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Gestational diabetes mellitus (GDM) is one of the most common endocrine-

related complications during pregnancy, and its prevalence has increased over

the past three decades. GDM adversely affects the maternal cardiovascular

system, umbilical–placental blood perfusion, and fetal blood flow. We

conducted a comprehensive literature search and systematically evaluated and

synthesized cardiovascular changes in the mothers, umbilical–placental

circulation, and the progeny following exposure to GDM. Multiple

pathophysiological mechanisms underlying cardiovascular alteration were

investigated, including endothelial dysfunction, insulin resistance, oxidative

stress, ion channel abnormalities, inflammation, angiogenic imbalance, and

epigenetic modifications. These findings provide valuable insights for

developing early intervention strategies and therapeutic approaches to

mitigating cardiovascular risks in both mothers and offspring following

GDM exposure.
KEYWORDS

cardiovascular system, gestational diabetes mellitus, progeny, umbilical-placental
circulation, mother
1 Introduction

Gestational diabetes mellitus (GDM) represents the most prevalent metabolic and

endocrine disease during pregnancy, affecting approximately 20% of pregnant women in

Southeast Asia (1). GDM significantly contributes to increased perinatal morbidity and

elevates the risks of adverse outcomes for both mothers and their offspring. The

developmental origins of cardiovascular diseases have gained increasing recognition,

with numerous studies demonstrating GDM-associated cardiovascular alterations in the
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mothers and offspring (2, 3). The impacts of GDM on the

cardiovascular system and its potential underlying mechanisms

have been extensively investigated through both clinical studies

and experimental research using animal models. The umbilical–

placental circulation, which serves as a crucial link between mother

and fetus under GDM conditions, has emerged as a focal point in

contemporary research. With the rising global prevalence of GDM,

there is a corresponding increase in the risks of GDM-associated

cardiovascular complications in both mothers and offspring (4). It is

of significant scientific and clinical importance to synthesize

existing studies on cardiovascular changes and their underlying

mechanisms in the mothers and offspring exposed to GDM, which

would enhance our understanding of GDM-induced cardiovascular

pathophysiology and potentially identify novel approaches for early

prevention and treatments of these disorders. Drawing upon an

extensive body of literature, this review firstly exhibited the

structural and functional alterations in the cardiovascular system

among the mothers, offspring, and umbilical–placental circulation

following GDM exposure.
2 Changes in the cardiovascular
system after exposure to GDM

2.1 Cardiovascular changes in the mothers

Comprehensive analyses have demonstrated a significant

positive association between GDM and cardiovascular diseases

(CVDs) (2, 5). Pregnant women with GDM have a higher risk of

developing pregnancy-induced hypertension or preeclampsia than

those without GDM (6). Accumulating evidence indicates that

women with a history of GDM have an elevated risk of

developing cardiovascular complications, including coronary

artery disease, atherosclerosis, myocardial infarction, ischemic

stroke, peripheral artery disease, and heart failure later in life (7–

9). These associations will be reviewed in the following sections.

2.1.1 Heart
Women with current or previous GDM have been

demonstrated to exhibit subclinical cardiac dysfunction. Clinical

studies have revealed that women with current or previous GDM

have significant impairments in systolic function and diastolic

function of the left ventricle, characterized by decreased global
Abbreviations: BKCa, large-conductance Ca2+-activated K+ channel; CIMT,

carotid intima-media thickness; CRP, C-reactive protein; CVD, cardiovascular

disease; eNOS, endothelial nitric oxide synthase; GDM, gestational diabetes

mellitus; GLS, global longitudinal strain; GW, gestational week; HUVECs,

human umbilical vein endothelial cells; ICAM-1, intercellular adhesion

molecule-1; IL, interleukin; KATP, ATP-sensitive potassium channel; lncRNAs,

long noncoding RNAs; miRNAs, microRNAs; NADPH, nicotinamide adenine

dinucleotide phosphate; NO, nitric oxide; ROS, reactive oxygen species; TNF-a,

tumor necrosis factor-a; VCAM-1, vascular cell adhesion molecule-1; VEGF,

vascular endothelial growth factor.
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longitudinal strain (GLS, whether endocardial GLS or epicardial

GLS) and an increased mitral valve E/E′ ratio (10–12). Cardiac

output, ejection fraction, ventricular mass, heart rate, and stroke

volume remained unchanged in women with GDM during the

second and third trimesters of pregnancy (11, 13, 14). However, in

women with a history of GDM, cardiac output and stroke volume

were lower, while ejection fraction was higher than that in the

control group (12, 15). There were reduced GLS, myocardial

deformation, end diastolic/systolic volume, and pulmonary

acceleration time in the right ventricle of women with GDM (13,

16), demonstrating the impact of GDM on cardiovascular function.

The majority of existing studies have consistently demonstrated

that volume, area, contraction function, and ejection fraction of the

left atrium were not significantly changed in women with GDM

throughout pregnancy (10, 11). Only a few studies have reported

either unchanged or decreased left atrial reservoir and conduit

strain in women with GDM (17). GDM pregnancies have shown a

deterioration of the entire process of ventricular depolarization and

repolarization, including increased QT dispersion and a shortened

QRS complex (18). Women with a history of GDM demonstrated

significantly reduced coronary flow velocity reserve values

compared to healthy controls (12). In general, the observed

cardiac changes in women with current or previous GDM did not

meet established diagnostic criteria for clinical cardiac dysfunction

in adults, which were classified as subclinical cardiac abnormalities.

