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flexible HbA1c trajectories
using nonhomogeneous
Poisson processes
Di Cui1, Haiyan Xu1*, Xiuju Fu1, Stefan Ma2 and Yong Mong Bee3

1Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research
(ASTAR), Singapore, Singapore, 2Public Health Group, Ministry of Health Singapore, Singapore,
Singapore, 3Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
Background: Many clinical trials yielded inconsistent results regarding the effect

of intensive glycated hemoglobin control on cardiovascular diseases in type 2

diabetes. We identified distinct HbA1c trajectories and their association with the

recurrent hospitalization of heart failures (HHF) for patients with type 2 diabetes

starting from the date of diabetes diagnosis.

Methods: In this study, we included 194,258 patients who entered the SingHealth

Diabetes Registry from 2013 to 2020. Their diagnoses of type 2 diabetes spanned

the years 1960-2020, encompassing HbA1c measurements, records of HHF, and

other cardiovascular complications. Latent class growth models (LCGM) with

splines were used to extract the subgroups with distinct HbA1c trajectories. The

association between HbA1c trajectories and the recurrent risk of HHF was

investigated by nonhomogeneous Poisson processes (NHPP).

Results: Eight distinct HbA1c trajectories were identified as follows: low stable

(LowS, 22.2%), moderate low ascending (ModLowA, 12.7%), moderate high

ascending (ModHighA, 11.5%), moderate low descending (ModLowD, 17.2%),

moderate high descending (ModHighD, 10.1%), moderate high volatility

(ModHighV, 10.1%), high with a sharp decline (HighSD, 8.0%), and high volatility

(HighV, 10.2%). Using the Class LowS as a reference, the hazard ratios for recurrent

HHF for the other classes are as follows: 0.79 for ModLowA, 1.30 for ModHighA, 1.17

for ModLowD, 1.89 for ModHighD, 1.94 for ModHighV, 1.25 for HighSD, and 2.88 for

HighV. Considering recurrent HHFs, our NHPP model demonstrated predictive

capability for type 2 diabetes patients’ future HHF events.

Conclusions: Low baseline HbA1c levels are associated with a lower risk of

recurrent HHF, while poor glycemic control significantly increases this risk. Our

application of LCGM with splines effectively captures flexible, long-term HbA1c
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trajectories, while the innovative use of the NHPP model allows for precise

modeling of HHF recurrence risk. This approach provides a foundation for

personalized risk predictions and future HF management by incorporating

dynamically updated risk factors.
KEYWORDS
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1 Introduction

Individuals living with type 2 diabetes mellitus are widely

considered to face an increased risk of heart failure (1, 2), a critical

concern in healthcare. Type 2 diabetes is characterized by abnormal

glucose homeostasis (3), with the degree of hyperglycemia typically

measured using glycated hemoglobin (HbA1c), a marker associated

with the risk of cardiovascular events (4, 5). Common oral

antidiabetic medication such as SGLT2 inhibitors (SGLT2i) and

sulfonylureas (SULP) have been observed to exert both positive and

negative effects on reducing the risk of heart failure (6, 7),

respectively, thereby introducing potential interference in the study

of the relationship between HbA1c levels and heart failure risk.

Many clinical trials have yielded inconsistent results regarding

the effect of intensive glycated hemoglobin control on

cardiovascular diseases in type 2 diabetes (8–11). For example, a

meta-analysis of prospective studies (8) found that chronic

hyperglycemia is associated with an increased risk for

cardiovascular outcomes, whereas a separate secondary analysis of

14,656 patients with type 2 diabetes (10) identified a U-shaped

relationship with nadir around 7%. In light of these discrepancies,

recent research highlights the necessity for individualized medical

treatment of type 2 diabetes to account for the heterogeneity within

the patient population (12, 13). Furthermore, it is essential to

recognize the significance of HbA1c variability as a risk factor for

cardiovascular complications (14, 15).

In addressing these challenges, latent class growth model (LCGM)

is an efficient tool that enables the simultaneously identifying the

subgroups of patients with distinct HbA1c trajectories and capturing

HbA1c’s variation over time. By stratifying the population into

homogeneous subgroups and considering the repeated measurements

of HbA1c, the model enhances the predictive power for individual risk

assessment and intervention (16, 17). Previous research has classified

patients using LCGM (18–20), considering fixed-time HbA1c

measurements (21, 22).

