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Introduction: The aim of this study was to investigate the relationship between

obesity and the accelerated decline in Total Sleep Time (TST) and its potential

impact on the self-reported diagnoses of diabetes.

Methods: Our study addresses this gap by analyzing trends in a longitudinal

cohort study conducted in China, using data from the China Health and Nutrition

Survey (CHNS). Employing a joint model, inter-individual variability and intra-

individual variability in TST, and its impact on self-reported diagnoses of diabetes

were considered.

Results: Our findings reveal that self-reported diagnoses of diabetes prevalence

in China rose from 1.10% in 2004 to 3.06% in 2015, accompanied by a decrease in

average TST from 8.12 to 7.80. With age, TST decreased by 0.01 per year. Among

coffee or tea consumers, it decreased by 0.03, while alcohol users saw a

decrease of 0.07. The obese group experienced a decrease of 0.05, the

overweight group 0.03, and the normal weight group 0.01. Each 1-hour

decrease in TST was associated with a substantial 3.61-fold increase in self-

reported diagnoses of diabetes risk (95% CI: 2.92-4.44). Specifically, individuals

with a higher baseline TST tend to experience smaller changes over time,

whereas those with a lower baseline TST tend to experience larger changes.

Discussion: For the obese, TST decreases at an accelerated rate which

contributes to the risk of self-reported diagnoses of diabetes. The findings

underscore the role of sleep loss in diabetes risk, with implications for public

policy. Future research and interventions should emphasise the impact of sleep

management, particularly on obesity and metabolic health, to develop more

effective prevention and treatment strategies.
KEYWORDS
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1 Introduction

A lack of sleep has become a common aspect of modern

lifestyles (1). Extensive studies on the link between sleep

deprivation and cardiovascular disease or mortality have classified

sleep deprivation as an epidemic in some countries (2–4).However,

there is still ongoing debate regarding the role of TST in causing

diabetes (5). It has been established that the development of

diabetes mellitus is influenced by a combination of genetic and

environmental factors. Obese individuals and those with a family

history of insulin sensitivity experience more erratic insulin

sensitivity, and it is believed that sleep plays a role in this

interaction. A Dutch study conducted on overweight and obese

adolescents revealed that lower TST was associated with increased

insulin sensitivity, particularly among those with a family history of

non-insulin-dependent diabetes mellitus (6). Some experts argue

that lack of sleep can affect blood sugar levels but may not

necessarily lead to diabetes. Although in some studies, TST was

recorded by some objective measures. Actigraphy has replaced

Polysomnography (PSG) as the dominant tool in the study of

sleep today. For studies with large populations, subjective sleep is

still predominantly used due to the inaccessibility of equipment

(Actigraphy or PSG). The existence of differences between

subjective and objective sleep is then a matter of debate among

scholars (7, 8). Several researches have now concluded that the

objective TST results do not deviate from self-declared TST by more

than half an hour, and the correlation coefficient between the two is

0.70 (9, 10). It appears that the credibility of self-reported remains

acceptable, especially for large cohort studies in medically deprived

areas (2, 11).

Given that early symptoms of diabetes are not readily apparent,

blood testing is currently the only means available to identify and

diagnose the condition. Consequently, early detection and

screening for diabetes pose significant challenges. In

epidemiological surveys, self-reported has emerged as a cost-

effective approach with a high participation rate. Previous studies

have confirmed the consistency between self-reports, drug

utilization patterns, and medical records (12). Self-reported

diagnoses of diabetes refers to patients being identified and

informed of their condition by physicians using established

diabetes diagnosis guidelines. While self-reported diagnoses of

diabetes lacks objective measurement, it serves as a relatively

reliable indicator of regional disparities in diabetes prevalence and

undiagnosed cases, particularly in low- and middle-income areas

where access to blood glucose testing and diagnosis is limited. It is

worth noting that self-reported diagnoses of diabetes may

underestimate the true prevalence due to the high occurrence of

undiagnosed diabetes, but it remains a valid tool (13, 14).