2.1.2 Blood pressure
Women with current or previous GDM are more likely to

develop hypertension. Numerous studies have demonstrated that

women with current or previous GDM exhibited elevated systolic

blood pressure and mean arterial pressure (10, 13, 15). However,

this finding remains controversial, as some studies have reported no

significant differences in blood pressure during pregnancy and

postpartum (11, 19, 20). Compared to the control group,

peripheral vascular resistance in women with current or previous

GDM remained increased and unchanged (10, 14). These

discrepancies might be attributed to variations in study

population characteristics, such as gestational weeks (GWs) and

sample sizes. Asma et al. reported that among 6,841 pregnancies,

the 105 cases who developed GDM had significantly higher systolic

blood pressure after adjustment for maternal characteristics during

GW 11–13, which might serve as a potential predictor for GDM

diagnosis (21).

2.1.3 Uterine artery
The uterine artery plays a crucial role in supplying blood flow to

the developing fetus throughout gestation. The pulsatility index has

shown inconsistent patterns when comparing GDM with normal

pregnancies, including a decrease, an increase, and no changes (19,

22, 23). The resistance index was elevated in GDM pregnancies and

leptin-mutation-developed GDM mice (24, 25). Compared to the

control group, the ratio of peak systolic velocity to end-systolic

blood flow velocity and blood flow were remarkably higher in GDM

pregnancies during GW 24–31 (24), while both peak systolic

velocity and diastolic velocity were significantly lower. The
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sensitivity of endothelium-dependent relaxation was significantly

impaired in GDM mice (25). Throughout the trimesters, uterine

arteries in GDM pregnancies underwent significant changes, and

further studies are required to validate these findings. Dysfunction

of the uterine artery impairs the utero-placental perfusion and the

fetal development. It is still an important question regarding the

relationship between uterine artery functions/dysfunction and fetal

body weight/growth restriction in GDM.

2.1.4 Carotid artery
In most clinical studies, carotid-femoral pulse wave velocity was

increased in women with GDM both during and after pregnancy

(26, 27), indicating aggravating arterial stiffness. Women with GDM

during pregnancy or a history of GDM had increased carotid

intima-media thickness (CIMT), a recognized surrogate marker

for future CVD and subclinical atherosclerosis (28, 29). Endothelial

function parameters, including the pressure-strain elasticity

coefficient, the common carotid stiffness index (b), and the

augment index of bilateral common carotid arteries, were

significantly elevated in GDM pregnancies, whereas arterial

compliance was significantly lower in these patients (27, 30). No

significant postpartum differences were observed in the b value and

carotid elasticity between the two groups. Overall, the distensibility

and elasticity of carotid artery were significantly lower in women

with GDM and post-GDM women (31), suggesting an increased

risk of subclinical atherosclerosis and stroke (32).

2.1.5 Ocular artery
The vessel density in the central fovea of the superficial and

deep retina was remarkably lower in GDM gravidae (33). The

central retinal venous diameter was higher, but the artery-to-vein

ratio was lower in GDM pregnancies near term (33). The maximum

diastolic velocity was significantly higher, while the resistance index

was lower in the ophthalmic arteries of women with GDM at GW

28–32 (34). At GW 35–37, women with GDM have been shown to

have significantly higher peak systolic velocity ratio in the

ophthalmic artery (14). However, some studies reported no

significant differences in ophthalmic artery indices in women with

GDM, such as the peak systolic velocity ratio delta, pulsatility index,

resistance index, peak velocity ratio, peak systolic velocity, and end-

diastolic velocity (10, 35). The inconsistent results might be

attributed to individual differences (such as GWs and metabolic

status) and variations in sample sizes.

2.1.6 Other arteries
The augmentation index, assessed at brachial and radial arteries,

has shown inconsistent patterns in women with current or previous

GDM. While some studies reported significantly increased

augmentation index values, others demonstrated no significant

changes compared to healthy controls (21, 36). Pulse wave

velocity in the upper limb and aorta was significantly higher in

GDM pregnancies at GW 11–13 (21) and in post-GDM women at

5-year follow-up (37). Distensibility of brachial artery was lower in

the women with GDM history (31). While some studies reported

comparable flow-mediated dilation between GDM and normal
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pregnancies (38), others have identified lower flow-mediated

dilation in post-GDM women compared to the control group (31,

39). Additionally, in GDM mice, maximal endothelium-dependent

relaxation was decreased in mesenteric arteries (25). In hypercaloric

diet-induced GDM rat, contractile response was impaired,

accompanied by altered protein expression of angiotensin type 1

and 2 receptors and cyclooxygenase in the aorta (40). These findings

indicate that women with GDM exhibit increased arterial stiffness

and impaired vascular function, which may contribute to the

increased risk of preeclampsia.

In summary, current evidence strongly supports a significant

association between GDM and increased CVD risk in women,

including hypertension, coronary artery diseases, atherosclerosis,

and subclinical cardiac dysfunction.
2.2 Cardiovascular changes in the progeny

The Barker hypothesis, also known as the developmental

origins of health and disease theory, proposes that adverse factors

in utero significantly increase risks of CVDs in the offspring (41).

Compared to the control group, GDM fetuses are exposed to higher

blood glucose in utero, and GDM offspring have been shown an

increased risk of congenital heart disease (42) and other CVDs (43).