The prevailing approach in modeling HbA1c trends relies on

parametric forms in most existing studies. For example (23),

considered linear trends, while our prior research (24) employed a
02
logarithmic function, which demonstrated optimality among several

candidate parametric models. In contrast, a nonparametric model

exhibits flexibility in capturing HbA1c trajectories, offering a more

accurate representation of real-world variations. Notably, our current

study expands upon our previous work by incorporating patients

diagnosed with type 2 diabetes before the initiation of HbA1c records,

extending the diagnosis year from 2013 to 1960. This expansion

enriches our cohort, yielding a more comprehensive cohort for study.

Our prior research (24) has proved the predictive ability of

latent classes on hospitalization of heart failure (HHF), which solely

focused on the initial event following type 2 diabetes diagnosis.

However, cardiovascular events usually occur more than once, and

for patients diagnosed early, the first HHF post-diagnosis may be

missing. Therefore, our current work models the recurrent

processes of HHF starting from when covariate information

becomes available, addressing the data limitations and enhancing

our ability to predict future HHFs.

Commencing from the initiation of type 2 diabetes, this study

advances existing research on individualized HbA1c trajectories by

introducing three key innovative contributions. First, employing the

latent class growth model with B-splines trajectories enables

identifying the potential subgroups among HbA1c trajectories

over an extended period – specifically, spanning 62 years from

the date of type 2 diabetes diagnosis – for a significant cohort of

194,258 patients, each with HbA1c measurements recorded from

1998 or the time of type 2 diabetes diagnosis (whichever is later) to

2021 or the time of the patients’ departure from the system

(whichever is earlier). Second, the study delves into the clinical

implications of these subgroups on the risk of recurrent HHF

through a precise model – nonhomogeneous Poisson processes

(NHPP) – that takes into account the recurrent nature of HHF

events with incomplete records spanning from 2007 to 2020. Third,

by incorporating the identified HbA1c subgroups, the NHPP

enables personalized predictions of future heart failure

occurrences. It facilitates the ongoing prediction of HHF risk by

incorporating continuously updated risk factors, including

monitoring the evolution and dynamics of patients’ HbA1c and

other cardiovascular complications recorded from 2013 onwards.
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2 Materials and methods

2.1 Data source and study population

The SingHealth Diabetes Registry (SDR) is a comprehensive

database that collects the electronic medical records of type 2

diabetes patients visiting the healthcare institutions within the

Singapore Health Services (SingHealth), one of three health

clusters in Singapore (25). The SDR contains casemix variables

including demographic factors, diagnosis profile, treatment factors

and anthropometric variables, as well as outcome variables

including laboratory results, clinical episodes, surgical procedures

and vaccinations.

This study exclusively included type 2 diabetes patients who

visited SingHealth from 2013 to 2020, totaling 194,265 subjects

documented in the SDR with one or more HbA1c records. The

diagnoses for these subjects spanned from 1955 to 2020, but only 7

subjects were diagnosed between 1955 and 1959, and they were thus

removed to balance the study population distribution. HbA1c

records are available for the period between 1998 and 2021.

Records of HHF encompass the years 2007 to 2020, while records

of other cardiovascular complications cover the years 2013 to 2020.

To conduct a fair comparison across all subjects, the baseline

of the study is designated as the date of diabetes diagnosis (DDD)

(21, 24, 26) instead of the date of the first HbA1c recorded in the

SDR. If the type 2 diabetes diagnosis year is consistent with the year

of the first HbA1c record, the DDD will be assumed as the date of

the first HbA1c record. For subjects whose years do not match, the

DDD will be set as a date that is uniformly selected from the year of

type 2 diabetes diagnosis. Of these, 87,202 (44.8%) subjects require

random imputation. Dropping these subjects would result in losing

nearly half the information compared to completing the DDD. The

final sample for HbA1c trajectory analysis comprised 194,258

subjects, covering a span of 62 years from 1960 to 2021. And the

sensitivity analysis indicated that the robustness of the

imputation method.
2.2 Statistical methods

The latent class growth model (LCGM) is utilized to cluster the

distinct HbA1c trajectories. Different from traditional parametric

forms, we make no assumptions about the shapes of the latent

trajectory subgroups. Each trajectory is described by an unknown

smooth function, which is approximated using B-splines because of

their good properties both in theoretical and computational aspects

(27). In addition to random errors, a random intercept is also

considered for each subgroup to account for the within-

subject heterogeneity.