Furthermore, compared to other chronic diseases, self-reported

diagnoses of diabetes exhibits the highest sensitivity and

specificity (kappa: 0.84-0.76) (15). Its utilization in research is
Abbreviations: TST, Total Sleep Time; CHNS, China Health and Nutrition

Survey; PSG, Polysomnograph; BMI, Body Mass Index; PHD, Parental history of

diabetes; Obstime, observation time; NOB, normal or below; HR, Hazard Ratio.
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particularly advantageous in resource-constrained settings of low-

income countries. Despite the limitations imposed by limited clinic

access, self-reported diagnoses of diabetes generally aligns with the

expected trends in the onset of diabetes. Moreover, when accurate

data on the undiagnosed rate is unavailable, self-reported diagnoses

of diabetes can serve as a corroborating indicator.

There is no consensus on the causal relationship between sleep

duration and obesity in academic circles. Indian scholars have

discovered that the risk of obesity or overweight in adults is

associated with a short sleep duration (16). In pre-adolescent

populations, scholars in Hong Kong reach similar conclusions

(17). There is some modest evidence of a bilateral relationship. In

a prospective study on middle-aged adults in the UK, prolonged

sleep was associated with low BMI, while high BMI exacerbated

shortened TST (18). Similarly, a US study found that sleep

variability influenced adolescent obesity and cardiometabolic

health (19). The majority of these studies focused on the average

TST for the population and segmented it into various intervals,

disregarding the differences between and within individuals. TST is

influenced by factors such as gender and ethnicity, as it varies in

levels between individuals (20–22). Within person level can change

dramatically based on time, age, tobacco, alcohol, caffeine

consumption, and weight status.

Sleep deprivation, obesity, and diabetes are significant public

health concerns in today’s society (23). Obesity is widely recognized

by the public as a risk factor for diabetes. It makes it impossible to

ignore obesity and overweight as a factor in the study of the effect of

TST on the survival of diabetes mellitus. So our study focuses on

both the timing of self-reported diagnoses of diabetes and the

possible longitudinal trajectory of change in the relationship

between TST and weight status. To compensate for inefficiencies

or biased results in separate analyses. We utilized a joint model of

longitudinal and survival time outcomes to reveal the relationship.
2 Materials and methods

2.1 Study population

The CHNS is a stratified probability cohort study of the Chinese

population that utilized a multistage, random cluster sampling

strategy. It encompassed urban and rural areas in over 20 provinces

and cities within China and included 15 ethnic groups, such as Man,

Miao, Buyi, Tujia, and others. During the first stage of sampling, 2

cities and 4 counties were chosen in each province. In the second stage,

a random selection of 2 urban and 2 suburban communities was

conducted in each chosen city. In the third stage, a capital community

and three rural villages were randomly selected in each chosen county,

and 20 random families in each community were recruited. The

CHNS commenced in 1989 and was tracked over nine waves in 1991,

1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015, with a survey

population of almost 40,000 individuals overall. More information

about the design, objectives, and survey methodology can be found on

the CNHS homepage (https://www.cpc.unc.edu/projects/china). Since

the earlier questionnaire did not have questions about sleep, our

study was set to cover 2004 to 2015.
frontiersin.org

https://www.cpc.unc.edu/projects/china
https://doi.org/10.3389/fendo.2025.1473892
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yan et al. 10.3389/fendo.2025.1473892
Our study enrolled participants who were between 18 and 65

years of age and completed questionnaires regarding their TST and

diabetes diagnosis. Since the CHNS was conducted at different

times, there were constantly new enrolled attendees and

participants who were lost of follow-up. We conducted a current

prevalence analysis with different time perspectives as cross-

sectional data (as shown in Table 1). This dataset incorporates

both survival data and longitudinal data traits. To compensate for

the inefficiency of separate analyses or biased results, we conducted

joint modeling of the two data types in order to explore their

relevance. As shown in Supplementary Figure S1. We modeled the

longitudinal measurements using linear mixed effects models and

the survival data using the Cox proportional hazards model.

Furthermore, we built a joint model to further analyze the

dependencies and degree of association.
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2.2 Outcomes and covariates

In this study, data on TST were collected from the CHNS

Standard Questionnaire, which included the question, “How many

hours each day do you usually sleep, including daytime and

nighttime?” Participants were instructed to record their answers

in hours.

To assess self-reported diagnoses of diabetes, the CHNS

Standard Questionnaire was utilized, which included the question,

“Has a doctor ever told you that you suffer from diabetes?” Those

who responded affirmatively were classified as diabetic, while those

who responded with unknown or no were classified as non-diabetic.