Maternal diabetes during pregnancy increases the rates of early

onset of CVDs, particularly hypertension in offspring. GDM exerts

long-term effects on offspring blood vessels (cerebral artery, carotid

artery, pulmonary artery, aorta, mesenteric artery, and other

arteries), both structurally and functionally.

2.2.1 Heart
The majority of studies have demonstrated that fetuses and

neonates exposed to GDM had reduced mitral E/A ratio, increased

interventricular septal thickness, elevated myocardial performance

index, and prolonged isovolumic relaxation time and isovolumic

contraction time (44–46). Structural cardiac alterations increased the

risk of developing hypertrophic cardiomyopathy and contributed to

cardiac systolic and diastolic dysfunction in GDM offspring (47–49).

Furthermore, emerging evidence suggests that the right ventricle was

more impaired than the left ventricle in GDM offspring (47, 49–51).

The right ventricular predominance might be a potential early marker

for detecting fetal cardiac dysfunction (48). However, a few studies

reported no significant alteration in left ventricular systolic function,

myocardial performance index, or E/A ratio in fetuses exposed to

GDM (46). The impact of GDM on fetal heart rate remains

inconsistent, with reports of both unchanged and increased rates

(45, 52). Notably, one study proposed that during the first trimester,

fetal heart rate might be highly predictive of GDM (53).

2.2.2 Blood pressure
GDM offspring had higher prevalence of hypertension (43, 54).

Children exposed to GDM in utero had elevated systolic blood

pressure from 3 years of age (43, 54–57), rather than during the first

year of life (58). Streptozotocin diabetes in the pregnant animals

resulted in hypertension in adult offspring, with elevated blood
frontiersin.org

https://doi.org/10.3389/fendo.2025.1474643
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1474643
pressure from 24 weeks of age and persisting elevated throughout

30 weeks (59). The association between GDM and higher blood

pressure remained solid only in male offspring (55), and not in

female offspring (60, 61). These findings collectively suggest that

GDM-related hypertension in offspring is both age-dependent and

sex-dependent.

2.2.3 Cerebral artery
Fetus exposed to GDM demonstrates the hemodynamic

alterations, with studies reporting decreased peak systolic velocity

in middle cerebral arteries (24, 62, 63) and no significant changes

(64). The complicated results were observed in other hemodynamic

indices, such as systolic/diastolic ratio, resistance index, and

pulsation index (24, 64, 65). Comparative studies reveal that

children aged 9–11 years with GDM exposure had increased

hypothalamic blood flow (66). Maternal high-sucrose diets

consumption during pregnancy induced alterations in cerebral

artery function in offspring (67).

2.2.4 Carotid artery
As a primary conduit for cerebral blood supply, the carotid

artery exhibits significantly structural and functional changes in

GDM progeny. Following intrauterine exposure to GDM, CIMT in

neonates was increased or unchanged (68–70). Higher levels of

fasting plasma glucose at 26 weeks of gestation were strongly related

to increased CIMT in their offspring at the age of 6 years (71).

2.2.5 Pulmonary artery
Maternal hyperglycemia inhibited pulmonary vasculogenesis

during fetal development (72). During pregnancy, there was no

significant difference in acceleration time and acceleration time/

ejection time (73). At 1 year of age, the acceleration time of the

pulmonary artery in children born to GDM mothers was

significantly lower (74).
2.2.6 Aorta
Previous studies found that in human fetuses exposed to GDM,

the propagation velocities of the aortic arch were reduced at GW

34–40 (75). In 3- to 5-day-old human infants born to mothers with

diabetes, the intima media thickness of the abdominal aorta was

increased, while in 1-year-old offspring of women with GDM, it was

not (58, 76). There was an increased aortic augmentation index in

the GDM offspring (71). When compared with the aorta of the

control offspring, KCl-, endothelin-1-, and noradrenaline-mediated

vasoconstriction was potentiated and acetylcholine-mediated

vasodilation was reduced in streptozotocin-induced female

offspring but not in the male offspring, indicating that GDM

programs gender-specific vascular dysfunction in the aorta (77).
2.2.7 Mesenteric artery
The mesenteric vasculature is closely associated with blood

pressure, as it constitutes a component of systemic resistance

arteries. Offspring of maternal diabetes during pregnancy showed

an impaired endothelium-dependent relaxation inmesenteric arteries
Frontiers in Endocrinology 04
(25, 59), whereas relaxation to sodium nitroprusside remained

unchanged (78). Adult offspring exposed to maternal diabetes

during pregnancy had enhanced sensitivity to noradrenaline (78).

Maternal high-sucrose diets accelerated vascular stiffness in the aged

offspring, characterized by weakened myogenic responses and

reduced phenylephrine-stimulated contraction (79).

2.2.8 Renal arteries
Doppler ultrasound analysis revealed that the systolic/diastolic

ratio, resistance index, and pulsatility index were increased in the

renal artery of GDM fetuses (65, 80). Neonates of mothers who

maintained strict normoglycemia control during pregnancy and

met the other criteria of the GDM management program exhibited

no changes in renal volumes, urinary biomarkers of renal functions,

or markers of tubular impairment compared to the control group.

Conversely, neonates of mothers who did not maintain glycemic

control and were non-compliant with the management program

exhibited significantly lower renal volumes and higher activities of

N-acetyl-b-D-glucosaminidase and cathepsin B (81).

2.2.9 Others
High glucose exposure during pregnancy inhibited the

development of the blood vessel plexus and resulted in narrower

blood vessel diameter in chick embryo (82).