The basic functions of B-splines are determined by the degree,

the number and location of interior knots. The cubic spline (degree

of 3) is smooth enough to fit the trajectory. For knot placement, we

consider two strategies as follows (28):
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1. Equidistant: each interval between knots has the

same width.

2. Equipotent: each interval between knots includes the same

number of data points.
The number of interior knots, ranging from 5 to 40, was tested

for each strategy.

The optimal number of latent classes is determined by Bayesian

Information Criterion (BIC) (29) using a 10-fold cross-validation

procedure (30). The process of interactively determining knot

placement and the number of latent classes is described as follows:
1. Set the initial number of classes K0;

2. Calculate BIC values based on different numbers of interior

knots, 5i,   i = 1,⋯, 8, for the two strategies with fixed K0.

Knots placement is the pair with smallest BIC value.

3. Calculate BIC values using a 10-fold cross-validation

procedure for different numbers of classes K = 1,⋯, 10

with fixed knots placement. The number of classes K1 is

the one with smallest BIC value.

4. Repeat steps 2 and 3 until the optimal selection of the

number of knots, knot placement and the number of classes

K1 becomes stable.
Nonhomogeneous Poisson processes (NHPPs) were used to

model the recurrent HHFs, acknowledging that the records of HHF

recurrence for each patient are only available within a specific

period. Define T as the weeks elapsed from DDD and T0 = 0. The

observed HHF sequence for a subject is Ti,   i = 1,   2,  ⋯f g. For
NHPP, the transformed time difference between two successive

events follows a standard exponential distribution, that is,

L(Ti) − L(Ti−1) e Exp(1)
where L(t) =

Z t

0
l(u)du. If l(t) ≡ l, the NHPP (l( · )) becomes

the Homogeneous Poisson process, HPP (l). The nonnegative

function l(t) is called intensity function. Referring to (31), l(t)
adopts the power-law form, that is,

l(tjq , b , g ) = b
h

� �
t
h

� �b−1
exp(xTg ),

where x is the vector of adjusted risk factors, h is the scale

parameter, b is the shape parameter and g is the effect of

covariates. All analyses were conducted using R version 3.6.0.
3 Results

3.1 Model selection

HbA1c values could be roughly classified as low, moderate, and

high levels, leading us to initially set the number of classes at 3. Given

the number of classes, the model with 30 equipotently placed interior

knots yielded the smallest BIC value (Supplementary Table 1). The
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analysis then proceeded with these 30 fixed interior knots while

exploring class numbers from 1 to 10. Through 10-fold cross-

validation, the optimal number of latent classes was identified as 8,

based on the lowest average BIC values obtained from the cross-

validation (Supplementary Table 2). Subsequent recalculations of BIC

values for all configurations (varying numbers of knots and knot

placement strategies) with 8 latent classes confirmed that the model

with 30 equally spaced interior knots continued to exhibit the

minimum BIC value, as detailed in Supplementary Table 3.
3.2 HbA1c trajectories

Figure 1 displays the 8 trajectories approximated by B-splines

with 30 equipotently placed interior knots. Low stable (LowS)

comprising 22.2% of the population, has a baseline HbA1c level

of 6.3% and maintains stable levels thereafter. Moderate low

ascending (ModLowA), comprising 12.7% of the population, has

a baseline HbA1c level of 6.7% and gradually ascends to 7.4% over

25 years. Moderate high ascending (ModHighA), comprising 11.5%

of the population, has a moderately high starting HbA1c level of

7.4% and then shows ascending trend. Moderate low descending

(ModLowD), comprising 17.2% of the population, has a baseline

HbA1c level of 7.7% followed by descending trends over 25 years.

The moderate high descending (ModHighD) trajectory makes up

10.1% of the population. It shows a descending trend with a lower

HbA1c level than the baseline of 9.3%. Moderate high volatility

(ModHighV), comprising 10.1% of the population, begins with a

baseline HbA1c level of 8.6% followed by significant fluctuations.