We calculated Body Mass Index (BMI) by dividing the weight (kg)

by the square of the height (m) based on physical measurements.

We then graded BMI into three classifications according to the
TABLE 1 Prevalence of self-reported diabetes in cross-sectional study.

Cross-sectional data analysis for five waves

2004 (8190) 2006 (8010) 2009 (8255) 2011 (10770) 2015 (10014)

Diabetes (%) 90 (1.10) 104 (1.30) 171 (2.07) 330 (3.06) 337 (3.37)

Age Ʈ 43.06 (12.03)vs.55.44
(7.05)**

44.09 (11.92) vs.53.76
(7.44) **

44.75 (12.15)vs.55.09
(7.27) **

45.62 (12.14)vs.55.69
(7.57)**

46.72 (12.02) vs.56.81
(6.80)**

Han vs. Etnic
mhinority (%)

82 (1.15) vs.8 (0.77) 98 (1.40)vs.6 (0.60)# 153 (2.12) vs.18 (1.72)
313 (3.21)vs.17

(1.67)*
323 (3.61) vs.14

(1.32)**

Male vs. Female (%) 44 (1.11)vs.46 (1.09) 56 (1.45) vs.48 (1.15) 97 (2.44) vs.74 (1.73)#
164 (3.23)

vs.166 (2.91)
177 (3.77)

vs.160 (3.01)#

Urban vs. Rural
residents (%)

49 (1.78) vs.41
(0.75)**

63 (2.38) vs.41 (0.76)**
96 (3.45) vs.75

(1.37) **
180 (4.10) vs.150

(2.35)**
172 (4.50) vs.165

(2.67)**

Education (%)

Low 44 (0.91) 45 (1.06)# 94 (2.02) 165 (3.07) 168 (3.42)*

Middle 22 (1.21) 25 (1.34) 38 (2.13) 82 (3.35) 96 (3.90)

High 7 (2.04) 12 (2.51) 13 (2.64) 40 (2.76) 29 (1.88)

Unknown 17 (1.42) 22 (1.56) 26 (1.95) 43 (2.89) 44 (4.00)

Smoking vs. No (%) 29 (1.07) vs. 61 (1.11) 34 (1.34) vs.70 (1.28) 56 (2.15) vs.115 (2.04)
101 (3.08)

vs.229 (3.06)
100 (3.72)

vs.237 (3.24)

Alcohol vs. No (%)
21 (0.74) vs. 69

(1.29) # 26 (0.96) vs.78 (1.47) # 52 (1.77) vs.119 (2.24)
108 (2.77)

vs.222 (3.23)
100 (3.43)

vs.237 (3.34)

BMI (%)

NOB 34 (0.66)** 38 (0.77)** 58 (1.19) ** 102 (1.74)** 100 (2.07)**

Overweight 35 (1.56) 43 (1.86) 75 (3.01) 142 (4.06) 144 (4.31)

Obesity 17 (2.69) 22 (3.41) 37 (4.76) 86 (6.57) 90 (6.45)

Coffee or tea vs.
No (%)

43 (1.39)
vs.47 (0.92)#

54 (1.92) vs.50
(0.96) **

71 (2.38) vs.100 (1.90)
161 (3.57) vs.169

(2.70) *
130 (4.25) vs.207

(2.98) **

PHD vs. No (%)
55 (11.43) vs.35

(0.45) **
56 (11.31) vs.48

(0.64) **
82 (15.33) vs.89

(1.15) **
155 (19.60) vs.175

(1.75) **
138 (20.72) vs.199

(2.13) **

TST (h)Ʈ
8.12 (1.16)

vs.8.22 (1.56)
8.07 (1.14)

vs.7.96 (1.25)
7.98 (1.13) vs.7.64

(1.22) **
7.83 (1.14) vs.7.60

(1.28)**
7.81 (1.09) vs.7.58

(1.21)**
#<=0.05.
*<=0.01.
**<=0.001.
Ʈ Controls V.S. Cases.
Bold values indicate statistically significant results.
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China obesity standard. BMI ≥ 28.0 was classified as obesity, BMI <

24.00 as normal or below (NOB), and overweight was situated

between the two.

Parental history of diabetes (PHD) was determined by whether

the father or mother had been diagnosed with diabetes at any time

during the study period. Those with a reported diagnosis were

classified as having a positive parental history, while those without a

reported diagnosis were classified as having a negative

parental history.

