR pathways (74).

A toxicogenomic scanning using 3 mg/kg bw/day of PFOA

transcript profile in mouse liver evidenced the primary involvement

of PPARa. Nevertheless, PFOA additionally influenced a subset of

genes independent from PPARa, particularly those related to

xenobiotic metabolism, which are targeted by CAR activators

such as phenobarbital and TCPOBOP. Comparing transcript

profiles of PFOA-exposed mice with the profile of CAR-regulated

genes revealed a strong correlation with the subset of genes involved

in xenobiotic metabolism. Furthermore, exposure to PFOA in

PPARa-null mice led to an increase in liver-to-body weights,

indicating effects that are not reliant on PPARa activation (74).

In a research investigating if perfluorocarboxylic acids (PFCAs)

such as PFOA could act as CAR activators, it was found that (20

mg/kg bw/day) PFOA treatment increased mRNA levels of CAR

target genes such as Cyp2b10 in wild-type but not in CAR-null

mice, hence suggesting that PFOA activates CAR (76). This study

also showed that PFOA treatment induced the nuclear translocation

of CAR in mouse livers, a hallmark of CAR activation. The research

concluded that PFOA and other PFCAs are indirect activators of

CAR, functioning through a mechanism distinct from typical direct

activators like phenobarbital. Phenobarbital activates CAR by

inhibiting the epidermal growth factor receptor (EGFR) signaling

pathway and promoting the dephosphorylation of CAR via protein

phosphatase 2A (PP2A). On the other hand, PFOA increased

Cyp2b10 mRNA levels, as sensitive marker of CAR activation,

even when the PP2A pathway was inhibited by okadaic acid;

hence the data indicate that PFOA activates CAR through a

different pathway (76). A bioactivity profiling of 137 nM-300 mM
PFAS using transcription factor activation assays, revealed

moderate efficacy of PFAS in activating the PXR and limited

activation of the CAR and aromatic hydrocarbon receptor AhR

(77). A recent screening of PFAS using the Tox21 approach for

bioactivities on nuclear receptors, cellular stress pathways, and

cytochrome p450 enzymes, revealed that inhibition of CYP2C9

was the most sensitive target (IC50 values of < 1 µM vs > 10 µM for

other targets: molecular docking analysis suggested that PFAS

directly bind to the active sites of CYP2C9 (26). It is noteworthy

that CAR activation leads to CYP2C9 induction (78). Hence, PFOA

and other PFAS might impinge on CAR-regulated genes and
frontiersin.org

https://doi.org/10.3389/fendo.2025.1472563
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


De Battistis et al. 10.3389/fendo.2025.1472563
pathways downstream; the effect might not always be consistent

with CAR activation, as downregulation can also occur. These

observations imply that the action by PFOA (and other PFAS) on

CAR in liver are multifaceted and the crosstalk with PPARa-
dependent pathways and other nuclear receptors should

be considered.

The interaction with CAR by PFAS has significant implications

for the toxicological effects of these chemicals. CAR regulates

various genes that play roles in drug and energy metabolism as

well as in hepatocyte growth and physiology (70, 72). The

interaction with CAR by PFAS will alter the expression of these

genes in terms of amount and/or timing. The hepatotoxic effects of

PFAS have been well-documented. PFOA, for example, has been

shown to induce liver hypertrophy and increase the expression of

genes associated with liver growth and detoxification. Even more

important, CAR is a significant player in regulating hepatic glucose

and lipid metabolism, as it modulates the expression of genes

involved in glucose uptake, utilization, and fatty acid metabolism.

Raised blood cholesterol level is an early changes associated with

PFAS exposure in humans, although the adversity of change is

unclear according to the European Food Safety Authority (75).

Indeed, CAR, as well as PXR, activate Insig-1, an endoplasmic

reticulum (ER) protein involved in sterol-dependent synthesis of

cholesterol (79). It is thus noteworthy that the CAR-inducer

TCPOBOP induces liver steatosis with accumulation of

cholesterol in the hepatocytes in mice (80).