High with a sharp decline (HighSD) represents 8.0% of the

population. These participants begin with the highest HbA1c

values of 11.6% among all 8 classes, followed by a sharp drop to a
Frontiers in Endocrinology 04
near-normal HbA1c level. The high volatility (HighV) trajectory

accounts for the remaining 10.2% of the population with a baseline

HbA1c level of 10.8%, showcasing significant fluctuations.

Baseline characteristics of subjects by distinct eight HbA1c

trajectories are presented in Table 1. The mean age varies across

these classes, ranging from 50.2 years in the high fluctuation group

to 63.7 years in the low stable group. Classes with elevated baseline

HbA1c levels exhibit a greater proportion of male patients,

spanning from 48.9% to 58.6%. The prevalence of non-Chinese

patients is more pronounced in trajectories with higher HbA1c

levels, ranging from 22.7% to 50.7%.

We further compare our classification to our previous results of

(24), which adopted a logarithmic LGCM based on the subset of the

dataset used in this study. A total of 17,389 subjects were selected, each

with at least 5 HbA1c samples across the span of at least 3 years from

2013 to 2019. Our previous work (24) classified the 17,389 subjects into

five subgroups with: “low stable (35.5%, LowS), moderate low stable

(41.1%, ModLowS), high descending (3.4%, HighD), high with a sharp

decline (10.7%, HighSD) and moderate high descending (9.2%,

ModHighD)”. We mapped the previous subgroups (classification

derived in (24)) to the new subgroups (classification in this study).

Figure 2 shows that subjects in the previous Class LowS are mainly

distributed in the new Class LowS, ModLowA, and ModLowD, all of

which exhibit low HbA1c levels. For the previous Class ModLowS, the

subjects appear evenly in the first four new classes with relatively low

HbA1c levels. The coincidence rate between previous Class HighD and

new Class HighV is up to 88.7%. The two classes both have highest

HbA1c levels in their own population. The previous Class HighSD

starts with a very high HbA1c level followed by a steep decline. New

Class ModHighD and HighSD with high coincidence rates show a

similar sharp downward trend. Subjects in the previous Class

ModHighD are mainly concentrated in the new Class ModHighA,
FIGURE 1

HbA1c trajectories of the 8 classes.
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TABLE 1 The baseline characteristics of the 8 classes.

LowS ModLowA ModhighA ModLowD ModHighD ModHighV HighSD HighV

15,766 (8.1) 15,516 (8.0) 19,849 (10.2)

51.7  ±  13.5 54.1  ±  12.0 50.2  ±  13.4

53.8 55.2 58.6

58.6 67.2 49.3

20.7 18.4 27.2

15.0 9.8 16.5

5.7 4.6 7.0

63.1 74.4 67.6

8.63 (1.95) 11.60 (1.41) 10.81 (2.63)

30.8 (24.3) 26.1 (23.4) 21.3 (20.8)

552.7 (313.5) 423.6 (336.0) 443.3 (319.5)

9.42 4.62 12.09

28.0 22.3 27.4

18.3 13.5 17.3

2.6 1.8 4.3

0.7 0.9 0.6

5.8 6.2 5.8

1.1 1.0 0.9

3.5 2.7 3.3

2.3 1.9 4.0

3.5 2.7 6.3

2.8 1.3 3.6

11.0 5.6 7.5

73.4 80.8 73.7

55.9 56.1 55.7

13.0 10.6 12.0

2.8 4.9 3.9

C
u
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n
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N (%) 43,170 (22.2) 24,702 (12.7) 22,262 (11.5) 33,358 (17.2) 19,635 (10.1)

Mean age at DDD 63.7  ±  12.2 58.3  ±  11.9 55.8  ±  13.0 59.4  ±  12.0 55.1  ±  12.4

Male, % 48.9 50.8 52.2 50.6 52.3

Ethnicity, %

Chinese 77.3 75.1 68.4 72.8 64.4

Malay 10.9 11.7 14.5 13.0 17.3

India 8.1 9.4 12.5 10.2 13.4

Others 3.7 3.8 4.6 4.0 4.9

HbA1c observed at DDD, % 72.8 68.7 69.8 71.6 65.1

Mean HbA1c at diagnosis of type 2 diabetes (SD) 6.27 (0.58) 6.70 (0.68) 7.41 (1.14) 7.73 (0.85) 9.28 (1.48)