Covariates included in our study were age, sex (male, female),

level of education (6–9 years for low, 10–12 for medium, and ≥ 13

for high, unknown), ethnicity (Han, other), residence area (urban,

rural), tobacco use (yes or no), caffeine (coffee or tea) and alcohol

consumption (yes or no).
2.3 Statistical analysis

First, we analyzed the prevalence and characteristics of self-

reported diagnoses of diabetes using a cross-sectional study design

across five different survey years. We used means (standard

deviations) for TST and age that conformed to a normal or

approximately normal distribution, and frequencies (percentages)

for categorical variables. We all used the chi-square test to analyze

the prevalence of self-reported diagnoses of diabetes among

participants, considering factors such as gender, ethnicity, age,

residence areas, education, smoking, drinking, coffee or tea, PHD,

BMI, and TST. We employed one-way ANOVA to analyze trends

for TST across survey years and to compare TST between diabetics

and non-diabetics. Additionally, the Cochran-Armitage Test was

used to analyze trends of diabetes prevalence over time.

Given the dynamic nature of the CHNS cohort, which allows for

the continuous enrollment of participants, we have selected

individuals who first joined the study in the years 2004, 2006,

2009, 2011, and 2015 as the subjects for our case-control analysis.

The inclusion criterion was to utilize the baseline records of all

participants upon their initial entry into the study for this analysis.

Participants were excluded if their first record lacked sleep duration

data, if they were outside the age range of 18 to 65, or if there was

inconsistency in their self-reported diabetes status across follow-

up assessments.

Subsequently, we established a cohort study by tracking

participants who were initially undiagnosed with diabetes. We

conducted descriptive statistics to summarize the basic

characteristics of individuals included in the cohort study. (as

shown in Supplementary Table S1)

In our longitudinal data analysis, we incorporated fixed effects

to account for the influence of age and the interplay between BMI

groups and observation time (Obstime) on TST. This approach

allows us to explore how age and BMI categories dynamically

interact with time to affect changes in TST. Furthermore, we

acknowledged the potential impact of lifestyle choices on sleep by

including covariates for habitual consumption of coffee or tea,

alcohol intake, and smoking status. These factors are
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acknowledged for their capacity to significantly alter an

individual’s sleep architecture and were thus controlled for within

the model. To encapsulate the temporal dynamics and individual-

specific fluctuations, Obstime was incorporated as a random effect.

This strategy effectively integrates both systematic changes over

time and the inherent randomness that shapes the individual’s sleep

trajectory. The construction of a mixed linear model for TST

represents our analysis’s objective of offering a comprehensive

and nuanced portrayal of the multifaceted determinants of sleep

patterns.

Level �  1 :  TSTij

= b0j + b1jtimeij � BMIij + b2jAGEij + b3jcoffeeorteaij

+ b4jALCOHOLij + b5jSMOKINDij + eij

Level �  2 :  b0j = g00 + m0j,   b1j=g10

+ m1j,    b2j=g20,  b3j=g30,  b4j=g40,  b5j=g50

The term b1jtimeij � BMIij the Level -1 equation is an

interaction term. It allows us to understand how the effect of time

on TST varies across different BMI groups. For example, in

individuals with different BMI levels, the rate at which TST

changes over time might be distinct. By including this interaction

term, we can capture these complex relationships and provide a

more accurate description of the data. Level -2, the random effects

m0j and m1j are associated with the intercept b0j and the coefficient of
the interaction termb1j respectively. The random intercept m0j

accounts for the individual-specific differences in the baseline

TST. Different individuals may have different starting points of

TST even when all other covariates are the same. The random

coefficient m1j, on the other hand, allows the relationship between

time and TST to vary across individuals within each BMI group.

This takes into account the inherent variability among individuals

and helps us better fit the data and make more accurate predictions.