The available evidence suggests a possible role for the CAR-

PFAS interaction in development of chronic liver disorders;

meanwhile, recent studies highlight that the CAR-PFAS should

viewed in the context of crosstalk with other receptors. The major

CAR/PXR target genes, CYP2B6 and CYP3A4, were found to be

significantly upregulated upon PFOA 10 and 100mM exposure in a

comprehensive gene analysis of HepaRG cells. However, PFOA is

unlikely to act as a direct ligand for CAR or PX; it activates the

CAR/PXR signaling pathway in HepaRG cells via an indirect CAR

activation pathway through its dephosphorylation (81). Indirect

CAR activation pathway may be deeply involved in a PPARa-
independent pathway related to the induction of hepatotoxicity, in

terms of peroxisome proliferation, hepatocellular hypertrophy,

necrosis. In addition, PPARa induces the expression of CAR as a

negative regulator of PPARa functions in mouse liver (82);

therefore, PFOA activates the expression of PPARa, which, in
turn, results in the increased expression of CAR. This

upregulation may also be involved in the indirect activation of the

CAR pathway in HepaRG cells (81).
Phthalates

Phthalates are a group of chemicals commonly used as

plasticizers to increase plastics’ flexibility, transparency, durability,

and longevity. They are found in various consumer products,

including toys, food packaging, medical devices, and personal care

products. Their widespread use and the fact that they are not
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chemically bound to the plastic and can; therefore, leak, migrate,

or evaporate make them significant environmental and food

pollutants and a risk to human health (73, 83, 84).

Di(2-ethylhexyl) phthalate (DEHP) is one of the most widely

used phthalates as well as one of the most thoroughly investigated.

It is known for its potential endocrine-disrupting effects, and

humans are exposed to it through various routes, including

ingestion, inhalation, and dermal contact (73, 85). DEHP

exposure leads to upregulation of CAR target genes, including

various cytochrome P450 enzymes such as CYP2B6 and CYP3A4

in human primary hepatocyte cultures (86). While PPARa is

considered a main target of phthalates, experiments on WT and

PPARa -/- mice showed that DEHP elicits a PPARa-independent
regulation of a set of CAR target genes. The CAR-regulated CYPs

are significantly involved in the metabolism of endogenous

hormones and xenobiotics, suggesting that activation of CAR by

DEHP contributes to the disruption of normal hormonal

homeostasis and metabolic processes elicited by DEHP and other

phthalates; among others, the prenatal exposure to DEHP elicits in

post-natal mice a decreased a persistent glycogen storage in

hepatocyte, accompanied by neonatal steeatosis (87). Another

study highlighted the critical role of CAR and PXR in mediating

the endocrine-disrupting effects of phthalates and their metabolites

(88), namely the interaction between DEHP and di-isononyl

phthalate (DiNP), along with their primary monophthalate

metabolites, mono(2-ethylhexyl) phthalate (MEHP) and

monoisononyl phthalate (MiNP), on various human CAR splice

variants (hCAR1, hCAR2, and hCAR3) and PXR. The findings

revealed that DEHP and di-isononyl phthalate (DiNP) are potent

activators of the hCAR2 variant and, to a lesser extent, hPXR.

MEHP and monoisononyl phthalate (MiNP) also exhibited

significant activation of hCAR2 and moderate activation of hPXR,

but only slight activation of hCAR1 and hCAR3 at higher doses.