Mean HbA1c Frequency (SD) 11.2 (12.4) 23.8 (19.8) 30.8 (24.7) 23.8 (23.1) 30.7 (25.9)

Mean observational period (SD), weeks 219.9 (236.2) 420.2 (300.9) 523.6 (327.5) 410.2 (345.5) 519.2 (355.3)

HHF observed, % 2.93 3.30 6.57 4.98 9.21

Established CVD, % 25.8 23.7 28.4 26.2 29.9

Prior IHD, % 16.9 15.9 18.9 17.2 19.1

Prior PAD, % 1.2 0.9 1.6 1.3 3.0

Prior HS, % 0.9 0.6 0.7 0.7 0.6

Prior IS, % 6.4 5.2 5.8 6.0 7.2

Prior TIA, % 1.6 1.3 1.2 1.2 1.1

Prior AF, % 4.7 3.4 3.8 4.0 4.0

Prior Neuropathy, % 1.0 0.7 1.3 1.3 2.2

Prior DPA, % 1.2 0.8 1.8 1.6 3.4

Prior Heart Failure, % 1.2 1.0 2.0 1.6 2.7

Acarbose, % 0.5 1.8 8.0 3.8 10.6

Metformin, % 30.1 52.1 68.2 66.5 73.5

Sulfonylureas, % 9.3 24.1 48.8 37.9 56.2

DPP-4i, % 2.8 4.3 9.6 6.2 11.4

SGLT2i, % 1.5 1.7 2.5 2.8 3.4
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ModHighD, ModHighV, and HighV that also have high or moderately

high HbA1c levels.
3.3 Association between HbA1c trajectories
and risk of HHF

Cardiovascular complication histories and records are only

available from 2013 to 2020. To accurately obtain the effects of

these complications on the risk of HHF, the earliest date of a patient

having complete covariates is set as the truncated date. For each
Frontiers in Endocrinology 06
patient, if DDD is after the truncated date, the left bound of the

observation window is 0. Otherwise, the left bound is the difference

between the truncated date and DDD. Only the HHF records within

the observation window are used to train the NHPP model. We first

fit the NHPP model based on the eight latent classes distinguished

by HbA1c trends. Figure 3 displays the evolution of the mean

survival probabilities for the first HHFs over time. The survival

probabilities are highest in Class ModLowA. Classes LowS,

ModLowD and HighSD share similar trends in survival

probability, albeit slightly lower than those of Class ModLowA. In

contrast, Classes ModHighA, ModHighD, ModHighV and HighV
FIGURE 2

Heatmap of the coincidence rates.
FIGURE 3

The mean survival probabilities of first HHF for the 8 classes.
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display considerably lower survival probabilities, with Classes

ModHighD and ModHighV almost identical, and Class HighV

exhibiting the lowest probability among them.

We further adjust the NHPP model with risk factors used in our

prior research (24). Table 2 summarizes hazard ratios and their

significance after adjusting for population characteristics (age at

diagnosis, ethnicity, gender, and baseline HbA1c), established

cardiovascular disease (CVD), prior ischemic heart disease (IHD),

prior peripheral arterial disease (PAD), prior ischemic stroke (IS),

prior hemorrhagic stroke (HS), prior transient ischemic attack

(TIA), prior atrial fibrillation (AF), prior neuropathy, prior

diabetic peripheral angiopathy (DPA) and prior heart failure
Frontiers in Endocrinology 07
(HF). Prior complications here are defined as the medical history

before the left bound of the observation window for each patient.

The rate of patients with prior complications for each class is

summarized in Table 1. Class ModLowA shows a significantly lower

risk than Class LowS with hazard ratio HR = 0.79. Class

ModHighA, ModHighD, ModHighV, and HighV exhibit

significantly higher risk, as indicated by the hazard ratios HR =

1.30, 1.89, 1.94, and 2.88 when compared to Class LowS. The three

classes share a common moderately high to high baseline HbA1c

levels. Class HighSD, which has the highest baseline HbA1c level

and decreases rapidly, eventually nearing the lower and stable levels

observed in Class LowS, exhibits a significantly increased risk with

an HR of 1.25. However, this risk is notably lower compared to

classes ModHighD, ModHighV, and HighV. Among all the prior

complications, prior CVD, prior IHD, prior HS, prior IS, prior TIA,

prior AF, prior neuropathy, prior DPA and prior HF exhibit

significant effects on the risk of HHFs. This study identifies four

additional significant risk factors: prior IHD, prior HS, prior IS and

prior TIA compared with our previous work. Both studies obtained

the results that prior CVD and prior HHF have the greatest impact.