In conclusion, GDM has been shown to exert both short-term

and long-term effects on offspring circulation, which may be age-

dependent and gender-specific. The development of CVDs in GDM

offspring may be attributed to maternal hyperglycemia. Thus,

glycemic control during pregnancy is vital for the cardiovascular

health of GDM offspring.
2.3 Umbilical–placental circulation

Umbilical–placental circulation is essential for material exchange

between the mother and fetus, typically comprising one umbilical

vein, two umbilical arteries, stem placental villi, intermediate villi, and

terminal villi. In normal pregnancies, the structure of chorionic villi

ensures proper nutrient delivery to the fetus.

GDM is a pathology associated with vascular dysfunction in

umbilical–placental circulation. In GDM, placental villi exhibit

hypoplasia, with immature villi, abnormal villi branching, and

excessive neovascularization (83). It is characterized by an

increased distance between the intervillous space and fetal

capillaries in the GDM placenta (84). The microvilli of the GDM

placenta were disorganized and locally hyperplastic, with some areas

showing sparse or even absent microvilli (85). The endoplasmic

reticulum and mitochondria of trophoblast cells were significantly

swollen, the basement membrane was thickened, and there were

varying degrees of hyperplasia in the small placental arteries (83). The

barrier integrity of placental vessels was compromised in GDM (86).

The structural alterations in placental blood vessels seriously impair

blood and oxygen supply between the placenta and fetus, and may be

one of the key factors contributing to adverse pregnancy outcomes in

GDM (87).
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Bahiru et al. reported histopathologic changes in GDM,

including umbilical cord crack, disintegration of the endothelium,

and crack of umbilical vessels. Endothelial cells in GDM umbilical

cords were discontinuous with focal erosions (88). Smooth muscles

of GDM umbilical blood vessels appeared disturbed and showed

degeneration of their strands (89). The media of GDM umbilical

artery showed smooth muscle cells widely separated by connective

tissue containing little collagen and few elastic fibers, along with

mononuclear cell infiltration. The GDM umbilical vein has a

thinner wall and a wider lumen (90).

Alterations in umbilical–placental vessel structures are closely

associated with blood flow and vascular tone. Pregnancies

complicated by GDM exhibited significantly lower placental

volume, vascularization index, and vascularization flow index in

the placenta compared to the control group during the first and

second trimesters (23, 91). Most studies found that hemodynamic

indices of the GDM umbilical artery, such as peak systolic velocity/

end-systolic blood flow velocity, resistance index, and pulsation

index, were reduced in the third trimester (65, 92). However, Cui

et al. reported higher peak systolic velocity/end-systolic blood flow

velocity, resistance index, and pulsation index values in the GDM

umbilical artery during the third trimester, and also significantly

lower peak systolic and minimum diastolic velocities (24). GDM

was also reported to have no association with abnormal Doppler

indices of placenta circulation (93). One possible explanation for

that discrepancy is the existence of individual differences and the

varying levels of maternal hyperglycemia.

Miroslav et al. found that in the GDM umbilical artery,

cumulative concentrations of 5-HT-mediated vasoconstrictions

were significantly attenuated (94), and the concentration–

response curve for bradykinin was shifted to the left after

endothelial denudation (95). Omar et al. noted that placental

vasodilation caused by progesterone via cyclic adenosine

monophosphate was significantly reduced (96). Abnormal vessel

tone of the umbilical–placental circulation might decrease placental

perfusion and the blood flow to the fetus.

Abnormal umbilical–placental circulation in GDM might be

one of the most important reasons for cardiovascular changes in

progeny and in women.
3 Mechanisms in GDM-related
cardiovascular changes

Cardiovascular changes in women with GDM and their offspring

were correlated with endothelial dysfunction, insulin resistance,

oxidative stress, ion channels, inflammation, angiogenesis, and

epigenetic inheritance. These mechanisms could be crucial for the

better management of cardiovascular changes in GDM.
3.1 Endothelial dysfunction

Endothelial dysfunction is considered to be a hallmark of

vascular disorders. Endothelial dysfunction is widely observed in
Frontiers in Endocrinology 05
GDM pregnancies, post-GDM women, the umbilical–placental

circulation, and their offspring. Thus, it could be one of the

mechanisms underlying GDM-induced CVDs.

GDM pregnancy exhibited impaired endothelium-dependent

relaxation to methacholine in mesenteric arteries (25), along with

decreased circulating endothelial progenitor cell counts (97), and

modified endothelial function markers, such as nitric oxide (NO)

and endothelial nitric oxide synthase (eNOS). Reduced

bioavailability of NO is a consensus among researchers studying

GDM (98). Women with previous GDM displayed lower flow-

mediated dilation (39), higher values of markers of endothelial

dysfunction, such as E-selectin and intercellular adhesion

molecule-1 (ICAM-1) (99), and decreased levels of L-arginine (a

critical substrate for NO synthesis) (100). These findings indicated

that GDM-related endothelial dysfunction could persist

into postpartum.