In order to address inquiries regarding the probability of self-

reported diagnoses of diabetes and the time frame within which said

reports occur as a consequence of variations in TST, we employed

survival analysis, a powerful analytical tool. In our analysis, we

considered a range of factors known to influence outcomes,

including place of residence, ethnicity, gender, educational level,

PHD, and BMI groups. These variables were integrated into a Cox

proportional hazards model, which is an effective method for

estimating the risk. Building upon this foundation, we advanced

our analysis by constructing a joint model. This innovative

approach enabled us to explore the intricate relationship between

fluctuations in TST and the risk of self-reported diagnoses of

diabetes across various BMI statuses. The joint model provides a

more nuanced understanding of how sleep patterns interplay with

other health indicators to affect the risk of self-reported diagnoses

of diabetes.

We conducted statistical modeling and plotting using R4.2.1

with packages compareGroups,lme4, JM and ggplot2. We set

p<=0.05 as the level of statistical significance in the study.
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3 Results

The prevalence of self-reported diagnoses of diabetes showed a

progressive increase from 1.10% in 2004 to 3.06% in 2015 (Z=

-12.56, p<0.01). Meanwhile, the mean TST gradually decreased

from 8.12 hours in 2004 to 7.80 hours in 2015 (F= 144.53, p<0.01).

This decline was observed in both self-reported diabetes patients

and non-diabetic participants, with TST being lower in self-

reported diabetes patients than in non-diabetic participants

(p<0.01) (refer to Figure 1). Prevalence differences were observed

across various factors such as PHD, age, residence, BMI, and coffee

or tea consumption group in almost all cross-sectional analyses.

However, educational level, gender, and alcohol consumption

showed variations in only some waves (as presented in Table 1).

Baseline analysis results indicated that the risk factors for self-

reported diagnoses of diabetes included PHD (OR= 14.2, p<0.001),

overweight/obesity (OR= 2.64/3.98, p<0.001), age (OR= 1.12,

p<0.001), Han ethnicity (OR= 1.98, p=0.002), urban residence

(OR= 2.09, p<0.001), coffee or tea consumption (OR= 1.38,

p=0.003), and a decrease of 1 hour in TST (OR= 1.26, p<0.001)

(as shown in Table 2).

In the longitudinal sub-model, the intercept, age, BMI×

Obstime, coffee or tea consumption, and alcohol consumption

were all found to be statistically significant. TST progressively

decreased with age, coffee or tea consumption, and alcohol

consumption. The interaction between different BMI groups and

time was also statistically significant, suggesting that the trend of

TST over time varied across BMI groups (as shown in Figure 2). The

deceleration was fastest in obese individuals and second fastest in

overweight. As for the random effects section, the correlation

coefficient of -0.65 between intercept and slope indicated a

negative relationship between baseline TST and the magnitude of
Frontiers in Endocrinology 05
change in the outcome variable. Specifically, individuals with a

higher baseline TST tend to experience smaller changes over time,

whereas those with a lower baseline TST tend to experience larger

changes. In the survival sub-model, PHD, BMI groups, residence,

ethnicity, and literacy were all found to be statistically significant (as

shown in Figure 3).

In the longitudinal process, TST decreased on average by 0.01

with each annual increase in age. Furthermore, TST was lower by an

average of 0.03 in the group consuming coffee or tea compared to

the non-consuming group, and by 0.07 in the alcohol-consuming

group compared to the non-alcohol group. Among the BMI groups,

TST decreased on average by 0.05 in the obese group with each

follow-up visit, by 0.03 in the overweight group, and by 0.01 in the

NOB group. In the event process, the Hazard Ratio (HR) for self-

reported diagnoses of diabetes was 1.84 (95% CI: 1.40-2.41) in the

overweight group and 2.81 (95% CI: 2.07-3.80) in the obese group

compared to the normal and underweight group. The HR was 1.99

(95% CI: 1.18-3.34) for secondary education and 2.15 (95% CI:

1.31-3.53) for lower education compared to tertiary education.

Urban residents had a HR and 95% CI for self-reported diagnoses

of diabetes of 0.65 (0.52-0.83) compared to rural residents, and 0.46

(0.27-0.78) for ethnic minorities compared to Han Chinese. The

relative HR for the PHD group compared to the non-PHD group

was 9.95 (95% CI: 7.88-12.57), and for females compared to males,

it was 0.87 (0.69-1.10). The joint model with diabetic self-reports

revealed an association coefficient of -1.28 (-1.49 – 1.07) and a 95%

confidence interval. Specifically, each 1-hour decrease in TST was

associated with a substantial 3.61 (2.92-4.44) fold increase in the

risk of self-reported diagnoses of diabetes (see Table 3).
4 Discussion

Our study provides compelling evidence that the average TST is

decreasing while the self-reported rate of diabetes continues to

increase in China between 2004 and 2015. TST was affected by age,

coffee and tea consumption, drinking habits, and obesity level.