These results suggested a high specificity and potency of DEHP and

its metabolites for hCAR2. Furthermore, the study demonstrated

that mono-(2-ethylhexyl)phthalate (MEHP) and MiNP upregulate

CAR target genes, such as CYP2B6 and CYP3A4, in primary human

hepatocytes, confirming the functional consequences of receptor

activation (88). The differential receptor activation by phthalates

between human and rodent models underscores the importance of

using human-specific data to assess phthalates’ toxicological

impacts. Li et al. (89) investigated the activation of the CAR by

various phthalates, including DEHP, and elucidated the species-

specific differences in CAR activation. The researchers compared

the effects of 15 commonly used phthalates on CAR activation using

in vitro and in vivo models, including CAR knockout mice and

transgenic human CAR mice. The study showed that DEHP and its

metabolites are potent activators of human CAR and significantly

induce the expression of CAR-regulated genes such as CYP2B6 and

CYP3A4. CAR activation by phthalates leads to upregulation of

enzymes such as CYP2B6 and CYP3A4, which play a critical role in

metabolizing xenobiotics as well as endogenous hormones. This

activation can be linked to liver-derived endocrine disruption,

where excessive and/or untimely metabolism/catabolism of
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hormones lead to hormone deficiencies/imbalances. In addition,

CAR is an important component of the orchestration of lipid, bile

acid and glucose metabolism: hence, CAR activation may be

important to understand and assess the possible role of phthalates

in the predisposition to disorders included in the metabolic

syndrome, such as obesity and chronic liver diseases: in

particular, the altered lipid metabolism can exacerbate the

NAFLD. The evidence assessed in the review also highlighted the

species-specific differences in CAR activation, with human CAR

showing higher sensitivity to phthalates than rodent CAR. Overall,

it is important to understand the role of CAR in mediating the

toxicological effects of phthalates; this can be relevant also for

regulatory action, to understand the full spectrum of effects of

human relevance and their dose-response and to identify predictive

biomarkers of effects. Future studies should also investigate the

combined effects of different phthalates and their potential

synergistic or additive effects through CAR activation at

environmentally-relevant levels, since humans are exposed to

multiple phthalates simultaneously (73). While the reproductive,

e.g. anti-androgenic, activities of phthalates are well-documented,

less is known about their effects on other endocrine-metabolic

pathways mediated through CAR. Further research is needed to

elucidate the mechanisms through which phthalates disrupt thyroid

and other hormone signaling pathways.
Bisphenols

Bisphenols, a group of chemical compounds used extensively in

the manufacture of polycarbonate plastics and epoxy resins, have

attracted considerable attention due to their endocrine-disrupting

properties. The best-known bisphenol, bisphenol A (BPA), along

with its analogs such as bisphenol S (BPS) and bisphenol F (BPF), is

widely used in various consumer products and leads to widespread

human exposure (90–92). Research has increasingly focused on the

molecular mechanisms by which bisphenols exert their effects,

emphasizing their ability to interact with nuclear receptors,

including CAR. Yoshihara et al. (93) investigated the metabolic

activation of BPA by the S9 fraction of rat liver and its effects on

estrogenic activity. While the study focused primarily on the

metabolic activation of BPA and its estrogenic effects, it also

provides important insights into how such processes may be

related to the activation of nuclear receptors, including CAR. The

results emphasized the importance of considering metabolic

activation, hence the role of “xenosensors” PXR and CAR, when

evaluating the endocrine-disrupting potential of BPA and other

bisphenols. On the other hand. BPA does not activate the PXR in

vitro to any significant extent (94)

Liu et al. (95) investigated the receptor binding affinities of

bisphenol A (BPA) and its next-generation analogs, including BPAF

(bisphenol AF), BPAP (bisphenol AP), BPB (bisphenol B), BPC

(bisphenol C), BPE (bisphenol E), BPF (bisphenol F),

BPM (bisphenol M), BPP (bisphenol P), BPS (bisphenol S) and

BPZ (bisphenol Z) for various human nuclear receptors, 21

receptors including CAR, using competitive binding assays. The
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results showed that BPA and several next-generation bisphenols