The umbilical–placental circulation is considered to be part of

fetal circulation. Endothelial rupture and erosion were observed in

umbilical vessels from GDM pregnancies (88). Fetal endothelial

progenitor cells exposed to hyperglycemia in vivo or in vitro formed

fewer colonies in culture, and displayed reduced proliferation,

migration, and tubule formation (101). Endothelium-dependent

relaxation to calcitonin was weaker in GDM umbilical veins than

that in the control group (102). When compared to the control

group, NO synthase activities were decreased in GDM stem villous

vessels (103). The offspring from mothers with diabetes exhibited

impaired endothelium-dependent relaxation in mesenteric arteries

(59), decreased NO production and lowered eNOS phosphorylation

in blood vessels (104), and reduced eNOS functions in regulating

vessel tone (105). Thus, it is suggested that GDM-related

endothelial dysfunction in the progeny may originate from the

prenatal period.

However, there were significantly higher circulating endothelial

functional and dysfunctional markers, including von Willebrand

factor and eNOS, in GDM umbilical plasma (75, 97). In primary

feto-placental endothelial cells from GDM pregnancies, there was a

decrease in ICAM-1, a marker of endothelial dysfunction (106).

Human umbilical vein endothelial cells (HUVECs) from GDM

pregnancy or HUVECs exposed to hyperglycemia showed

significantly increased L-arginine transport, enhanced human

cationic amino acid transporter-1, and eNOS expression and

activities (98, 107, 108). The inconsistent findings may be

attributed to different tissues studied and different levels of

glycemic control.

The increased circulating endothelial functional markers could

originate from the umbilical–placental endothelium. Exosomes

isolated from HUVECs of normal pregnancies could inhibit the

changes in HUVECs from GDM pregnancies mentioned above.

Conversely, exosomes from GDM HUVECs reduced eNOS

phosphorylation and increased reactive oxygen species (ROS)

generation in cells from normal pregnancy (108). Insulin could

reverse GDM-related endothelium abnormalities (109) via

activation of insulin receptors (110), A1 adenosine receptors

(109), and nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase (111). The inhibition of endoplasmic
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reticulum stress and reduction of ROS levels could increase NO

production and restore endothelium-dependent vasodilation in

offspring of mothers with diabetes (59, 104).
3.2 Insulin resistance

Insulin resistance is a pathophysiological condition in which

organs do not respond appropriately to insulin, observed in GDM

pregnancies, post-GDMwomen, and GDM offspring, and the GDM

umbilical–placental circulation (77, 112–116). Changes in insulin

signaling pathways (Figure 1), such as insulin receptors and

substrates, MAPK, JNK, PI3K, AKT, and mTOR, contribute to

insulin resistance in GDM (117). In the plasma of women with

GDM pregnancy and their offspring, there were alterations in

insulin resistance-related factors, such as elevated leptin (118),

tumor necrosis factor-a (TNF-a), asprosin (116), and resistin

(119). The GDM placenta had increased levels of glucose

transporter-4 and glucose transporter-8, and decreased levels of

glucose transporters-3, which were one of the mechanisms of

insulin resistance (120).

Flow-mediated dilation in brachial arteries in women with

previous GDM was correlated inversely with serum markers of

insulin resistance (39). Insulin resistance was found to be associated

with vascular dysfunction (especially endothelium dysfunction) and

arterial stiffness (121–124), thereby increasing the risks of

developing CVDs. Increased maternal insulin resistance had a
Frontiers in Endocrinology 06
negative impact on placental efficiency in GDM cases (125),

which may be due to the expansion of immature villi (126).

Astaxanthin and naringenin have the potential to attenuate GDM

symptoms by improving insulin sensitivity during pregnancy

through adenosine 5′-monophosphate-activated protein kinase

(127, 128).
3.3 Oxidative stress

Oxidative stress increases during gestation, and the placenta is

considered to be the primary source of ROS generation (129). In the

offspring and maternal tissues of GDM pregnancies, there were

increased markers of oxidative stress, such as higher levels of

circulating free radical production in the mothers and offspring,

and reduced catalase activity in the placenta and fetus (59,

130–132).

Maternal hyperglycemia is regarded as an important cause of

oxidative stress in GDM. Hyperglycemia contributes to increased

ROS synthesis in endothelial cells. HUVECs from GDM showed an

increased ROS synthesis, and HUVECs from normal pregnancies

exposed to a high extracellular concentration of D-glucose

increased NOX-dependent ROS generation (133, 134).

Hyperglycemia stimulated ROS production through glucose

autoxidation, mitochondrial superoxide production, eNOS

uncoupling, and late glycosylation end product-dependent

NADPH oxidase activation (135).
FIGURE 1

Role of insulin signaling pathway in cardiovascular changes in GDM. Alterations in insulin receptors (IR), insulin receptor substrate proteins 1/2 (IRS1/
2), and PI3K-Akt-mTOR pathway contribute to insulin resistance, which has been observed in women with GDM and their offspring. MicroRNAs
(miRNAs) can regulate insulin signaling by targeting IRS1/2. Insulin resistance impairs angiogenesis and endothelial dilation, thereby increasing the
risk of developing cardiovascular diseases in GDM.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1474643
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1474643
Oxidative stress in GDM pregnancy could increase