PHD, lower education level, heavier obesity, urban dwellers, and

Han Chinese had a higher risk of the disease than the control group.

We specifically analyzed the time-dependent variability of TST

among individuals with diverse BMI states. As the obese state

with-in individual, TST decreases at an accelerated rate. Our

results showed that a 1-hour decrease in TST was associated with

a 3.61-fold increase in the risk of self-reported diagnoses of diabetes.

These findings provide a new vision for diabetes intervention

through sleep manipulation in different populations. They also

highlight the impact of overweight and obesity status on the

temporal relationship between sleep and self-reported diagnoses

of diabetes.

It’s an indisputable fact that modern people are sleeping less

and less. The reduction in TST as individuals age aligns with

previous literature (24). Our study identified an average TST

decrease of 6 minutes per decade. This differs slightly from the

SIESTA data, which suggests a decline of 8–10 minutes per decade.

The discrepancy in measurement methods, with our study using
FIGURE 1

Mean TST for diabetes and non-diabetes in CHNS, 2004-2015.
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self-assessment on an hourly scale and SIESTA employing PSG

measurements on a minute scale, could explain this slight disparity

(25). Caffeine and alcohol consumption habits may lead to an

average reduction in TST by 2 and 4 minutes, respectively. Caffeine

intake prolongs the time taken to fall asleep and reduces the overall

duration of sleep (26, 27). These findings have been consistently

supported in regions where tea or coffee consumption is prevalent

(28, 29). The amount of caffeine consumed and the timing of
Frontiers in Endocrinology 06
consumption play a crucial role in influencing TST (30, 31). Public

awareness regarding the potential negative effects of alcohol on

sleep is often lacking, and alcohol is frequently used as a sleep aid.

However, alcohol actually leads to a decrease in TST during the

latter half of the night and an increase in both the frequency and

duration of awakenings (32). The study conducted in the

Stonington, Massachusetts area, female participants who

consumed alcohol experienced a 19-minute decrease in TST
TABLE 2 A case-control study with initial cohort enrollment.

Controls Cases
OR P.ratio P.overall

N=18463 N=376

Sex 0.1

Female 9655 (52.29%) 180 (47.87%) Ref. Ref.

Male 8808 (47.71%) 196 (52.13%) 1.19 [0.97;1.47] 0.09

Age 41.53 (12.89) 55.43 (7.62) 1.12 [1.11;1.13] <0.001 <0.001

PHD 0.06 (0.23) 0.46 (0.50) 14.2 [11.5;17.6] <0.001 <0.001

BMI <0.001

Normal 10826 (61.27%) 127 (34.79%) Ref. Ref.

Overweight 5171 (29.26%) 160 (43.84%) 2.64 [2.09;3.34] <0.001

Obesity 1673 (9.47%) 78 (21.37%) 3.98 [2.97;5.29] 0

Ethnicity 0.002

Han 16423 (88.95%) 354 (94.15%) 1.98 [1.32;3.15] 0.001

Mhinority 2040 (11.05%) 22 (5.85%) Ref. Ref.

Coffee or tea 0.003

No 12061 (65.33%) 217 (57.71%) Ref. Ref.

Yes 6402 (34.67%) 159 (42.29%) 1.38 [1.12;1.70] 0.002

Education 0.723

High 2140 (11.59%) 42 (11.17%) Ref. Ref.

Low 9636 (52.19%) 187 (49.73%) 0.99 [0.71;1.40] 0.934

Middle 4606 (24.95%) 101 (26.86%) 1.11 [0.78;1.62] 0.556

Unknown 2081 (11.27%) 46 (12.23%) 1.13 [0.74;1.72] 0.583

Alcohol 0.272

NO 12143 (65.77%) 258 (68.62%) Ref. Ref.

YES 6320 (34.23%) 118 (31.38%) 0.88 [0.70;1.09] 0.249

Smoking 0.271

NO 12838 (69.53%) 251 (66.76%) Ref. Ref.