have a high binding affinity for CAR. In particular, BPAF and BPB

were found to be highly active towards CAR with IC50 values of

5.53 nM and 6.78 nM, respectively, indicating a high potential for

CAR activation. BPA also showed significant binding to CAR with

an IC50 value of 10.1 nM. The strong binding of BPA, BPAF and

BPB to CAR suggests that these chemicals can induce the

expression of metabolizing enzymes such as CYP2B6 and

CYP3A4, as well as modify pathways relevant to lipid, bile acids

and glucose metabolism. The findings can be relevant to BP risk

assessment as hot debate is ongoing about their implications in

components of the metabolic syndrome such as NFLD and NASH

(96–98). However, the possible role of a BP-CAR interaction in

NFLD and NASH still awaits to be elucidated.
Polybrominated diphenyl ethers

The Polybrominated diphenyl ethers (PBDE) are a group of 209

congeners widely in use since the early 1970s as flame retardants.

PBDE are strongly lipophilic and bioaccumulate in living organisms

and food chains. In addition, they are also persistent. International

agreements on regulation and use of some PBDEs have been

introduced since 2004. However, due to persistence and

bioaccumulation, dietary exposure still poses a health concern, in

Europe and elsewhere (99).

The EFSA opinion (99) summarizes evidence on the toxicology

of PBDE: CAR features as a main target for PBDE hepatotoxicity.

Following high levels of exposure (micromolar in cell culture),

several isolated PBDE congeners (BDE-47, -99, -153, -209) as well

as technical products (DE-71) can activate CAR/PXR-dependent

gene expression, although PXR is more sensitive than CAR to

PBDEs. Several in vivo (100–102) and in vitro (101, 103, 104)

studies have shown that there is a decrease in circulating

concentrations of estradiol, testosterone, and T4 as a result of

CAR/PXR-dependent expression of biotransformation enzymes

resulting in increased metabolism of steroid and thyroid

hormones. Therefore, CAR activation in liver is one mechanism

leading to indirect endocrine disruption, by increasing hormone

catabolism. Liu et al. (105) have proposed to rank the potency of 49

PBDE congeners for inducing liver effects based on the affinity for

the receptors most sensitive as PBDE targets, namely: AR, RXR-

alpha and LXR-alpha.

Table 1 summarizes the evidence on the environmental

xenobiotics interacting with CAR, their route of exposure and

adverse effects.
CAR-related adverse outcome
pathways: present and perspectives

The use of adverse outcome pathways (AOPs), as an innovative

and established tool, is useful for elucidating associations between

mechanisms and effects and the biological plausibility of

epidemiological data (18–20) AOP links a molecular initiating
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event (MIE) to the adverse outcome (AO) via key events (KE), in a

way specified by key event relationships (KER) (21). An adverse

outcome for an individual organism may include disease,

developmental or reproductive alterations. Adverse outcomes at

the population level may include changes in population structure or

local extinction of a species. This approach could be useful in

identifying possible factors that lead to the development of diseases

such as nonalcoholic NASH and NAFLD as a result of CAR binding

to environmental contaminants.

One potential application of AOP is to highlight how methods

for evaluating MIE and/or early KEs can be reliably used to

demonstrate that a CAR mode of action is operative for a

particular molecule, avoiding the large-scale use of animal testing

to demonstrate each KE in the proposed pathway. The goal is that

the AOP can help the scientific and regulatory community at large

recognize measurable KEs that would indicate that a xenobiotic

produces hepatic effects using AOPs.

Several AOPs have already been formulated in relation to CAR

activation. Specifically, AOP 107 (106) describes the activation of

CAR following chronic exposure by an activating ligand (a

xenobiotic as well as an endogenous compound, such as

bilirubin) by analyzing the sequence of key events (KE) occurring

in rats and mice that results in increased incidence of adenomas and

hepatocellular carcinomas. The molecular initiating event (MIE)

involves the activation of CAR; interestingly, this can occur either

by direct binding (as in the case of TCPOBOP) or through an

indirect ligand-independent mechanism (e.g., with phenobarbital),

yet the downstream sequence of events is the same (however,

lifestage-related differences are described) (50).