cardiovascular risks in the mother and fetus, via endothelial

dysfunction, decreased NO bioavailability and inflammation, and

altered ion channel activities (Figure 2). ROS increased 4-

hydroxynonenal production and damaged the development of

coronary artery in pre-gestational diabetes fetus (136). Increased

ROS and NADPH activities might cause endothelial dysfunction via

the protein kinase C pathway in GDM mothers and their fetuses

(137). ROS was found to induce an increase in inflammatory

factors, such as interleukin-6 (IL-6) and TNF-a, which were

implicated in GDM placental vascular endothelial dysfunction

(138, 139). In the offspring exposed to maternal hyperglycemia,

NOX4-derived superoxide inhibited large-conductance Ca2

+-activated potassium channel (BKCa) activities via the AKT

pathway (140). ROS affected transient receptor potential (TRP)-

type Ca2+-permeable non-selective cation channels by targeting

both membrane lipids and channel proteins in the term

syncytiotrophoblast (141). ROS increased the expressions of

multiple growth factors and activated multiple stress signals such

as JNK and Pim-1, leading to smooth muscle cell proliferation, and

regulated angiogenesis through NF-kB/TNF-a signaling pathway

and related factors such as IL-6, ICAM-1, and vascular endothelial

growth factor (VEGF) (142).
3.4 Ion channels

Cation channels, such as K+ and Ca2+ channels, play an

important role in the regulation of vessel tone. Li et al.
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demonstrated that ATP-sensitive potassium channel (KATP)

currents and KATP channel-mediated relaxation were impaired in

GDM umbilical arteries (143). Djokic et al. found that a K+ channel

opener, pinacidil, reduced relaxation in endothelium-denuded HUV

compared to those from normal pregnancy, while the expression of

KATP channels was decreased in GDM umbilical veins (144). BKCa

current density in human umbilical artery smooth muscle cells was

significantly reduced, and vasodilation mediated by BKCa agonist NS-

1619 was significantly impaired in GDM (145). Changes in inwardly

rectifying potassium channel and small-conductance calcium-

dependent potassium channel were associated with attenuated

bradykinin-mediated contraction in GDM umbilical arteries (95).

Some studies reported that polymorphisms of KCNQ1 (rs2237892,

rs2237895, and rs2074196) and KCNJ11 (E23K) were associated with

GDM (146–149), but others found that gene polymorphisms of

KCNJ11 (rs5219) and KCNQ1 (rs2237892, rs151290, rs231841, and

rs7929804) were not significant risk factors for the development of

GDM (150–152).

Heather found that the reduced rate of Ca2+ bursting in GDM

umbilical vein endothelial cells inhibited the functions of NO,

thereby leading to vascular dysfunction (153). Moreover, Miroslav

et al. found that serotonin-mediated vasoconstriction was

significantly attenuated in GDM umbilical arteries, which was

associated with the impairment of voltage-gated Ca2+ channels

and Na+/K+-ATPase (94). Furthermore, in GDM placenta, mRNA

expressions of calcium transporters were downregulated, including

TRPV5 and TRPV6, calcium-binding/chaperone proteins, plasma

membrane calcium ATPase, inositol triphosphate receptors, and

ryanodine receptors (154).
FIGURE 2

Role of reactive oxygen species (ROS) in cardiovascular alterations in GDM. Hyperglycemia and insulin resistance induce excessive ROS production
in GDM via NADPH oxidase (NOX). Elevated ROS levels in GDM impair endothelial cell function, smooth muscle cell proliferation, vasoconstriction,
and angiogenesis. ROS mediates the production of advanced glycation end products (AGEs), thereby increasing the risk of atherosclerosis.
Furthermore, ROS promotes inflammatory cell recruitment and inflammation in GDM.
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Maternal high-glucose diets during pregnancy altered the

frequency and amplitude of BKCa channels, as well as L-type

voltage-dependent Ca2+ channel currents in the offspring vasculature

(155). Hyperglycemia affected the activities of ion channels in vascular

smooth muscle (156). Altered functions, expressions, and

polymorphisms of ion channels could contribute to the increased

risks of developing CVDs in GDM. The role of ion channels in GDM

has primarily been studied in human umbilical and placental

vasculature, which is functionally analogous to fetal vasculature and

provides insights into offspring cardiovascular programming.
3.5 Inflammation

Inflammatory factors play a key role in the process of GDM and

GDM-mediated vascular changes. Many inflammatory factors are

closely linked to GDM-mediated vascular injury, including C-

reactive protein (CRP), ICAM-1, vascular cell adhesion molecule-

1 (VCAM-1), and IL-6, among others (157).

Many studies demonstrated that CRP was increased in maternal

serum, cord serum, and the placenta of women with GDM (158–

161). Higher circulating CRP may predict the risk of GDM

development. CRP was one of the significant independent

predictors of developing preeclampsia in women with GDM

(162). Insulin administration significantly reduced CRP

concentration and ameliorated aortic injury in streptozotocin-

mediated diabetic rats (163).

ICAM-1 was viewed as a symbol of endothelial dysfunction

leading to vascular disorders, and its level was increased in GDM

maternal serum and the umbilical–placental circulation (98, 164).

Exposure to high glucose could enhance ICAM-1 expression in

HUVECs by increasing the release of exosomes (165). Increased

ICAM-1 significantly promoted monocyte adhesion to decidual

endothelial cells in diabetic pregnancies, which could be inhibited

via ICAM-1 silencing (166). In GDM umbilical cords and placental

vessels, the immunostaining intensity of ICAM-1 was decreased

compared to the control group (164). ICAM-1 protein was lower in

primary feto-placental endothelial cells from GDM pregnancy

when compared with the control group (106). Decreased ICAM-1

caused by elevated miR-130b-3p from GDM-placenta

mesenchymal stem cell-derived exosomes participated in the

inhibition of HUVEC proliferation, migration, and angiogenesis

(167). Altered ICAM-1 plays an important role in GDM

vascular pathology.