Table 1 also summarizes the rate of type 2 diabetes medication

dispensed for each class, taking into account the treatment history

before the left bound of the observation window for each patient.

Given that patients may receive treatment with multiple

medications, the effect of these medications on the risk of HHF is

complicated. Such medications can exhibit negative, neutral or

positive effects (6, 7). Hence, to avoid potentially inaccurate

outcomes, we opted not to directly integrate medication into the

NHPP model.
3.4 Prediction for future HHF

Determining if a patient will develop heart failure within a

specific timeframe is a key focus in clinical studies. To assess the

predictive capability of the adjusted NHPP model, we explore

predicting the risk of HHF in the next six months, one year, and

two years following the date when patients first had complete

covariates as examples. The patients are divided into a training

set and a test set for analysis. Among all 194,258 subjects, only

13,099 have HHF records, accounting for 6.7%. The imbalanced

case-control rate will result in the evaluation metrics not accurately

reflecting the actual classification performance. For example, even if

all patients are predicted to belong to the group of no HHF

occurrence, the false negative rate (FNR) would remain at a low

level. We adopted a down-sampling strategy to balance the case-

control sample distribution. 13,099 subjects are randomly selected

from the population without HHF. The newly sampled dataset

consists of 26,198 patients, evenly split between those with and

without HHF. 80% of subjects from both groups were randomly

selected to comprise the training dataset. A total of 20,958 subjects

were fed into the adjusted NHPP model for parameter estimation.

The remaining 5,240 subjects (20% of the cohort) were labeled as to

whether they had HHF in the next six months, one and two years

after the first date they had complete covariates, respectively. The
TABLE 2 Effect of HbA1c trajectories and other covariates to HHF
recurrence risk based on the NHPP model: hazard ratios and p-values.

Hazard Ratio
(95% CI)

p-value

LowS (Base) 1 –

ModLowA 0.79 (0.6 to 1.0) <0.01*

ModHighA 1.30 (0.5 to 2.1) 0.02*

ModLowD 1.17 (0.7 to 1.8) 0.15

ModHighD 1.89 (1.0 to 2.8) <0.01*

ModHighV 1.94 (1.2 to 2.6) <0.01*

HighSD 1.25 (0.8 to 1.7) <0.01*

HighV 2.88 (2.0 to 3.7) <0.01*

Age at diagnosis 1.02 (1.01 to 1.03) 0.99

Female (Base) 1 –

Male 1.08 (0.8 to 1.4) 0.64

Chinese (Base) 1 –

Malay 1.11 (0.7 to 1.5) 0.41

Indian 1.34 (0.8 to 1.7) 0.02*

Other races 1.17 (0.5 to 1.9) 0.05*

Baseline HbA1c 1.02 (0.9 to 1.1) 0.84

Without baseline prior
complications (Base)

1 –

Established CVD 4.94 (3.5 to 6.4) <0.01*

Prior IHD 1.42 (0.8 to 2.0) 0.03*

Prior PAD 0.99 (0.4, 1.6) 0.91

Prior HS 0.83 (0.2 to 1.5) <0.01*

Prior IS 0.65 (0.3 to 1.0) <0.01*

Prior TIA 0.73 (0.2 to 1.3) <0.01*

Prior AF 2.50 (1.4 to 3.6) <0.01*

Prior Neuropathy 1.70 (0.9 to 2.5) <0.01*

Prior DPA 2.17 (1.1 to 3.3) <0.01*

Prior HHF 5.16 (3.3 to 7.1) <0.01*
*Significant covariates.
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probability of having HHF for each subject in the validation set is

calculated. Patients whose probability exceeds the predetermined

threshold would be classified into the group with HHF.