The subsequent translocation of CAR protein into the nucleus is

accompanied by dimerization with the RXRa and binding to
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regulatory DNA elements of target genes. Activated CAR then

alters the expression of genes (KE1) related to cell cycle control; in

particular the upregulation of Ki67 and Gadd45b, genes are an

indicator for CAR-driven cell proliferation in rodents, albeit the

expression of these genes is not strictly CAR-dependent.

As a result, a pro-proliferative (KE2) and anti-apoptotic

hepatocyte environment develops in rats and mice. This

proliferative environment can give rise to increased numbers of

spontaneously mutated hepatocytes, which, under continuous CAR

activation, clonally expand into altered pre-neoplastic foci (KE2),

forming adenomas and hepatocellular carcinomas, the adverse

outcome (AO).

AOP 220 (107) describes the sequence of molecular and

cellular events that induce liver cancer (AO) from prolonged

activation of Cyp2E1 (MIE). The liver is the main organ

devoted to xenobiotic metabolism and the series of key events

affecting the production of this AO are oxidative stress (KE1),

hepatocytotoxicity (KE2), and sustained/persistent cell

proliferation (KE3). MIE occurs when Cyp2E1 binds a substrate,

which could be CAR. Binding with CAR can trigger the

subsequent cascade of events Cyp2E1 is subject to uncoupling

which produces oxidative stress (KE1), and mono-oxidation of

substrates produces reactive metabolites. Both reactive oxygen

species and metabolites cause cytotoxicity (KE2). However,

following injury, the liver is able to regenerate itself through

increased cell proliferation (KE3). Under conditions of chronic

activation of Cyp2E1, chronic excessive increase in levels of

reactive oxygen species and cell death, and subsequent

dysregulated cell proliferation, lead to tumor formation (AO).

These AOPs can be used to identify the connection between the

relevant AO (hepatocellular cancer) and a CAR-related mode of
TABLE 1 Environmental xenobiotics interacting with CAR, routes of exposure and adverse effects.

Chemical Route of exposure Gene expression Adverse Effect

Bromuconazole (Fungicide)
(60)

• Dermal
• Ingestion
• Inhalation

• Upregulation of PXR/CYP3A1
• Downregulation of CAR/CYP2B1
gene expression

• decrease in superoxide dismutase (SOD) activities
• significant increase in malondialdehyde (MDA) levels in
the liver
• increased liver enzyme activities (ALT, AST, ALP and
ACP) bilirubin levels
• increase liver weight
• increase hypertrophy

Perfluorooctanoic acid (PFOA)
(74)

• Dermal
• Ingestion
• Inhalation

• Upregulation of Cyp2b10 • increase in liver-to-body weights
• induce liver hypertrophy
• increase the expression of genes associated with liver
growth and detoxification

Bisphenol A and Bisphenol B
(90)

• Dermal
• Ingestion
• Inhalation

• Upregulation of CYP2B6
and CYP3A4

• alteration of blood lipid profile
• increase the oxidant/antioxidant mechanism in the liver

Di(2-ethylhexyl) phthalate (DEHP)
(65)

• Dermal
• Ingestion
• Inhalation

• Upregulation of CYP2B6
and CYP3A4

• anti-androgenic, activities
• lipid accumulation in liver

Polybrominated diphenyl ethers
(PBDE, BDE-47, -99, -153, -209 and
technical product DE-71)
(100)

• Dermal
• Ingestion
• Inhalation

• Upregulation of CYP3A4 • decrease in circulating concentrations of estradiol,
testosterone and T4
The table summarizes the evidence of environmental xenobiotics (fungicides, perfluorooctanoic acid, bisphenols, phthalates, and polybrominated diphenyl ethers) that interact with CAR, their
route of exposure, and adverse effects
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action for a particular molecule, avoiding the large-scale use of

animal tests to demonstrate each KE in the proposed pathway. AOP

can also highlight relevant biomarkers of effect. Last but not least,

the AOPs can be a valuable tool to guide future risk assessments,

where dose-response values for critical early key events, e.g.,

NOAEL (no observed adverse effect level) or BMDL (Benchmark

Dose Lower Limit), can be useful endpoints.