YES 5625 (30.47%) 125 (33.24%) 1.14 [0.91;1.41] 0.248

Residence areas <0.001

Rural 11120 (60.23%) 158 (42.02%) Ref. Ref.

Urban 7343 (39.77%) 218 (57.98%) 2.09 [1.70;2.57] <0.001

TST ƛ 8.01 (1.16) 7.71 (1.42) 1.26 [1.15;1.37] <0.001 <0.001
ƛ Decreasing by 1 unit.
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compared to those in the placebo group, whereas the difference was

not significant among male participants (33). NHIS data from the

United States (2004-2015) confirmed that the prevalence of short

sleep was higher in drinkers than in the non-drinking group (34).

Our research findings are inconsistent with those of Shabana

Masood, as we did not find any evidence that smoking reduces

sleep duration (35). It is possible that the discrepancy arises from

the fact that their study focused solely on adult males and

categorized smoking into three levels.

We identified a parallel relationship between obesity and TST.

Obesity state led to a decline in TST at a rate of half an hour per
Frontiers in Endocrinology 07
decade. Similarly, overweight status resulted in a decrease in sleep of

12 minutes over a 10-year period. Our findings align with Koolhaas

et al.’s longitudinal data analysis, revealing a link between high BMI

and reduced sleep duration over time (18). The trend of TST varied

across different BMI groups, with the obese group showing the most

significant decrease, followed by the overweight group.

In an increasing number of regions and countries, the general

public has been urged not to ignore and underestimate sleep

problems (23, 36). Also, some experiments have been conducted

on sleep interventions and it is believed that sleep manipulation is

feasible. Several studies have shown that it is feasible to prolong
FIGURE 2

TST by the interaction effect between BMI and Observation time.
FIGURE 3

Cox regression forest plot of self-reported diabetes survival data.
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sleep using simple non-pharmacological interventions, including

behavioral interventions and health education (37, 38). The

effectiveness of these interventions has also been demonstrated in

randomized controlled studies. At the same time, some studies have

confirmed that sleep manipulation can change an individual’s food

intake and dietary preferences. These include reduced intake of free

sugars, fats, and carbohydrates and reduced overall appetite and

desire for sweet and savory foods (38, 39).Cognitive-behavioral

therapy with sleep manipulation is more effective than cognitive-

behavioral therapy alone in weight loss in the overweight and obese

population by Logue et al. (40)

In recent years, the intricate relationship among obesity,

reduced sleep duration, and diabetes has emerged as a prominent
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research focus in the field of metabolism. Scholars have been

exploring integrative theoretical models, emphasizing the

bidirectional causal or mediated causal mechanisms among these

factors. Individuals with overweight often report a shortened sleep

duration (41), and this is also corroborated by animal models,

which demonstrate that obesity can lead to insomnia (42). Research

has found that the “Raptin” reveals potential molecular mechanisms

underlying the connection between sleep and obesity, providing

valuable insights into this complex relationship (43). Additionally,

models have been proposed suggesting that obesity acts as a

mediator in the relationship between sleep and diabetes (44).

Recent evidence suggests that sleep duration and diabetes can be

explained by mechanisms such as inflammatory responses, reduced
TABLE 3 Joint model for TST and risk of self-reported diabetes in CHNS.

Linear mixed-effects
sub-model

Longitudinal
Process

Joint Model

Fixed effects Value 95%CI P-value Value 95%CI P-value

Intercept 8.54 8.49-8.59 <0.001 8.56 8.51-8.60 <0.0001

BMI× Observation
time(Obstime)