Figure 4 displays the receiver operating characteristic (ROC)

curve for 6 months, 1 year, and 2 years. AUC is the area under the

ROC curve which measures the overall classification accuracy. The

AUC values for the three intervals are 0.752, 0.754 and 0.705

respectively. An AUC greater than or equal to 0.7 indicates

acceptable discrimination (32). The AUC values at 6 months and

1 year are similar. A lower prediction accuracy is observed for a

two-year prediction period.
4 Discussion

This study is an extension of our previous work (24) which

starts from the DDD to distinguish the latent HbA1c groups for

17,389 subjects and prove the ability of latent classes in predicting

future HHF. Given the extensive cohort of 194,258 patients with

type 2 diabetes and their highly unbalanced HbA1c records, the

present study developed a flexible approach for distinguishing latent

patient groups and tracking the progression of HbA1c levels. As a

result, eight subgroups among type 2 diabetes patients were

identified following similar HbA1c profiles over time. While the

number of identified groups is larger than those in previous studies

of individuals with newly diagnosed diabetes (21, 24, 26), the

fundamental characteristics of these subgroups remained

consistent, including good glycemic control (Class LowS,

ModLowA and ModLowD), moderate glycemic control (Class

ModHighA and ModHighD), poor glycemic control (Class

ModHighV and HighV) and highly improved glycemic control

(Class HighSD). The differences in the number of subgroups can be

partly attributed to variations in data volume and observation

periods. The utilization of natural splines accommodates greater
Frontiers in Endocrinology 08
variation in HbA1c trajectories. Subjects in Class HighD from our

previous study (24) are predominately included in the newly

identified Class HighV (88.7%). In addition to high HbA1c levels,

Class HighV displays considerable fluctuations in glycemic control.

Previous Class HighSD subjects are primarily distributed across the

new Classes ModHighD, ModHighV, HighSD and HighV. While

the previous Class HighSD maintained good control, the extension

of the observation period from 350 weeks to 2,500 weeks in the

current study reveals diverse HbA1c trajectories.

The association between the identified HbA1c trajectories and

the incidence of HHF is reported in this study. Low baseline HbA1c

levels may be associated with low risk of HHF, evident in both Class

LowS and Class ModLowA, despite Class ModLowA having poorer

glycemic control than Class LowS, which was consistent with

previous studies (5, 33). Additionally, the lower rate of prior

complications in Class ModLowA compared to Class LowS may

contribute to its lower associated risk. However, high baseline levels

are not equal to higher risk. Class HighSD has the highest baseline

level followed by a sharp drop in HbA1c, reflecting effective

glycemic treatment, and this trajectory is associated with a

relatively low risk of HHF. In contrast, Class HighV, with high

baseline values and large fluctuations, is associated with the highest

risks of HHF. Class ModHighA begins with a moderate HbA1c

level, and as the trend ascends in the subsequent period, the risk of

HHF becomes greater compared to Class HighSD. Class

ModHighD and Class ModHighA, where the former exhibits

better glycemic control compared to the latter, while the latter

presents a lower baseline level, demonstrate a similar risk for HHF.

Thus, both baseline HbA1c levels and subsequent glycemic control

may contribute to the risk of HHF in type 2 diabetes patients (34).

In addition, while the previous Class HighSD has a relatively high

concordance rate with newly identified Class HighSD (44.5%), it

remains significantly associated with a high risk of HHF. One

possible explanation could be the difference in sample size. The
FIGURE 4

The ROC curve of the adjusted NHPP model for the prediction periods 6 months, 1 year and 2 years.
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previous Class HighSD has a higher rate of patients with prior

complications compared to the new Class HighSD, contributing to

the elevated risk. Another factor to consider is the observation time.

It appears that glycemic control does not have an obvious effect on

the risk of HHF in the early stage, but over time, a notable reduction

in incidence rates is observed.

HbA1c levels are closely associated with the antidiabetic

medication usage. Classes LowS, ModLowA and ModLowD,

characterized by relatively low HbA1c levels, exhibit lower rates

of medication dispensation. Conversely, Classes ModHighD,

ModHighV, HighSD and HighV, with higher baseline HbA1c

levels, show higher medication dispensation rates. Notably, only

Class HighSD demonstrates effective control and a reduced risk of

HHF. This could be attributed to Class HighSD having the highest

rate of SGLT2i and metformin (6), both of which have

demonstrated benefits in reducing HHF risk. In contrast, Class

HighSD has a similar usage rate of DPP-4 inhibitors and

sulfonylureas compared to the other three classes; DPP-4

inhibitors are associated with a neutral effect, while sulfonylureas

are linked to an increased HHF risk (6, 7).