Unfortunately, notwithstanding the ever increasing evidence in

the last decades of the major role of CAR in altered lipid

homeostasis (9, 108) no AOP exists till now that recapitulates

events triggered by CAR activation in relation to chronic

metabolic diseases. Also, no AOP deals with adverse events

following MIE different from CAR “activation, such as CAR

activity modulation related to the cross-talk with other nuclear

receptors, first of all PXR.
Crosstalk between PXR and CAR

There is an established crosstalk between the two xenobiotic

receptors PXR and CAR, in fact several xenobiotics eg., PBDE

(EFSA CONTAM 2024), as well as drugs and steroid-like ligands

are dual activators of PXR and CAR. Indeed, the model CAR

activators TCPOBOP, phenobarbital and phenytoin can activate

PXR as well (109). PXR and CAR share binding sites in the

promoter regions of xenobiotic enzyme and transporter genes, so

the functions may overlap; this redundancy could be a possible

mechanism strengthening the fail-safe of xenobiotic detoxification.

Both PXR and CAR are able to inhibit gluconeogenesis because they

share binding to the transcription factor FoxO1, thus resulting in

inhibition of binding to the insulin response element, (33).

However, the xenosensors such as CAR, PXR, PPARs regulate

the expression of similar groups of genes involved in energy

metabolism and bile acid homeostasis, but not in the same way;

this suggests a regulatory role for several co-activators or co-

repressors, which need to be further studied (110). These co-

activators/co-repressors can be relevant to the fine-tuning of the

specific involvement of each xenosensor in pathophysiology and

toxicology. Although the physiological functions of PXR and CAR

have been elucidated, the endogenous ligands, agonists or

antagonists, remain to be fully defined, especially for CAR, and

many of the effects caused by the activation of these receptors on

hepatic pathophysiology have yet to be validated in humans.

To date, the most important challenge is to identify endogenous

CAR ligands and the mechanisms involved in altering liver function in

order to identify potential biomarkers and therapies in liver disease.

CAR activation causes increased expression of PPARg and

sterol regulatory element binding protein-1c (SREBP-1c) (9, 111).

Expression of SREBP-1c results in up-regulation of lipogenic

enzymes essential for de novo lipogenesis leading to increased de

novo synthesis and lipid accumulation within hepatocytes (112–

114). If the CAR agonist is not removed, lipid accumulation can

result in the formation of micro- and macrovesical fat droplets

within hepatocytes and cause fatty liver leading to the onset of

hepatic steatosis (112–114).
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Nonalcoholic fatty liver disease has become the most common

cause of chronic liver disease and has an estimated prevalence of

20%-30% in the general population and 67–75% in the obese

population (115–124). This disease ranges from simple steatosis

to NASH and has been closely associated with obesity, insulin

resistance, diabetes, metabolic syndrome, and hyperlipidemia (117,

118). The precise mechanism responsible for the development of

the NASH phenotype is yet to be elucidated (Sanyal, 2005). The

global prevalence of NAFLD increased by 50.4% from 25.26% in

1990-2006 to 38.00% (33.71-42.49) in 2016-2019 (p<0.001). The

highest prevalence of NAFLD was in Latin America (44.37%,

30.66%-59.00%), then in the Middle East and North Africa

(36.53%, 28.63%-45.22%), South Asia (33.83%, 22.91%-46.79%),

Southeast Asia (33.07%, 18.99%-5.49 07%, 18.99%-51.03%), North

America (31.20%, 25.86%-37.08%), East Asia (29.71%, 25.96%-

33.76%), Asia Pacific 28.02% (24.69%-31.60%), Western Europe

25.10% (20.55%-30.28%) (119, 120).