VCAM-1 was increased in the maternal serum, umbilical cord,

and placenta of patients with GDM (98, 168, 169). After delivery,

circulating VCAM-1 remained increased in women with GDM

(170). VCAM-1 mRNA and protein levels were unchanged in

primary feto-placental endothelial cells from GDM pregnancy

when compared with the normal group (106), although other

reports showed that VCAM-1 was increased in GDM placenta

(171). High glucose stimulated the expression of VCAM-1 in

HUVECs (168). Previous studies demonstrated that increased

ICAM-1 and VCAM-1 were the first critical step for lymphocyte

and endothelial cell interactions (172). Increased VCAM-1 primed
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diabetic vasculature to have enhanced interaction with circulating

monocytes in human endothelial cells cultured with advanced

glycation end products (173).

In GDM maternal blood and umbilical cord blood, IL-1b and

IL-6 were increased or unchanged (174–178). Moreover, on the

third day postpartum, women with GDMwere found to have higher

circulating IL-1b levels (176). Additionally, GDM placenta showed

increased IL-1b and IL-6 expression (159, 179). Increased IL-1b and
IL-6 were associated with vascular dysfunction in retinal arteries

(180) and in forearm skin vessels (181) from GDM pregnancies.

The interaction of IL-6 and TNF-a contributed to endothelial

dysfunction in diabetic mice via oxidative stress and reduced

eNOS phosphorylation (182). There were decreased IL-37 in the

GDM umbilical–placental system (183). IL-37 inhibited the

progression of vascular calcification and atherosclerosis in

diabetes (184). There were also many changes in inflammatory

factors in GDM, such as TNF-a, IL-10, IL-8, and IL-38.

Inflammatory factors could affect endothelial functions and

vascular calcification, which might finally lead to vascular disease

in GDM. More studies are needed to clarify the role of

inflammatory factors in GDM vascular dysfunction.
3.6 Angiogenesis

Angiogenesis is a coordinated process of proangiogenic and

inhibitory factors. Histopathological analysis indicates excessive

angiogenesis in GDM placenta, including increased villous

vascularity and elevated number of syncytial knots (185). There

were commonly increased proangiogenic factors, including the

VEGF-signaling pathway (186, 187), total and active membrane-

type matrix metalloproteinase 1 (188), and cognate succinate

receptors (189) in GDM placenta, but there was a reduction of

anti-angiogenic receptor UNC5b in GDM HUVECs (190). GDM-

derived trophoblast showed altered expressions of proangiogenic

factors and anti-angiogenic factors (138). Hyperglycemia-induced

angiogenesis changes were associated with molecules in trophoblast

(191). Exposure to GDM-like conditions enhanced the

proangiogenic abilities of human amniotic membrane stem

cells (192).

However, some studies reported that when compared with the

control group, there was a decrease in angiogenic factors and

angiogenesis modulators, such as SIRT1 (193), VEGFA, and

VEGFR2 in GDM placenta (194). Maternal hyperglycemia

inhibited angiogenesis in fetal pulmonary arteries (72). The

HUVECs from GDM pregnancies presented increased apoptosis

and decreased proliferation and angiogenesis compared with those

from healthy pregnancies (195). Both the GDM conditions and

hyperglycemia inhibited HUVEC proliferation, migration, and tube

formation via reduced FGF2-induced activation of ERK1/2, and

caused apoptosis via increased calcium entry (196, 197).

Alterations in angiogenesis in GDM were closely associated

with maternal hyperglycemia, which might lead to abnormal

development of both the placenta and the fetus. Abnormal

umbilical coiling in GDM was related to the downregulation of
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the angiogenic factor VEGFA (198). The inconsistent findings may

be attributed to variations in tissue types and differences in GDM-

like conditions. Therefore, further studies are needed to clarify

the mechanisms.
3.7 Epigenetic modification

Epigenetic mechanisms, including DNA methylation,

microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and

histone modifications, can produce heritable phenotypic changes

without altering the DNA sequence.

DNA methylation is widely observed in GDM (199, 200).

Exposure to GDM has been shown to alter DNA methylation

patterns in human feto-placental arterial and venous endothelial

cells, leading to aberrant cellular morphology and impaired barrier

function in endothelial cells (201, 202). Notably, the promoter

region of estrogen receptor 1 was found to be methylated in

decidual vessels of healthy individuals, but not in GDM (203).

DNA hypermethylation of HDAC2 was significantly more

pronounced in GDM-HUVECs compared to control-HUVECs

(204). Sun et al. further demonstrated that the abundance of 5-

hydroxymethylcytosine (5hmC) in the umbilical vein of women

with GDM was altered, a change linked to DNA methylation-

related plasticity through oxidation mediated by ten-eleven

translocation enzymes (205). These alterations in DNA

methylation and 5hmC levels in GDM reflected the molecular

characteristics of “type II diabetes” and “insulin resistance,”

contributing to abnormal cardiovascular development and an

increased risk of cardio-metabolic diseases later in life.