Except for the HbA1c trajectories, established CVD and prior

HF emerge as particularly significant contributors to an increased

HHF incidence rate among the influential factors. Notably, patients

with a history of prior HS, IS and TIA exhibit a lower risk of HHF

compared to those without a history of stroke. These findings align

with the results presented by (24), which also report a decreased risk

of HHF among individuals with prior strokes, despite these factors

not being statistically significant. This may be because large sample

sizes are more likely to magnify the impact of covariates (35, 36).

HF has been proven as a risk factor for stroke, a relationship

extensively explored in studies focusing on preventing strokes in

patients with HF (37). Those patients may receive treatments more

targeted at stroke and HF prevention, which in turn reduces the

incidence of future HHF.

The predictive ability for future events of NHPP is demonstrated.

In this dataset, the status of cardiovascular complications is updated

annually. The covariates incorporated in this model represent their

status at the prediction start time. For the next 6 months or 1 year,

where the status remains unchanged, competitive prediction accuracy

is achieved. However, when predicting events 2 years into the future,

the cardiovascular complications status is more likely to change during

the prediction periods. Since this information is not factored into the

prediction process, results in decreased prediction accuracy. This also

illustrates the effectiveness of the model we proposed, emphasizing the

importance of timely information for accurate predictions. Compared

with our previous study (24), their prediction start time was

determined by a fixed date (DDD). The present study initiates

predictions when covariates information becomes available. It

determines the class of new patients based on historical HbA1c

values and assigns them to the class with the highest probability in

the mixed effect model. The approach eliminates the constraints

imposed by fixed DDD and offers a flexible and clinically relevant

prediction framework.
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This study further underscores the potential clinical significance of

the latent subgroups revealed by LGCM. The subgroups distinguish

patients by glycemic control, laying the foundation for understanding

the underlying causes of variations in glycemic performance.

Individuals within each identified class display corresponding HbA1c

trends that reflect different levels of cardiovascular event risk. For

incoming patients, it facilitates the tracking of HbA1c progression and

enables predictions regarding potential HHFs given the historical

trajectories and other relevant attributes. It allows early identification

of high risk patients. Patients in HighV and ModHighV groups have

the highest risk of recurrent HHF. Clinicians can prioritize these

patients for closer monitoring and early intervention. And it

supports the treatment adjustment based on trajectory trends.

Patients in HighSD group showed an initially high HbA1c level

followed by a rapid drop. While this group exhibited lower long-

term HHF risk, abrupt declines in HbA1c could indicate aggressive

medication adjustments, which might increase the risk of

hypoglycemia. Clinicians may need to monitor medication titration

carefully to avoid adverse effects. And it can also help personalized

follow-up frequency. Patients in ModLowA group had an increased

risk of HHF despite relatively low baseline HbA1c levels. This suggests

a more frequent HbA1c monitoring (38).

There are several limitations of this study. First, the study does

not account for the impact of medications when assessing HHF

risks. When we incorporated the use of SGLT2i into the NHPP

model, it showed a higher risk of HHF for patients using SGLT2i,

which is contrary to known research results. This discrepancy may

result from reverse causation, where patients with HF or those at

higher risk for it are more likely to be prescribed SGLT2i, making it

appear as though SGLT2i are associated with a higher risk of HF. To

address this issue, a new model is required. Further investigation is

needed to explore the relationship between glucose-lowering

medications, HbA1c levels, and HHF risk. Moreover, sparse data

in the later period limits the model’s ability to capture variations of

HbA1c levels between 1,300 weeks and 2,500 weeks. Furthermore,

the records of HHF were not available before 2007. Even though the

window-observed NHPP could model the observed data accurately,

the estimated risk of HHF tends to be lower than the real situation.
5 Conclusion

In conclusion, our findings indicate that individuals with low

baseline HbA1c levels and stable HbA1c trajectories exhibit a

reduced incidence of HHF compared to those with higher

baseline levels. The established framework holds the potential to

identify at-risk patient groups and constantly assess their risk of

HHF using up-to-date medical records, even for patients with a

long history of diabetes and missing HbA1c information. This is

achieved through the innovative use of both LCGM with splines

model and the NHPP model. This capability may empower patients

with self-monitoring and risk warnings while providing clinicians

with the tools to develop more personalized care strategies.
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