A strong CAR-mediated up-regulation of the patatin-like

phospholipase domain-containing protein 3 (Pnpla3) was

demonstrated. Pnpla3 is a gene whose polymorphism is

associated with the pathogenesis of NAFLD development. This

observation was confirmed in human hepatocytes treated with the

antiepileptic drug and CAR activator, phenobarbital and in

immortalized human hepatocytes treated with CITCO. The

molecular mechanisms controlling Pnpla3gene expression show

that CAR does not act by a direct regulation of Pnpla3

transcription or via the LXR but may rather involve the

transcription factor Carbohydrate Responsive Element-binding

protein. These data support the biological plausibility of the

observed associations between exposures to certain environmental

contaminants, and lipid associated metabolic diseases (13, 125).

Metabolic derangements associated with NAFLD such as obesity

and diabetes are known to have a strong underlying genetic

component. Moreover, familial clustering of steatosis, NASH and

cryptogenic cirrhosis has been reported, suggesting that genetic

factors may contribute to the development of NAFLD (116, 126,

127). However, neither genetics nor the diffusion of “western” dietary

styles can explain, alone, the rising global incidence of metabolic

syndrome, including NAFLD and NASH: the involvement of

environmental chemicals impinging in a number of pathways, the

“metabolic disruptors”, is increasingly supported by human and

experimental evidence (17). CAR definitely deserves its place

among the targets of metabolic disruptors.
Conclusions

This review is the first one, to our best knowledge, specifically

addressing the role of CAR as a target of environmental xenobiotics.

One main gap in order to elucidate such role, is the lack of robust

mechanistic assays. Recently, Ozcagli et al. (128) proposed three in

vitro assay test methods capable of assessing the MIE of hPPARa
and hPPARg transactivation (luciferase-based receptor

transactivation assay methods using HG5LN GAL4-PPAR

reporter cell lines) to altered adiposity (hMSC primary cell assay
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method). A similar approach could be developed for CAR ligands in

the future.

From this understanding, it is possible to elucidate and support

the development of appropriate and more relevant in vitro assay

methods for humans to support regulatory applications in chemical

risk assessment of adverse outcomes in obesity/metabolic disorders

and to facilitate progress toward the development of testing

guidelines and IATA.

The increasing knowledge show that the multi-faceted CAR

functions extend well beyond the -however important- xenobiotic

metabolizing pathways. Indeed, CAR is a key regulator of lipid,

including cholesterol, and glucose homeostasis. The available

evidence support CAR as a relevant of metabolism-disrupting

contaminants that are plausibly associated with components of

the “metabolic syndrome”, such as for example NAFLD and NASH.

In the meanwhile, the available evidence highlights a number of

recommendations for research and risk assessment in order to

respond to priority data gaps
Fron
- identify the full range of adverse health outcomes where CAR

plays a pivotal role

- the role of sex and lifestage in the role of CAR

in pathophysiology

- attention is focused mostly on CAR activation: is there a role

for CAR downregulation

- more AOP dealing with CAR interaction in a formalized and

quality-controlled way, with special attention to

metabolic disruption

- identify the chemicals that recognize CAR as a highly

sensitive target, and methods to screen chemicals for

CAR interaction in a reliable, consistent way identify the

most suitable biomarkers of effects in order to link exposure

to metabolic disruptors, CAR-mediated mechanisms and

surveillance of public health.
We recognize that the lack of a systematic literature search is a

limitation of the present paper. Hence, we strongly recommend that

a systematic literature search be conducted in order to fill the data

gaps regarding the role of CAR and links to contaminants. A further

limitation is the very inadequate evidence on potential target tissues
tiers in Endocrinology 10
other than the liver. Indeed, this limitation is highlighted in the

above recommendations for further research.

The identification and assessment of metabolic disruptors is a

major ongoing challenge for the whole risk assessment community

(129). Strong evidence points to CAR as an important target to be

considering in testing strategies and AOP development.
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