NOB×
Obstime

-0.02 -0.02–0.01 <0.001 -0.01 -0.02–0.01 <0.0001

Overweight×
Obstime

-0.02 -0.03–0.01 <0.001 -0.02 -0.03–0.02 <0.0001

Obesity×
Obstime

-0.03 -0.05–0.02 <0.001 -0.05 -0.06–0.04 <0.0001

Age -0.01 -0.01–0.01 <0.001 -0.01 -0.01–0.01 <0.001

Coffee or tea -0.03 -0.05–0.00 0.03 -0.03 -0.05–0.00 0.02

Smoking 0.02 -0.01-0.04 0.30 0.01 -0.02-0.04 0.37

Alcohol -0.07 -0.10–0.04 <0.001 -0.07 -0.10–0.04 <0.001

Random effects StdDev Corr StdDev Corr

Intercept 0.51 0.51

Obstime 0.05 -0.65 0.05 -0.65

Residual 1.03 1.03
fro
Survival sub-model

HR 95%CI P-value Event Process HR 95%CI P-value

Gender Female 0.84 0.67-1.05 0.13 0.87 0.69-1.10 0.24

History of parental diabetes Yes 10.17 8.09-12.79 <0.001 9.95 7.88-12.57 <0.0001

Education Low 1.89 1.18-3.03 0.008 2.15 1.31-3.53 0.0025

Middle 1.74 1.06-2.85 0.028 1.99 1.18-3.34 0.0093

Unknown 2.42 1.44-4.07 0.001 2.64 1.53-4.55 0.0005

BMI Overweight 1.97 1.51-2.56 <0.001 1.84 1.40-2.41 <0.0001

Obesity 3.22 2.41-4.30 <0.001 2.81 2.07-3.80 <0.0001

Ethnicity Other 0.45 0.27-0.76 0.003 0.46 0.27-0.78 0.004

Residence areas Rural 0.58 0.46-0.73 <0.001 0.65 0.52-0.83 0.0004

TST 3.61 2.92-4.44 <0.001
Bold values indicate statistically significant results.
The symbol "×" represents the multiplicative interaction term.
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insulin sensitivity, and increased appetite. However, the effect of the

TST (time-dependent variable) and obesity on the temporal

relationship of diabetes mellitus is unclear. While previous

research has adjusted for BMI and obesity indicators when

examining the correlation between TST and diabetes, it may not

fully explain the dynamic fluctuation of TST in relation to weight

status and its impact on diabetes (23). To address this gap, our study

employs a joint model of longitudinal and survival data to

investigate diabetes self-reports in the CHNS. This novel model

incorporates longitudinal TST measurements, obesity grading, and

other relevant factors. The tendency for the higher baseline TST is

likely to be small, and conversely the tendency for the lower baseline

TST to be large. The higher rank of obesity, the faster TST declined

over time, with a 3.6-fold increase in self-reported diagnoses of

diabetes risk for each hour of decrease in TST. Despite the lack of

direct evidence linking extended sleep duration to the prevention

and treatment of diabetes, there are indications that alleviating

sleep deprivation may improve insulin sensitivity (23, 45).

Moreover, as mentioned earlier, sleep manipulation may have a

positive influence on obesity. Therefore, sleep manipulation could

potentially serve as a significant intervention strategy to decrease

diabetes prevalence and alleviate the burden of disease in our

modern society.

In conclusion, our findings indicate suggest a significant

increase in the prevalence of self-reported diagnoses of diabetes

and a significant decrease in TST among Chinese adults over the

past decade. Furthermore, our analysis revealed that the time-

dependent variability of TST among individuals with diverse BMI

states and found that a 1-hour decrease in TST was associated with a

3.61-fold increase in the risk of self-reported diagnoses of diabetes.

For the obese, TST decreases at an accelerated rate, thereby

increasing the risk of self-reported diagnoses of diabetes. These

initiatives provide new ideas to further explore the dynamic causal

relationship and specific mechanisms of the three (obesity, reduced

sleep duration, diabetes). It could also serve as effective policy

measures for diabetes control. Despite studies confirming the

effectiveness of metformin in preventing diabetes in obese people

under the age of 60, the American Diabetes Association now

recommends metformin as a viable option for diabetes prevention

(46). However, it is important to note that this recommendation

complements, rather than replaces, the emphasis on lifestyle

interventions as the cornerstone of diabetes prevention strategies

(47). Sleeping interventions are likely to be included.

Our study has several limitations that need to be acknowledged.

First, the self-reported nature of sleep duration or diabetes in the

survey may have introduced recall bias in the interviews. However,

previous studies have demonstrated the reliability and accuracy of

self-reported measures compared with objective measures.

Additionally, self-reporting remains a cost-effective method with

high participation rates. Second, the study measured and analyzed

TST in hours, potentially overlooking small yet significant

differences. Third, the TST in our study represented the
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combined value of lunch break duration and night sleep duration,

preventing separate consideration of their effects and hindering the

accurate assessment of their relative and independent contributions

to diabetes. The results need to be used with more caution, as there

are also studies showing that napping for more than 30 minutes

may increase the risk of T2DM (48).
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