Multiple miRNAs are reported to play roles in cardiovascular

changes associated with GDM. In a GDM rat model, inhibition of

miR-873, which targeted IGFBP2, was shown to regulate insulin

resistance and alleviate myocardial injury by activating the PI3K/

AKT/mTOR signaling pathway, thereby mitigating the progression

of GDM (206). Additionally, decreased levels of placenta-derived

exosome miR-140-3p and miR-574-3p in GDM were found to

inhibit the proliferation, migration, and tube formation capacity of

umbilical vein endothelial cells by targeting VEGFs (207). However,

miR-130b-3p exhibited an opposite effect on HUVECs compared to

miR-140-3p and miR-574-3p, as its upregulation inhibited HUVEC

proliferation and angiogenesis (167). Alterations in cerebrovascular

functions in GDM offspring may be attributed to changes in miR-

29a-3p and miR-92a-3p levels (208). Although a large number of

differentially expressed miRNAs have been identified, further

research is needed to elucidate the relationship between miRNAs

and cardiovascular changes in GDM (209).

In GDM pregnancies, changes in circulating lncRNAs have

been observed, including decreased lncRNA SNHG17 and

increased lncRNA SOX2OT, which were strongly associated with

adverse outcomes such as intrauterine distress and hypertension

(210). Elevated levels of circVEGFC in maternal serum from GDM

pregnancies might be linked to hypertension (211). Furthermore,

high sucrose intake upregulated angiotensin 1 receptor expression

through histone modifications, such as increased H3Ac, H3K4me3,
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and H3S10ph, as well as decreased H3K9me3, ultimately

contributing to hypertension in aged offspring (156).

Epigenetic mechanisms may serve as mediators of persistent

metabolic memory in endothelial cells exposed to hyperglycemia

(204). These epigenetic modifications affect insulin resistance,

angiogenesis, and vascular functions, finally leading to

cardiovascular changes in GDM.
4 Prevention and treatment of GDM-
related cardiovascular diseases

GDM significantly increases cardiovascular risks in both

mothers and offspring. Insulin and metformin are commonly

used to treat GDM, improving immediate pregnancy outcomes,

and reducing the incidence of pregnancy-related hypertension

(212). Metformin treatment in GDM pregnancy is associated with

a reduced risk of preeclampsia (213). Additionally, treatment with

metformin alone or in combination with insulin has been shown to

ameliorate the increased augmentation index in the brachial arteries

and aorta during GW 28–36 in GDM pregnancies (214). Insulin-

treated GDM pregnancies exhibited a resistance index of umbilical

arteries similar to that of the control group (92). This review

summarizes the effects of exercise, dietary modification, and

probiotics on cardiovascular changes associated with GDM.
4.1 Exercise

Exercise is effective for controlling blood glucose and insulin

levels in GDM pregnancies (215, 216). It modestly improved

cardiorespiratory fitness in both GDM pregnancies and their

fetuses (217), as evidenced by elevated heart rates (218).

Moderate-intensity resistance exercise has been found to be

beneficial for improving blood pressure in patients with GDM

(219). Exercise reduced uterine artery pulsatility indexes in GDM

pregnancies (220). During exercise, women with GDM exhibited

blunted cerebral oxygenation, which was correlated with

macrovascular functions (221). Moderate-intensity exercise

improved oxidation capacity in GDM pregnancies (220). Exercise

is highly recommended for the management of GDM and has been

shown to be beneficial in preventing cardiovascular damage in both

mothers and their offspring.
4.2 Dietary modification

Modified dietary interventions favorably influenced maternal

glycemia, insulin levels, and fetal birth weight in GDM (222, 223).

Compared with the control group, there was an increased

augmentation index in the brachial arteries and aorta from GDM

pregnancies with diet management, which could be attenuated by

treatment with metformin alone or in combination with insulin

(214). The resistance index in umbilical arteries was lower in GDM

pregnancies managed with diet interventions compared to the
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control group, whereas no significant difference was observed

between the insulin-treated GDM group and the control group

(92). In diet alone-controlled GDM placentas, occludin expression

was lower than that in placentas from normal pregnancies and

metformin-controlled GDM pregnancies (86). These findings

indicated that dietary modification alone during pregnancy

may not be sufficient to reverse impaired vascular functions and

placental barrier integrity. However, a diet rich in monounsaturated

fatty acids demonstrated favorable effects on diastolic blood

pressure in women with GDM compared to a high-carbohydrate

diet (224).
4.3 Probiotics

The consumption of Lactobacillus and Bifidobacterium probiotics

decreased fasting plasma glucose, serum insulin levels, insulin

resistance, inflammatory factors (such as CRP and IL-6), and

oxidative stress markers, while probiotics significantly increased

insulin sensitivity, plasma NO levels, and total antioxidant capacity

in GDM pregnancies (225–227). However, some studies have reported

that probiotic supplementation was not associated with a reduced risk

of hypertensive disorders in GDM pregnancies (228, 229). In contrast,

excessive probiotic supplementation might increase the risk of

preeclampsia in women with GDM (230). The inconsistent findings

may be attributed to variations in probiotic strains, dosages, timing of

intervention, and individual differences. Probiotics have demonstrated

a positive impact on glycemic control, and further research is needed to

clarify their role in preventing CVDs in women with GDM and

their offspring.
5 Conclusions

GDM exerts both short- and long-term effects on cardiovascular

changes in mothers and their offspring. The influence of GDM on

offspring may stem from alterations in umbilical–placental

circulation and the direct consequences of maternal hyperglycemia.

Endothelial dysfunction, insulin resistance, oxidative stress, ion

channel abnormalities, inflammation, impaired angiogenesis, and

epigenetic modifications collectively contribute to the structural

and functional abnormalities of the cardiovascular system in GDM.
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Early diagnosis and intervention, along with strategies such as

exercise, dietary modifications, and probiotics supplementation,

may have beneficial effects on GDM-related cardiovascular changes.
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